| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251 |
- /**
- * Copyright (c) 2013-2014 Tomas Dzetkulic
- * Copyright (c) 2013-2014 Pavol Rusnak
- * Copyright (c) 2015 Jochen Hoenicke
- *
- * Permission is hereby granted, free of charge, to any person obtaining
- * a copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
- * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
- * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
- * OTHER DEALINGS IN THE SOFTWARE.
- */
- #include <assert.h>
- #include <stdint.h>
- #include <stdlib.h>
- #include <string.h>
- #include "address.h"
- #include "base58.h"
- #include "bignum.h"
- #include "ecdsa.h"
- #include "hmac.h"
- #include "memzero.h"
- #include "rand.h"
- #include "rfc6979.h"
- #include "secp256k1.h"
- // Set cp2 = cp1
- void point_copy(const curve_point *cp1, curve_point *cp2) { *cp2 = *cp1; }
- // cp2 = cp1 + cp2
- void point_add(const ecdsa_curve *curve, const curve_point *cp1,
- curve_point *cp2) {
- bignum256 lambda = {0}, inv = {0}, xr = {0}, yr = {0};
- if (point_is_infinity(cp1)) {
- return;
- }
- if (point_is_infinity(cp2)) {
- point_copy(cp1, cp2);
- return;
- }
- if (point_is_equal(cp1, cp2)) {
- point_double(curve, cp2);
- return;
- }
- if (point_is_negative_of(cp1, cp2)) {
- point_set_infinity(cp2);
- return;
- }
- // lambda = (y2 - y1) / (x2 - x1)
- bn_subtractmod(&(cp2->x), &(cp1->x), &inv, &curve->prime);
- bn_inverse(&inv, &curve->prime);
- bn_subtractmod(&(cp2->y), &(cp1->y), &lambda, &curve->prime);
- bn_multiply(&inv, &lambda, &curve->prime);
- // xr = lambda^2 - x1 - x2
- xr = lambda;
- bn_multiply(&xr, &xr, &curve->prime);
- yr = cp1->x;
- bn_addmod(&yr, &(cp2->x), &curve->prime);
- bn_subtractmod(&xr, &yr, &xr, &curve->prime);
- bn_fast_mod(&xr, &curve->prime);
- bn_mod(&xr, &curve->prime);
- // yr = lambda (x1 - xr) - y1
- bn_subtractmod(&(cp1->x), &xr, &yr, &curve->prime);
- bn_multiply(&lambda, &yr, &curve->prime);
- bn_subtractmod(&yr, &(cp1->y), &yr, &curve->prime);
- bn_fast_mod(&yr, &curve->prime);
- bn_mod(&yr, &curve->prime);
- cp2->x = xr;
- cp2->y = yr;
- }
- // cp = cp + cp
- void point_double(const ecdsa_curve *curve, curve_point *cp) {
- bignum256 lambda = {0}, xr = {0}, yr = {0};
- if (point_is_infinity(cp)) {
- return;
- }
- if (bn_is_zero(&(cp->y))) {
- point_set_infinity(cp);
- return;
- }
- // lambda = (3 x^2 + a) / (2 y)
- lambda = cp->y;
- bn_mult_k(&lambda, 2, &curve->prime);
- bn_fast_mod(&lambda, &curve->prime);
- bn_mod(&lambda, &curve->prime);
- bn_inverse(&lambda, &curve->prime);
- xr = cp->x;
- bn_multiply(&xr, &xr, &curve->prime);
- bn_mult_k(&xr, 3, &curve->prime);
- bn_subi(&xr, -curve->a, &curve->prime);
- bn_multiply(&xr, &lambda, &curve->prime);
- // xr = lambda^2 - 2*x
- xr = lambda;
- bn_multiply(&xr, &xr, &curve->prime);
- yr = cp->x;
- bn_lshift(&yr);
- bn_subtractmod(&xr, &yr, &xr, &curve->prime);
- bn_fast_mod(&xr, &curve->prime);
- bn_mod(&xr, &curve->prime);
- // yr = lambda (x - xr) - y
- bn_subtractmod(&(cp->x), &xr, &yr, &curve->prime);
- bn_multiply(&lambda, &yr, &curve->prime);
- bn_subtractmod(&yr, &(cp->y), &yr, &curve->prime);
- bn_fast_mod(&yr, &curve->prime);
- bn_mod(&yr, &curve->prime);
- cp->x = xr;
- cp->y = yr;
- }
- // set point to internal representation of point at infinity
- void point_set_infinity(curve_point *p) {
- bn_zero(&(p->x));
- bn_zero(&(p->y));
- }
- // return true iff p represent point at infinity
- // both coords are zero in internal representation
- int point_is_infinity(const curve_point *p) {
- return bn_is_zero(&(p->x)) && bn_is_zero(&(p->y));
- }
- // return true iff both points are equal
- int point_is_equal(const curve_point *p, const curve_point *q) {
- return bn_is_equal(&(p->x), &(q->x)) && bn_is_equal(&(p->y), &(q->y));
- }
- // returns true iff p == -q
- // expects p and q be valid points on curve other than point at infinity
- int point_is_negative_of(const curve_point *p, const curve_point *q) {
- // if P == (x, y), then -P would be (x, -y) on this curve
- if (!bn_is_equal(&(p->x), &(q->x))) {
- return 0;
- }
- // we shouldn't hit this for a valid point
- if (bn_is_zero(&(p->y))) {
- return 0;
- }
- return !bn_is_equal(&(p->y), &(q->y));
- }
- typedef struct jacobian_curve_point {
- bignum256 x, y, z;
- } jacobian_curve_point;
- // generate random K for signing/side-channel noise
- static void generate_k_random(bignum256 *k, const bignum256 *prime) {
- do {
- int i = 0;
- for (i = 0; i < 8; i++) {
- k->val[i] = random32() & ((1u << BN_BITS_PER_LIMB) - 1);
- }
- k->val[8] = random32() & ((1u << BN_BITS_LAST_LIMB) - 1);
- // check that k is in range and not zero.
- } while (bn_is_zero(k) || !bn_is_less(k, prime));
- }
- void curve_to_jacobian(const curve_point *p, jacobian_curve_point *jp,
- const bignum256 *prime) {
- // randomize z coordinate
- generate_k_random(&jp->z, prime);
- jp->x = jp->z;
- bn_multiply(&jp->z, &jp->x, prime);
- // x = z^2
- jp->y = jp->x;
- bn_multiply(&jp->z, &jp->y, prime);
- // y = z^3
- bn_multiply(&p->x, &jp->x, prime);
- bn_multiply(&p->y, &jp->y, prime);
- }
- void jacobian_to_curve(const jacobian_curve_point *jp, curve_point *p,
- const bignum256 *prime) {
- p->y = jp->z;
- bn_inverse(&p->y, prime);
- // p->y = z^-1
- p->x = p->y;
- bn_multiply(&p->x, &p->x, prime);
- // p->x = z^-2
- bn_multiply(&p->x, &p->y, prime);
- // p->y = z^-3
- bn_multiply(&jp->x, &p->x, prime);
- // p->x = jp->x * z^-2
- bn_multiply(&jp->y, &p->y, prime);
- // p->y = jp->y * z^-3
- bn_mod(&p->x, prime);
- bn_mod(&p->y, prime);
- }
- void point_jacobian_add(const curve_point *p1, jacobian_curve_point *p2,
- const ecdsa_curve *curve) {
- bignum256 r = {0}, h = {0}, r2 = {0};
- bignum256 hcby = {0}, hsqx = {0};
- bignum256 xz = {0}, yz = {0}, az = {0};
- int is_doubling = 0;
- const bignum256 *prime = &curve->prime;
- int a = curve->a;
- assert(-3 <= a && a <= 0);
- /* First we bring p1 to the same denominator:
- * x1' := x1 * z2^2
- * y1' := y1 * z2^3
- */
- /*
- * lambda = ((y1' - y2)/z2^3) / ((x1' - x2)/z2^2)
- * = (y1' - y2) / (x1' - x2) z2
- * x3/z3^2 = lambda^2 - (x1' + x2)/z2^2
- * y3/z3^3 = 1/2 lambda * (2x3/z3^2 - (x1' + x2)/z2^2) + (y1'+y2)/z2^3
- *
- * For the special case x1=x2, y1=y2 (doubling) we have
- * lambda = 3/2 ((x2/z2^2)^2 + a) / (y2/z2^3)
- * = 3/2 (x2^2 + a*z2^4) / y2*z2)
- *
- * to get rid of fraction we write lambda as
- * lambda = r / (h*z2)
- * with r = is_doubling ? 3/2 x2^2 + az2^4 : (y1 - y2)
- * h = is_doubling ? y1+y2 : (x1 - x2)
- *
- * With z3 = h*z2 (the denominator of lambda)
- * we get x3 = lambda^2*z3^2 - (x1' + x2)/z2^2*z3^2
- * = r^2 - h^2 * (x1' + x2)
- * and y3 = 1/2 r * (2x3 - h^2*(x1' + x2)) + h^3*(y1' + y2)
- */
- /* h = x1 - x2
- * r = y1 - y2
- * x3 = r^2 - h^3 - 2*h^2*x2
- * y3 = r*(h^2*x2 - x3) - h^3*y2
- * z3 = h*z2
- */
- xz = p2->z;
- bn_multiply(&xz, &xz, prime); // xz = z2^2
- yz = p2->z;
- bn_multiply(&xz, &yz, prime); // yz = z2^3
- if (a != 0) {
- az = xz;
- bn_multiply(&az, &az, prime); // az = z2^4
- bn_mult_k(&az, -a, prime); // az = -az2^4
- }
- bn_multiply(&p1->x, &xz, prime); // xz = x1' = x1*z2^2;
- h = xz;
- bn_subtractmod(&h, &p2->x, &h, prime);
- bn_fast_mod(&h, prime);
- // h = x1' - x2;
- bn_add(&xz, &p2->x);
- // xz = x1' + x2
- // check for h == 0 % prime. Note that h never normalizes to
- // zero, since h = x1' + 2*prime - x2 > 0 and a positive
- // multiple of prime is always normalized to prime by
- // bn_fast_mod.
- is_doubling = bn_is_equal(&h, prime);
- bn_multiply(&p1->y, &yz, prime); // yz = y1' = y1*z2^3;
- bn_subtractmod(&yz, &p2->y, &r, prime);
- // r = y1' - y2;
- bn_add(&yz, &p2->y);
- // yz = y1' + y2
- r2 = p2->x;
- bn_multiply(&r2, &r2, prime);
- bn_mult_k(&r2, 3, prime);
- if (a != 0) {
- // subtract -a z2^4, i.e, add a z2^4
- bn_subtractmod(&r2, &az, &r2, prime);
- }
- bn_cmov(&r, is_doubling, &r2, &r);
- bn_cmov(&h, is_doubling, &yz, &h);
- // hsqx = h^2
- hsqx = h;
- bn_multiply(&hsqx, &hsqx, prime);
- // hcby = h^3
- hcby = h;
- bn_multiply(&hsqx, &hcby, prime);
- // hsqx = h^2 * (x1 + x2)
- bn_multiply(&xz, &hsqx, prime);
- // hcby = h^3 * (y1 + y2)
- bn_multiply(&yz, &hcby, prime);
- // z3 = h*z2
- bn_multiply(&h, &p2->z, prime);
- // x3 = r^2 - h^2 (x1 + x2)
- p2->x = r;
- bn_multiply(&p2->x, &p2->x, prime);
- bn_subtractmod(&p2->x, &hsqx, &p2->x, prime);
- bn_fast_mod(&p2->x, prime);
- // y3 = 1/2 (r*(h^2 (x1 + x2) - 2x3) - h^3 (y1 + y2))
- bn_subtractmod(&hsqx, &p2->x, &p2->y, prime);
- bn_subtractmod(&p2->y, &p2->x, &p2->y, prime);
- bn_multiply(&r, &p2->y, prime);
- bn_subtractmod(&p2->y, &hcby, &p2->y, prime);
- bn_mult_half(&p2->y, prime);
- bn_fast_mod(&p2->y, prime);
- }
- void point_jacobian_double(jacobian_curve_point *p, const ecdsa_curve *curve) {
- bignum256 az4 = {0}, m = {0}, msq = {0}, ysq = {0}, xysq = {0};
- const bignum256 *prime = &curve->prime;
- assert(-3 <= curve->a && curve->a <= 0);
- /* usual algorithm:
- *
- * lambda = (3((x/z^2)^2 + a) / 2y/z^3) = (3x^2 + az^4)/2yz
- * x3/z3^2 = lambda^2 - 2x/z^2
- * y3/z3^3 = lambda * (x/z^2 - x3/z3^2) - y/z^3
- *
- * to get rid of fraction we set
- * m = (3 x^2 + az^4) / 2
- * Hence,
- * lambda = m / yz = m / z3
- *
- * With z3 = yz (the denominator of lambda)
- * we get x3 = lambda^2*z3^2 - 2*x/z^2*z3^2
- * = m^2 - 2*xy^2
- * and y3 = (lambda * (x/z^2 - x3/z3^2) - y/z^3) * z3^3
- * = m * (xy^2 - x3) - y^4
- */
- /* m = (3*x^2 + a z^4) / 2
- * x3 = m^2 - 2*xy^2
- * y3 = m*(xy^2 - x3) - 8y^4
- * z3 = y*z
- */
- m = p->x;
- bn_multiply(&m, &m, prime);
- bn_mult_k(&m, 3, prime);
- az4 = p->z;
- bn_multiply(&az4, &az4, prime);
- bn_multiply(&az4, &az4, prime);
- bn_mult_k(&az4, -curve->a, prime);
- bn_subtractmod(&m, &az4, &m, prime);
- bn_mult_half(&m, prime);
- // msq = m^2
- msq = m;
- bn_multiply(&msq, &msq, prime);
- // ysq = y^2
- ysq = p->y;
- bn_multiply(&ysq, &ysq, prime);
- // xysq = xy^2
- xysq = p->x;
- bn_multiply(&ysq, &xysq, prime);
- // z3 = yz
- bn_multiply(&p->y, &p->z, prime);
- // x3 = m^2 - 2*xy^2
- p->x = xysq;
- bn_lshift(&p->x);
- bn_fast_mod(&p->x, prime);
- bn_subtractmod(&msq, &p->x, &p->x, prime);
- bn_fast_mod(&p->x, prime);
- // y3 = m*(xy^2 - x3) - y^4
- bn_subtractmod(&xysq, &p->x, &p->y, prime);
- bn_multiply(&m, &p->y, prime);
- bn_multiply(&ysq, &ysq, prime);
- bn_subtractmod(&p->y, &ysq, &p->y, prime);
- bn_fast_mod(&p->y, prime);
- }
- // res = k * p
- // returns 0 on success
- int point_multiply(const ecdsa_curve *curve, const bignum256 *k,
- const curve_point *p, curve_point *res) {
- // this algorithm is loosely based on
- // Katsuyuki Okeya and Tsuyoshi Takagi, The Width-w NAF Method Provides
- // Small Memory and Fast Elliptic Scalar Multiplications Secure against
- // Side Channel Attacks.
- if (!bn_is_less(k, &curve->order)) {
- return 1;
- }
- int i = 0, j = 0;
- static CONFIDENTIAL bignum256 a;
- uint32_t *aptr = NULL;
- uint32_t abits = 0;
- int ashift = 0;
- uint32_t is_even = (k->val[0] & 1) - 1;
- uint32_t bits = {0}, sign = {0}, nsign = {0};
- static CONFIDENTIAL jacobian_curve_point jres;
- curve_point pmult[8] = {0};
- const bignum256 *prime = &curve->prime;
- // is_even = 0xffffffff if k is even, 0 otherwise.
- // add 2^256.
- // make number odd: subtract curve->order if even
- uint32_t tmp = 1;
- uint32_t is_non_zero = 0;
- for (j = 0; j < 8; j++) {
- is_non_zero |= k->val[j];
- tmp += (BN_BASE - 1) + k->val[j] - (curve->order.val[j] & is_even);
- a.val[j] = tmp & (BN_BASE - 1);
- tmp >>= BN_BITS_PER_LIMB;
- }
- is_non_zero |= k->val[j];
- a.val[j] = tmp + 0xffffff + k->val[j] - (curve->order.val[j] & is_even);
- assert((a.val[0] & 1) != 0);
- // special case 0*p: just return zero. We don't care about constant time.
- if (!is_non_zero) {
- point_set_infinity(res);
- return 1;
- }
- // Now a = k + 2^256 (mod curve->order) and a is odd.
- //
- // The idea is to bring the new a into the form.
- // sum_{i=0..64} a[i] 16^i, where |a[i]| < 16 and a[i] is odd.
- // a[0] is odd, since a is odd. If a[i] would be even, we can
- // add 1 to it and subtract 16 from a[i-1]. Afterwards,
- // a[64] = 1, which is the 2^256 that we added before.
- //
- // Since k = a - 2^256 (mod curve->order), we can compute
- // k*p = sum_{i=0..63} a[i] 16^i * p
- //
- // We compute |a[i]| * p in advance for all possible
- // values of |a[i]| * p. pmult[i] = (2*i+1) * p
- // We compute p, 3*p, ..., 15*p and store it in the table pmult.
- // store p^2 temporarily in pmult[7]
- pmult[7] = *p;
- point_double(curve, &pmult[7]);
- // compute 3*p, etc by repeatedly adding p^2.
- pmult[0] = *p;
- for (i = 1; i < 8; i++) {
- pmult[i] = pmult[7];
- point_add(curve, &pmult[i - 1], &pmult[i]);
- }
- // now compute res = sum_{i=0..63} a[i] * 16^i * p step by step,
- // starting with i = 63.
- // initialize jres = |a[63]| * p.
- // Note that a[i] = a>>(4*i) & 0xf if (a&0x10) != 0
- // and - (16 - (a>>(4*i) & 0xf)) otherwise. We can compute this as
- // ((a ^ (((a >> 4) & 1) - 1)) & 0xf) >> 1
- // since a is odd.
- aptr = &a.val[8];
- abits = *aptr;
- ashift = 256 - (BN_BITS_PER_LIMB * 8) - 4;
- bits = abits >> ashift;
- sign = (bits >> 4) - 1;
- bits ^= sign;
- bits &= 15;
- curve_to_jacobian(&pmult[bits >> 1], &jres, prime);
- for (i = 62; i >= 0; i--) {
- // sign = sign(a[i+1]) (0xffffffff for negative, 0 for positive)
- // invariant jres = (-1)^sign sum_{j=i+1..63} (a[j] * 16^{j-i-1} * p)
- // abits >> (ashift - 4) = lowbits(a >> (i*4))
- point_jacobian_double(&jres, curve);
- point_jacobian_double(&jres, curve);
- point_jacobian_double(&jres, curve);
- point_jacobian_double(&jres, curve);
- // get lowest 5 bits of a >> (i*4).
- ashift -= 4;
- if (ashift < 0) {
- // the condition only depends on the iteration number and
- // leaks no private information to a side-channel.
- bits = abits << (-ashift);
- abits = *(--aptr);
- ashift += BN_BITS_PER_LIMB;
- bits |= abits >> ashift;
- } else {
- bits = abits >> ashift;
- }
- bits &= 31;
- nsign = (bits >> 4) - 1;
- bits ^= nsign;
- bits &= 15;
- // negate last result to make signs of this round and the
- // last round equal.
- bn_cnegate((sign ^ nsign) & 1, &jres.z, prime);
- // add odd factor
- point_jacobian_add(&pmult[bits >> 1], &jres, curve);
- sign = nsign;
- }
- bn_cnegate(sign & 1, &jres.z, prime);
- jacobian_to_curve(&jres, res, prime);
- memzero(&a, sizeof(a));
- memzero(&jres, sizeof(jres));
- return 0;
- }
- #if USE_PRECOMPUTED_CP
- // res = k * G
- // k must be a normalized number with 0 <= k < curve->order
- // returns 0 on success
- int scalar_multiply(const ecdsa_curve *curve, const bignum256 *k,
- curve_point *res) {
- if (!bn_is_less(k, &curve->order)) {
- return 1;
- }
- int i = {0}, j = {0};
- static CONFIDENTIAL bignum256 a;
- uint32_t is_even = (k->val[0] & 1) - 1;
- uint32_t lowbits = 0;
- static CONFIDENTIAL jacobian_curve_point jres;
- const bignum256 *prime = &curve->prime;
- // is_even = 0xffffffff if k is even, 0 otherwise.
- // add 2^256.
- // make number odd: subtract curve->order if even
- uint32_t tmp = 1;
- uint32_t is_non_zero = 0;
- for (j = 0; j < 8; j++) {
- is_non_zero |= k->val[j];
- tmp += (BN_BASE - 1) + k->val[j] - (curve->order.val[j] & is_even);
- a.val[j] = tmp & (BN_BASE - 1);
- tmp >>= BN_BITS_PER_LIMB;
- }
- is_non_zero |= k->val[j];
- a.val[j] = tmp + 0xffffff + k->val[j] - (curve->order.val[j] & is_even);
- assert((a.val[0] & 1) != 0);
- // special case 0*G: just return zero. We don't care about constant time.
- if (!is_non_zero) {
- point_set_infinity(res);
- return 0;
- }
- // Now a = k + 2^256 (mod curve->order) and a is odd.
- //
- // The idea is to bring the new a into the form.
- // sum_{i=0..64} a[i] 16^i, where |a[i]| < 16 and a[i] is odd.
- // a[0] is odd, since a is odd. If a[i] would be even, we can
- // add 1 to it and subtract 16 from a[i-1]. Afterwards,
- // a[64] = 1, which is the 2^256 that we added before.
- //
- // Since k = a - 2^256 (mod curve->order), we can compute
- // k*G = sum_{i=0..63} a[i] 16^i * G
- //
- // We have a big table curve->cp that stores all possible
- // values of |a[i]| 16^i * G.
- // curve->cp[i][j] = (2*j+1) * 16^i * G
- // now compute res = sum_{i=0..63} a[i] * 16^i * G step by step.
- // initial res = |a[0]| * G. Note that a[0] = a & 0xf if (a&0x10) != 0
- // and - (16 - (a & 0xf)) otherwise. We can compute this as
- // ((a ^ (((a >> 4) & 1) - 1)) & 0xf) >> 1
- // since a is odd.
- lowbits = a.val[0] & ((1 << 5) - 1);
- lowbits ^= (lowbits >> 4) - 1;
- lowbits &= 15;
- curve_to_jacobian(&curve->cp[0][lowbits >> 1], &jres, prime);
- for (i = 1; i < 64; i++) {
- // invariant res = sign(a[i-1]) sum_{j=0..i-1} (a[j] * 16^j * G)
- // shift a by 4 places.
- for (j = 0; j < 8; j++) {
- a.val[j] =
- (a.val[j] >> 4) | ((a.val[j + 1] & 0xf) << (BN_BITS_PER_LIMB - 4));
- }
- a.val[j] >>= 4;
- // a = old(a)>>(4*i)
- // a is even iff sign(a[i-1]) = -1
- lowbits = a.val[0] & ((1 << 5) - 1);
- lowbits ^= (lowbits >> 4) - 1;
- lowbits &= 15;
- // negate last result to make signs of this round and the
- // last round equal.
- bn_cnegate(~lowbits & 1, &jres.y, prime);
- // add odd factor
- point_jacobian_add(&curve->cp[i][lowbits >> 1], &jres, curve);
- }
- bn_cnegate(~(a.val[0] >> 4) & 1, &jres.y, prime);
- jacobian_to_curve(&jres, res, prime);
- memzero(&a, sizeof(a));
- memzero(&jres, sizeof(jres));
- return 0;
- }
- #else
- int scalar_multiply(const ecdsa_curve *curve, const bignum256 *k,
- curve_point *res) {
- return point_multiply(curve, k, &curve->G, res);
- }
- #endif
- int ecdh_multiply(const ecdsa_curve *curve, const uint8_t *priv_key,
- const uint8_t *pub_key, uint8_t *session_key) {
- curve_point point = {0};
- if (!ecdsa_read_pubkey(curve, pub_key, &point)) {
- return 1;
- }
- bignum256 k = {0};
- bn_read_be(priv_key, &k);
- if (bn_is_zero(&k) || !bn_is_less(&k, &curve->order)) {
- // Invalid private key.
- return 2;
- }
- point_multiply(curve, &k, &point, &point);
- memzero(&k, sizeof(k));
- session_key[0] = 0x04;
- bn_write_be(&point.x, session_key + 1);
- bn_write_be(&point.y, session_key + 33);
- memzero(&point, sizeof(point));
- return 0;
- }
- // msg is a data to be signed
- // msg_len is the message length
- int ecdsa_sign(const ecdsa_curve *curve, HasherType hasher_sign,
- const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len,
- uint8_t *sig, uint8_t *pby,
- int (*is_canonical)(uint8_t by, uint8_t sig[64])) {
- uint8_t hash[32] = {0};
- hasher_Raw(hasher_sign, msg, msg_len, hash);
- int res = ecdsa_sign_digest(curve, priv_key, hash, sig, pby, is_canonical);
- memzero(hash, sizeof(hash));
- return res;
- }
- // uses secp256k1 curve
- // priv_key is a 32 byte big endian stored number
- // sig is 64 bytes long array for the signature
- // digest is 32 bytes of digest
- // is_canonical is an optional function that checks if the signature
- // conforms to additional coin-specific rules.
- int ecdsa_sign_digest(const ecdsa_curve *curve, const uint8_t *priv_key,
- const uint8_t *digest, uint8_t *sig, uint8_t *pby,
- int (*is_canonical)(uint8_t by, uint8_t sig[64])) {
- int i = 0;
- curve_point R = {0};
- bignum256 k = {0}, z = {0}, randk = {0};
- bignum256 *s = &R.y;
- uint8_t by; // signature recovery byte
- #if USE_RFC6979
- rfc6979_state rng = {0};
- init_rfc6979(priv_key, digest, curve, &rng);
- #endif
- bn_read_be(digest, &z);
- if (bn_is_zero(&z)) {
- // The probability of the digest being all-zero by chance is infinitesimal,
- // so this is most likely an indication of a bug. Furthermore, the signature
- // has no value, because in this case it can be easily forged for any public
- // key, see ecdsa_verify_digest().
- return 1;
- }
- for (i = 0; i < 10000; i++) {
- #if USE_RFC6979
- // generate K deterministically
- generate_k_rfc6979(&k, &rng);
- // if k is too big or too small, we don't like it
- if (bn_is_zero(&k) || !bn_is_less(&k, &curve->order)) {
- continue;
- }
- #else
- // generate random number k
- generate_k_random(&k, &curve->order);
- #endif
- // compute k*G
- scalar_multiply(curve, &k, &R);
- by = R.y.val[0] & 1;
- // r = (rx mod n)
- if (!bn_is_less(&R.x, &curve->order)) {
- bn_subtract(&R.x, &curve->order, &R.x);
- by |= 2;
- }
- // if r is zero, we retry
- if (bn_is_zero(&R.x)) {
- continue;
- }
- bn_read_be(priv_key, s);
- if (bn_is_zero(s) || !bn_is_less(s, &curve->order)) {
- // Invalid private key.
- return 2;
- }
- // randomize operations to counter side-channel attacks
- generate_k_random(&randk, &curve->order);
- bn_multiply(&randk, &k, &curve->order); // k*rand
- bn_inverse(&k, &curve->order); // (k*rand)^-1
- bn_multiply(&R.x, s, &curve->order); // R.x*priv
- bn_add(s, &z); // R.x*priv + z
- bn_multiply(&k, s, &curve->order); // (k*rand)^-1 (R.x*priv + z)
- bn_multiply(&randk, s, &curve->order); // k^-1 (R.x*priv + z)
- bn_mod(s, &curve->order);
- // if s is zero, we retry
- if (bn_is_zero(s)) {
- continue;
- }
- // if S > order/2 => S = -S
- if (bn_is_less(&curve->order_half, s)) {
- bn_subtract(&curve->order, s, s);
- by ^= 1;
- }
- // we are done, R.x and s is the result signature
- bn_write_be(&R.x, sig);
- bn_write_be(s, sig + 32);
- // check if the signature is acceptable or retry
- if (is_canonical && !is_canonical(by, sig)) {
- continue;
- }
- if (pby) {
- *pby = by;
- }
- memzero(&k, sizeof(k));
- memzero(&randk, sizeof(randk));
- #if USE_RFC6979
- memzero(&rng, sizeof(rng));
- #endif
- return 0;
- }
- // Too many retries without a valid signature
- // -> fail with an error
- memzero(&k, sizeof(k));
- memzero(&randk, sizeof(randk));
- #if USE_RFC6979
- memzero(&rng, sizeof(rng));
- #endif
- return -1;
- }
- // returns 0 on success
- int ecdsa_get_public_key33(const ecdsa_curve *curve, const uint8_t *priv_key,
- uint8_t *pub_key) {
- curve_point R = {0};
- bignum256 k = {0};
- bn_read_be(priv_key, &k);
- if (bn_is_zero(&k) || !bn_is_less(&k, &curve->order)) {
- // Invalid private key.
- memzero(pub_key, 33);
- return -1;
- }
- // compute k*G
- if (scalar_multiply(curve, &k, &R) != 0) {
- memzero(&k, sizeof(k));
- return 1;
- }
- pub_key[0] = 0x02 | (R.y.val[0] & 0x01);
- bn_write_be(&R.x, pub_key + 1);
- memzero(&R, sizeof(R));
- memzero(&k, sizeof(k));
- return 0;
- }
- // returns 0 on success
- int ecdsa_get_public_key65(const ecdsa_curve *curve, const uint8_t *priv_key,
- uint8_t *pub_key) {
- curve_point R = {0};
- bignum256 k = {0};
- bn_read_be(priv_key, &k);
- if (bn_is_zero(&k) || !bn_is_less(&k, &curve->order)) {
- // Invalid private key.
- memzero(pub_key, 65);
- return -1;
- }
- // compute k*G
- if (scalar_multiply(curve, &k, &R) != 0) {
- memzero(&k, sizeof(k));
- return 1;
- }
- pub_key[0] = 0x04;
- bn_write_be(&R.x, pub_key + 1);
- bn_write_be(&R.y, pub_key + 33);
- memzero(&R, sizeof(R));
- memzero(&k, sizeof(k));
- return 0;
- }
- int ecdsa_uncompress_pubkey(const ecdsa_curve *curve, const uint8_t *pub_key,
- uint8_t *uncompressed) {
- curve_point pub = {0};
- if (!ecdsa_read_pubkey(curve, pub_key, &pub)) {
- return 0;
- }
- uncompressed[0] = 4;
- bn_write_be(&pub.x, uncompressed + 1);
- bn_write_be(&pub.y, uncompressed + 33);
- return 1;
- }
- void ecdsa_get_pubkeyhash(const uint8_t *pub_key, HasherType hasher_pubkey,
- uint8_t *pubkeyhash) {
- uint8_t h[HASHER_DIGEST_LENGTH] = {0};
- if (pub_key[0] == 0x04) { // uncompressed format
- hasher_Raw(hasher_pubkey, pub_key, 65, h);
- } else if (pub_key[0] == 0x00) { // point at infinity
- hasher_Raw(hasher_pubkey, pub_key, 1, h);
- } else { // expecting compressed format
- hasher_Raw(hasher_pubkey, pub_key, 33, h);
- }
- memcpy(pubkeyhash, h, 20);
- memzero(h, sizeof(h));
- }
- void ecdsa_get_address_raw(const uint8_t *pub_key, uint32_t version,
- HasherType hasher_pubkey, uint8_t *addr_raw) {
- size_t prefix_len = address_prefix_bytes_len(version);
- address_write_prefix_bytes(version, addr_raw);
- ecdsa_get_pubkeyhash(pub_key, hasher_pubkey, addr_raw + prefix_len);
- }
- void ecdsa_get_address(const uint8_t *pub_key, uint32_t version,
- HasherType hasher_pubkey, HasherType hasher_base58,
- char *addr, int addrsize) {
- uint8_t raw[MAX_ADDR_RAW_SIZE] = {0};
- size_t prefix_len = address_prefix_bytes_len(version);
- ecdsa_get_address_raw(pub_key, version, hasher_pubkey, raw);
- base58_encode_check(raw, 20 + prefix_len, hasher_base58, addr, addrsize);
- // not as important to clear this one, but we might as well
- memzero(raw, sizeof(raw));
- }
- void ecdsa_get_address_segwit_p2sh_raw(const uint8_t *pub_key, uint32_t version,
- HasherType hasher_pubkey,
- uint8_t *addr_raw) {
- uint8_t buf[32 + 2] = {0};
- buf[0] = 0; // version byte
- buf[1] = 20; // push 20 bytes
- ecdsa_get_pubkeyhash(pub_key, hasher_pubkey, buf + 2);
- size_t prefix_len = address_prefix_bytes_len(version);
- address_write_prefix_bytes(version, addr_raw);
- hasher_Raw(hasher_pubkey, buf, 22, addr_raw + prefix_len);
- }
- void ecdsa_get_address_segwit_p2sh(const uint8_t *pub_key, uint32_t version,
- HasherType hasher_pubkey,
- HasherType hasher_base58, char *addr,
- int addrsize) {
- uint8_t raw[MAX_ADDR_RAW_SIZE] = {0};
- size_t prefix_len = address_prefix_bytes_len(version);
- ecdsa_get_address_segwit_p2sh_raw(pub_key, version, hasher_pubkey, raw);
- base58_encode_check(raw, prefix_len + 20, hasher_base58, addr, addrsize);
- memzero(raw, sizeof(raw));
- }
- void ecdsa_get_wif(const uint8_t *priv_key, uint32_t version,
- HasherType hasher_base58, char *wif, int wifsize) {
- uint8_t wif_raw[MAX_WIF_RAW_SIZE] = {0};
- size_t prefix_len = address_prefix_bytes_len(version);
- address_write_prefix_bytes(version, wif_raw);
- memcpy(wif_raw + prefix_len, priv_key, 32);
- wif_raw[prefix_len + 32] = 0x01;
- base58_encode_check(wif_raw, prefix_len + 32 + 1, hasher_base58, wif,
- wifsize);
- // private keys running around our stack can cause trouble
- memzero(wif_raw, sizeof(wif_raw));
- }
- int ecdsa_address_decode(const char *addr, uint32_t version,
- HasherType hasher_base58, uint8_t *out) {
- if (!addr) return 0;
- int prefix_len = address_prefix_bytes_len(version);
- return base58_decode_check(addr, hasher_base58, out, 20 + prefix_len) ==
- 20 + prefix_len &&
- address_check_prefix(out, version);
- }
- void compress_coords(const curve_point *cp, uint8_t *compressed) {
- compressed[0] = bn_is_odd(&cp->y) ? 0x03 : 0x02;
- bn_write_be(&cp->x, compressed + 1);
- }
- void uncompress_coords(const ecdsa_curve *curve, uint8_t odd,
- const bignum256 *x, bignum256 *y) {
- // y^2 = x^3 + a*x + b
- memcpy(y, x, sizeof(bignum256)); // y is x
- bn_multiply(x, y, &curve->prime); // y is x^2
- bn_subi(y, -curve->a, &curve->prime); // y is x^2 + a
- bn_multiply(x, y, &curve->prime); // y is x^3 + ax
- bn_add(y, &curve->b); // y is x^3 + ax + b
- bn_sqrt(y, &curve->prime); // y = sqrt(y)
- if ((odd & 0x01) != (y->val[0] & 1)) {
- bn_subtract(&curve->prime, y, y); // y = -y
- }
- }
- int ecdsa_read_pubkey(const ecdsa_curve *curve, const uint8_t *pub_key,
- curve_point *pub) {
- if (!curve) {
- curve = &secp256k1;
- }
- if (pub_key[0] == 0x04) {
- bn_read_be(pub_key + 1, &(pub->x));
- bn_read_be(pub_key + 33, &(pub->y));
- return ecdsa_validate_pubkey(curve, pub);
- }
- if (pub_key[0] == 0x02 || pub_key[0] == 0x03) { // compute missing y coords
- bn_read_be(pub_key + 1, &(pub->x));
- uncompress_coords(curve, pub_key[0], &(pub->x), &(pub->y));
- return ecdsa_validate_pubkey(curve, pub);
- }
- // error
- return 0;
- }
- // Verifies that:
- // - pub is not the point at infinity.
- // - pub->x and pub->y are in range [0,p-1].
- // - pub is on the curve.
- // We assume that all curves using this code have cofactor 1, so there is no
- // need to verify that pub is a scalar multiple of G.
- int ecdsa_validate_pubkey(const ecdsa_curve *curve, const curve_point *pub) {
- bignum256 y_2 = {0}, x3_ax_b = {0};
- if (point_is_infinity(pub)) {
- return 0;
- }
- if (!bn_is_less(&(pub->x), &curve->prime) ||
- !bn_is_less(&(pub->y), &curve->prime)) {
- return 0;
- }
- memcpy(&y_2, &(pub->y), sizeof(bignum256));
- memcpy(&x3_ax_b, &(pub->x), sizeof(bignum256));
- // y^2
- bn_multiply(&(pub->y), &y_2, &curve->prime);
- bn_mod(&y_2, &curve->prime);
- // x^3 + ax + b
- bn_multiply(&(pub->x), &x3_ax_b, &curve->prime); // x^2
- bn_subi(&x3_ax_b, -curve->a, &curve->prime); // x^2 + a
- bn_multiply(&(pub->x), &x3_ax_b, &curve->prime); // x^3 + ax
- bn_addmod(&x3_ax_b, &curve->b, &curve->prime); // x^3 + ax + b
- bn_mod(&x3_ax_b, &curve->prime);
- if (!bn_is_equal(&x3_ax_b, &y_2)) {
- return 0;
- }
- return 1;
- }
- // uses secp256k1 curve
- // pub_key - 65 bytes uncompressed key
- // signature - 64 bytes signature
- // msg is a data that was signed
- // msg_len is the message length
- int ecdsa_verify(const ecdsa_curve *curve, HasherType hasher_sign,
- const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg,
- uint32_t msg_len) {
- uint8_t hash[32] = {0};
- hasher_Raw(hasher_sign, msg, msg_len, hash);
- int res = ecdsa_verify_digest(curve, pub_key, sig, hash);
- memzero(hash, sizeof(hash));
- return res;
- }
- // Compute public key from signature and recovery id.
- // returns 0 if the key is successfully recovered
- int ecdsa_recover_pub_from_sig(const ecdsa_curve *curve, uint8_t *pub_key,
- const uint8_t *sig, const uint8_t *digest,
- int recid) {
- bignum256 r = {0}, s = {0}, e = {0};
- curve_point cp = {0}, cp2 = {0};
- // read r and s
- bn_read_be(sig, &r);
- bn_read_be(sig + 32, &s);
- if (!bn_is_less(&r, &curve->order) || bn_is_zero(&r)) {
- return 1;
- }
- if (!bn_is_less(&s, &curve->order) || bn_is_zero(&s)) {
- return 1;
- }
- // cp = R = k * G (k is secret nonce when signing)
- memcpy(&cp.x, &r, sizeof(bignum256));
- if (recid & 2) {
- bn_add(&cp.x, &curve->order);
- if (!bn_is_less(&cp.x, &curve->prime)) {
- return 1;
- }
- }
- // compute y from x
- uncompress_coords(curve, recid & 1, &cp.x, &cp.y);
- if (!ecdsa_validate_pubkey(curve, &cp)) {
- return 1;
- }
- // e = -digest
- bn_read_be(digest, &e);
- bn_mod(&e, &curve->order);
- bn_subtract(&curve->order, &e, &e);
- // r = r^-1
- bn_inverse(&r, &curve->order);
- // e = -digest * r^-1
- bn_multiply(&r, &e, &curve->order);
- bn_mod(&e, &curve->order);
- // s = s * r^-1
- bn_multiply(&r, &s, &curve->order);
- bn_mod(&s, &curve->order);
- // cp = s * r^-1 * k * G
- point_multiply(curve, &s, &cp, &cp);
- // cp2 = -digest * r^-1 * G
- scalar_multiply(curve, &e, &cp2);
- // cp = (s * r^-1 * k - digest * r^-1) * G = Pub
- point_add(curve, &cp2, &cp);
- // The point at infinity is not considered to be a valid public key.
- if (point_is_infinity(&cp)) {
- return 1;
- }
- pub_key[0] = 0x04;
- bn_write_be(&cp.x, pub_key + 1);
- bn_write_be(&cp.y, pub_key + 33);
- return 0;
- }
- // returns 0 if verification succeeded
- int ecdsa_verify_digest(const ecdsa_curve *curve, const uint8_t *pub_key,
- const uint8_t *sig, const uint8_t *digest) {
- curve_point pub = {0}, res = {0};
- bignum256 r = {0}, s = {0}, z = {0};
- int result = 0;
- if (!ecdsa_read_pubkey(curve, pub_key, &pub)) {
- result = 1;
- }
- if (result == 0) {
- bn_read_be(sig, &r);
- bn_read_be(sig + 32, &s);
- bn_read_be(digest, &z);
- if (bn_is_zero(&r) || bn_is_zero(&s) || (!bn_is_less(&r, &curve->order)) ||
- (!bn_is_less(&s, &curve->order))) {
- result = 2;
- }
- if (bn_is_zero(&z)) {
- // The digest was all-zero. The probability of this happening by chance is
- // infinitesimal, but it could be induced by a fault injection. In this
- // case the signature (r,s) can be forged by taking r := (t * Q).x mod n
- // and s := r * t^-1 mod n for any t in [1, n-1]. We fail verification,
- // because there is no guarantee that the signature was created by the
- // owner of the private key.
- result = 3;
- }
- }
- if (result == 0) {
- bn_inverse(&s, &curve->order); // s = s^-1
- bn_multiply(&s, &z, &curve->order); // z = z * s [u1 = z * s^-1 mod n]
- bn_mod(&z, &curve->order);
- }
- if (result == 0) {
- bn_multiply(&r, &s, &curve->order); // s = r * s [u2 = r * s^-1 mod n]
- bn_mod(&s, &curve->order);
- scalar_multiply(curve, &z, &res); // res = z * G [= u1 * G]
- point_multiply(curve, &s, &pub, &pub); // pub = s * pub [= u2 * Q]
- point_add(curve, &pub, &res); // res = pub + res [R = u1 * G + u2 * Q]
- if (point_is_infinity(&res)) {
- // R == Infinity
- result = 4;
- }
- }
- if (result == 0) {
- bn_mod(&(res.x), &curve->order);
- if (!bn_is_equal(&res.x, &r)) {
- // R.x != r
- // signature does not match
- result = 5;
- }
- }
- memzero(&pub, sizeof(pub));
- memzero(&res, sizeof(res));
- memzero(&r, sizeof(r));
- memzero(&s, sizeof(s));
- memzero(&z, sizeof(z));
- // all OK
- return result;
- }
- int ecdsa_sig_to_der(const uint8_t *sig, uint8_t *der) {
- int i = 0;
- uint8_t *p = der, *len = NULL, *len1 = NULL, *len2 = NULL;
- *p = 0x30;
- p++; // sequence
- *p = 0x00;
- len = p;
- p++; // len(sequence)
- *p = 0x02;
- p++; // integer
- *p = 0x00;
- len1 = p;
- p++; // len(integer)
- // process R
- i = 0;
- while (i < 31 && sig[i] == 0) {
- i++;
- } // skip leading zeroes
- if (sig[i] >= 0x80) { // put zero in output if MSB set
- *p = 0x00;
- p++;
- *len1 = *len1 + 1;
- }
- while (i < 32) { // copy bytes to output
- *p = sig[i];
- p++;
- *len1 = *len1 + 1;
- i++;
- }
- *p = 0x02;
- p++; // integer
- *p = 0x00;
- len2 = p;
- p++; // len(integer)
- // process S
- i = 32;
- while (i < 63 && sig[i] == 0) {
- i++;
- } // skip leading zeroes
- if (sig[i] >= 0x80) { // put zero in output if MSB set
- *p = 0x00;
- p++;
- *len2 = *len2 + 1;
- }
- while (i < 64) { // copy bytes to output
- *p = sig[i];
- p++;
- *len2 = *len2 + 1;
- i++;
- }
- *len = *len1 + *len2 + 4;
- return *len + 2;
- }
- // Parse a DER-encoded signature. We don't check whether the encoded integers
- // satisfy DER requirements regarding leading zeros.
- int ecdsa_sig_from_der(const uint8_t *der, size_t der_len, uint8_t sig[64]) {
- memzero(sig, 64);
- // Check sequence header.
- if (der_len < 2 || der_len > 72 || der[0] != 0x30 || der[1] != der_len - 2) {
- return 1;
- }
- // Read two DER-encoded integers.
- size_t pos = 2;
- for (int i = 0; i < 2; ++i) {
- // Check integer header.
- if (der_len < pos + 2 || der[pos] != 0x02) {
- return 1;
- }
- // Locate the integer.
- size_t int_len = der[pos + 1];
- pos += 2;
- if (pos + int_len > der_len) {
- return 1;
- }
- // Skip a possible leading zero.
- if (int_len != 0 && der[pos] == 0) {
- int_len--;
- pos++;
- }
- // Copy the integer to the output, making sure it fits.
- if (int_len > 32) {
- return 1;
- }
- memcpy(sig + 32 * (i + 1) - int_len, der + pos, int_len);
- // Move on to the next one.
- pos += int_len;
- }
- // Check that there are no trailing elements in the sequence.
- if (pos != der_len) {
- return 1;
- }
- return 0;
- }
|