| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039 |
- #!/usr/bin/python
- import ctypes
- import itertools
- import os
- import random
- from ctypes import (
- c_bool,
- c_char,
- c_int,
- c_size_t,
- c_uint,
- c_uint8,
- c_uint16,
- c_uint32,
- c_uint64,
- )
- from math import floor, log, sqrt
- import pytest
- dir = os.path.abspath(os.path.dirname(__file__))
- lib = ctypes.cdll.LoadLibrary(os.path.join(dir, "libtrezor-crypto.so"))
- limbs_number = 9
- bits_per_limb = 29
- @pytest.fixture()
- def prime(request):
- return 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
- @pytest.fixture(params=range(limbs_number * bits_per_limb))
- def bignum_bit_index(request):
- return request.param
- max_decimal_digits = floor(limbs_number * bits_per_limb * log(2, 10))
- @pytest.fixture(params=range(max_decimal_digits))
- def bignum_decimal_digit_index(request):
- return request.param
- iterations = int(os.environ.get("ITERS", 1000))
- @pytest.fixture(params=range(iterations))
- def r(request):
- return Random(request.param)
- def implication(p, c):
- return not p or c
- def uint32_p_to_int(pointer):
- return pointer.contents.value
- def uint32_p():
- return ctypes.POINTER(c_int)(c_int())
- limb_type = c_uint32
- def bignum(limbs_number=limbs_number):
- return (limbs_number * limb_type)()
- def limbs_to_bignum(limbs):
- return (limbs_number * limb_type)(*limbs)
- def int_to_bignum(number, limbs_number=limbs_number):
- assert number >= 0
- assert number.bit_length() <= limbs_number * bits_per_limb
- bn = (limbs_number * limb_type)()
- for i in range(limbs_number):
- bn[i] = number % 2**bits_per_limb
- number //= 2**bits_per_limb
- return bn
- def bignum_to_int(bignum, limbs_number=limbs_number):
- number = 0
- for i in reversed(range(limbs_number)):
- number *= 2**bits_per_limb
- number += bignum[i]
- return number
- def raw_number():
- return (32 * c_uint8)()
- def raw_number_to_integer(raw_number, endianess):
- return int.from_bytes(raw_number, endianess)
- def integer_to_raw_number(number, endianess):
- return (32 * c_uint8)(*number.to_bytes(32, endianess))
- def bignum_is_normalised(bignum):
- for limb in bignum:
- if limb > 2**bits_per_limb:
- return False
- return True
- def number_is_partly_reduced(number, prime):
- return number < 2 * prime
- def number_is_fully_reduced(number, prime):
- return number < prime
- class Random(random.Random):
- def rand_int_normalized(self):
- return self.randrange(0, 2 ** (limbs_number * bits_per_limb))
- def rand_int_256(self):
- return self.randrange(0, 2**256)
- def rand_int_reduced(self, p):
- return self.randrange(0, 2 * p)
- def rand_int_bitsize(self, bitsize):
- return self.randrange(0, 2**bitsize)
- def rand_bit_index(self):
- return self.randrange(0, limbs_number * bits_per_limb)
- def rand_bignum(self, limbs_number=limbs_number):
- return (limb_type * limbs_number)(
- *[self.randrange(0, 256**4) for _ in range(limbs_number)]
- )
- def assert_bn_read_be(in_number):
- raw_in_number = integer_to_raw_number(in_number, "big")
- bn_out_number = bignum()
- lib.bn_read_be(raw_in_number, bn_out_number)
- out_number = bignum_to_int(bn_out_number)
- assert bignum_is_normalised(bn_out_number)
- assert out_number == in_number
- def assert_bn_read_le(in_number):
- raw_in_number = integer_to_raw_number(in_number, "little")
- bn_out_number = bignum()
- lib.bn_read_le(raw_in_number, bn_out_number)
- out_number = bignum_to_int(bn_out_number)
- assert bignum_is_normalised(bn_out_number)
- assert out_number == in_number
- def assert_bn_write_be(in_number):
- bn_in_number = int_to_bignum(in_number)
- raw_out_number = raw_number()
- lib.bn_write_be(bn_in_number, raw_out_number)
- out_number = raw_number_to_integer(raw_out_number, "big")
- assert out_number == in_number
- def assert_bn_write_le(in_number):
- bn_in_number = int_to_bignum(in_number)
- raw_out_number = raw_number()
- lib.bn_write_le(bn_in_number, raw_out_number)
- out_number = raw_number_to_integer(raw_out_number, "little")
- assert out_number == in_number
- def assert_bn_read_uint32(x):
- bn_out_number = bignum()
- lib.bn_read_uint32(c_uint32(x), bn_out_number)
- out_number = bignum_to_int(bn_out_number)
- assert bignum_is_normalised(bn_out_number)
- assert out_number == x
- def assert_bn_read_uint64(x):
- bn_out_number = bignum()
- lib.bn_read_uint64(c_uint64(x), bn_out_number)
- out_number = bignum_to_int(bn_out_number)
- assert bignum_is_normalised(bn_out_number)
- assert out_number == x
- def assert_bn_bitcount(x):
- bn_x = int_to_bignum(x)
- return_value = lib.bn_bitcount(bn_x)
- assert return_value == x.bit_length()
- def assert_bn_digitcount(x):
- bn_x = int_to_bignum(x)
- return_value = lib.bn_digitcount(bn_x)
- assert return_value == len(str(x))
- def assert_bn_zero():
- bn_x = bignum()
- lib.bn_zero(bn_x)
- x = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert x == 0
- def assert_bn_one():
- bn_x = bignum()
- lib.bn_one(bn_x)
- x = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert x == 1
- def assert_bn_is_zero(x):
- bn_x = int_to_bignum(x)
- return_value = lib.bn_is_zero(bn_x)
- assert return_value == (x == 0)
- def assert_bn_is_one(x):
- bn_x = int_to_bignum(x)
- return_value = lib.bn_is_one(bn_x)
- assert return_value == (x == 1)
- def assert_bn_is_less(x, y):
- bn_x = int_to_bignum(x)
- bn_y = int_to_bignum(y)
- return_value = lib.bn_is_less(bn_x, bn_y)
- assert return_value == (x < y)
- def assert_bn_is_equal(x, y):
- bn_x = int_to_bignum(x)
- bn_y = int_to_bignum(y)
- return_value = lib.bn_is_equal(bn_x, bn_y)
- assert return_value == (x == y)
- def assert_bn_cmov(cond, truecase, falsecase):
- bn_res = bignum()
- bn_truecase = int_to_bignum(truecase)
- bn_falsecase = int_to_bignum(falsecase)
- lib.bn_cmov(bn_res, c_uint32(cond), bn_truecase, bn_falsecase)
- res = bignum_to_int(bn_res)
- assert res == truecase if cond else falsecase
- def assert_bn_cnegate(cond, x_old, prime):
- bn_x = int_to_bignum(x_old)
- bn_prime = int_to_bignum(prime)
- lib.bn_cnegate(c_uint32(cond), bn_x, bn_prime)
- x_new = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert number_is_partly_reduced(x_new, prime)
- assert x_new % prime == -x_old % prime if cond else x_old % prime
- def assert_bn_lshift(x_old):
- bn_x = int_to_bignum(x_old)
- lib.bn_lshift(bn_x)
- x_new = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert x_new == (x_old << 1)
- def assert_bn_rshift(x_old):
- bn_x = int_to_bignum(x_old)
- lib.bn_rshift(bn_x)
- x_new = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert x_new == (x_old >> 1)
- def assert_bn_setbit(x_old, i):
- bn_x = int_to_bignum(x_old)
- lib.bn_setbit(bn_x, c_uint16(i))
- x_new = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert x_new == x_old | (1 << i)
- def assert_bn_clearbit(x_old, i):
- bn_x = int_to_bignum(x_old)
- lib.bn_clearbit(bn_x, c_uint16(i))
- x_new = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert x_new == x_old & ~(1 << i)
- def assert_bn_testbit(x_old, i):
- bn_x = int_to_bignum(x_old)
- return_value = lib.bn_testbit(bn_x, c_uint16(i))
- assert return_value == x_old >> i & 1
- def assert_bn_xor(x, y):
- bn_res = bignum()
- bn_x = int_to_bignum(x)
- bn_y = int_to_bignum(y)
- lib.bn_xor(bn_res, bn_x, bn_y)
- res = bignum_to_int(bn_res)
- assert res == x ^ y
- def assert_bn_mult_half(x_old, prime):
- bn_x = int_to_bignum(x_old)
- bn_prime = int_to_bignum(prime)
- lib.bn_mult_half(bn_x, bn_prime)
- x_new = bignum_to_int(bn_x)
- assert implication(
- number_is_partly_reduced(x_old, prime), number_is_partly_reduced(x_new, prime)
- )
- assert x_new == (x_old + prime) >> 1 if x_old & 1 else x_old >> 1
- def assert_bn_mult_k(x_old, k, prime):
- bn_x = int_to_bignum(x_old)
- bn_prime = int_to_bignum(prime)
- lib.bn_mult_k(bn_x, c_uint8(k), bn_prime)
- x_new = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert number_is_partly_reduced(x_new, prime)
- assert x_new == (x_old * k) % prime
- def assert_bn_mod(x_old, prime):
- bn_x = int_to_bignum(x_old)
- bn_prime = int_to_bignum(prime)
- lib.bn_mod(bn_x, bn_prime)
- x_new = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert number_is_fully_reduced(x_new, prime)
- assert x_new == x_old % prime
- def assert_bn_multiply_long(k_old, x_old):
- bn_k = int_to_bignum(k_old)
- bn_x = int_to_bignum(x_old)
- bn_res = bignum(2 * limbs_number)
- lib.bn_multiply_long(bn_k, bn_x, bn_res)
- res = bignum_to_int(bn_res, 2 * limbs_number)
- assert res == k_old * x_old
- def assert_bn_multiply_reduce_step(res_old, prime, d):
- bn_res = int_to_bignum(res_old, 2 * limbs_number)
- bn_prime = int_to_bignum(prime)
- lib.bn_multiply_reduce_step(bn_res, bn_prime, d)
- res_new = bignum_to_int(bn_res, 2 * limbs_number)
- assert bignum_is_normalised(bn_res)
- assert res_new < 2 * prime * 2 ** (d * bits_per_limb)
- def assert_bn_multiply(k, x_old, prime):
- bn_k = int_to_bignum(k)
- bn_x = int_to_bignum(x_old)
- bn_prime = int_to_bignum(prime)
- lib.bn_multiply(bn_k, bn_x, bn_prime)
- x_new = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert number_is_partly_reduced(x_new, prime)
- assert x_new == (k * x_old) % prime
- def assert_bn_fast_mod(x_old, prime):
- bn_x = int_to_bignum(x_old)
- bn_prime = int_to_bignum(prime)
- lib.bn_fast_mod(bn_x, bn_prime)
- x_new = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert number_is_partly_reduced(x_new, prime)
- assert x_new % prime == x_old % prime
- def assert_bn_fast_mod_bn(bn_x, prime):
- bn_x
- x_old = bignum_to_int(bn_x)
- bn_prime = int_to_bignum(prime)
- lib.bn_fast_mod(bn_x, bn_prime)
- x_new = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert number_is_partly_reduced(x_new, prime)
- assert x_new % prime == x_old % prime
- def assert_bn_power_mod(x, e, prime):
- bn_x = int_to_bignum(x)
- bn_e = int_to_bignum(e)
- bn_prime = int_to_bignum(prime)
- bn_res_new = bignum()
- lib.bn_power_mod(bn_x, bn_e, bn_prime, bn_res_new)
- res_new = bignum_to_int(bn_res_new)
- assert bignum_is_normalised(bn_res_new)
- assert number_is_partly_reduced(res_new, prime)
- assert res_new % prime == pow(x, e, prime)
- def assert_bn_sqrt(x_old, prime):
- bn_x = int_to_bignum(x_old)
- bn_prime = int_to_bignum(prime)
- lib.bn_sqrt(bn_x, bn_prime)
- x_new = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert number_is_fully_reduced(x_new, prime)
- assert x_new**2 % prime == x_old % prime
- def assert_inverse_mod_power_two(x, m):
- return_value = lib.inverse_mod_power_two(c_uint32(x), c_uint32(m))
- assert return_value * x % 2**m == 1
- def assert_bn_divide_base(x_old, prime):
- bn_x = int_to_bignum(x_old)
- bn_prime = int_to_bignum(prime)
- lib.bn_divide_base(bn_x, bn_prime)
- x_new = bignum_to_int(bn_x)
- assert implication(
- number_is_fully_reduced(x_old, prime), number_is_fully_reduced(x_new, prime)
- )
- assert implication(
- number_is_partly_reduced(x_old, prime), number_is_partly_reduced(x_new, prime)
- )
- assert x_new * 2**bits_per_limb % prime == x_old % prime
- def assert_bn_inverse(x_old, prime):
- bn_x = int_to_bignum(x_old)
- bn_prime = int_to_bignum(prime)
- lib.bn_inverse(bn_x, bn_prime)
- x_new = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert number_is_fully_reduced(x_new, prime)
- assert (x_old == 0 and x_new == 0) or (x_old != 0 and (x_old * x_new) % prime == 1)
- def assert_bn_normalize(bn_x):
- x_old = bignum_to_int(bn_x)
- lib.bn_normalize(bn_x)
- x_new = bignum_to_int(bn_x)
- assert x_new == x_old % 2 ** (bits_per_limb * limbs_number)
- assert bignum_is_normalised(bn_x)
- def assert_bn_add(x_old, y):
- bn_x = int_to_bignum(x_old)
- bn_y = int_to_bignum(y)
- lib.bn_add(bn_x, bn_y)
- x_new = bignum_to_int(bn_x)
- y = bignum_to_int(bn_y)
- assert bignum_is_normalised(bn_x)
- assert x_new == x_old + y
- def assert_bn_addmod(x_old, y, prime):
- bn_x = int_to_bignum(x_old)
- bn_y = int_to_bignum(y)
- bn_prime = int_to_bignum(prime)
- lib.bn_addmod(bn_x, bn_y, bn_prime)
- x_new = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert number_is_partly_reduced(x_new, prime)
- assert x_new % prime == (x_old + y) % prime
- def assert_bn_addi(x_old, y):
- bn_x = int_to_bignum(x_old)
- lib.bn_addi(bn_x, c_uint32(y))
- x_new = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert x_new == x_old + y
- def assert_bn_subi(x_old, y, prime):
- bn_x = int_to_bignum(x_old)
- bn_prime = int_to_bignum(prime)
- lib.bn_subi(bn_x, c_uint32(y), bn_prime)
- x_new = bignum_to_int(bn_x)
- assert bignum_is_normalised(bn_x)
- assert implication(
- number_is_fully_reduced(x_old, prime), number_is_partly_reduced(x_new, prime)
- )
- assert x_new % prime == (x_old - y) % prime
- def assert_bn_subtractmod(x, y, prime):
- bn_x = int_to_bignum(x)
- bn_y = int_to_bignum(y)
- bn_prime = int_to_bignum(prime)
- bn_res = bignum()
- lib.bn_subtractmod(bn_x, bn_y, bn_res, bn_prime)
- res = bignum_to_int(bn_res)
- assert bignum_is_normalised(bn_x)
- assert res % prime == (x - y) % prime
- def assert_bn_subtract(x, y):
- bn_x = int_to_bignum(x)
- bn_y = int_to_bignum(y)
- bn_res = bignum()
- lib.bn_subtract(bn_x, bn_y, bn_res)
- res = bignum_to_int(bn_res)
- assert bignum_is_normalised(bn_x)
- assert res == x - y
- def assert_bn_long_division(x, d):
- bn_x = int_to_bignum(x)
- bn_q = bignum()
- uint32_p_r = uint32_p()
- lib.bn_long_division(bn_x, d, bn_q, uint32_p_r)
- r = uint32_p_to_int(uint32_p_r)
- q = bignum_to_int(bn_q)
- assert bignum_is_normalised(bn_q)
- assert q == x // d
- assert r == x % d
- def assert_bn_divmod58(x_old):
- bn_x = int_to_bignum(x_old)
- uint32_p_r = uint32_p()
- lib.bn_divmod58(bn_x, uint32_p_r)
- x_new = bignum_to_int(bn_x)
- r = uint32_p_to_int(uint32_p_r)
- assert bignum_is_normalised(bn_x)
- assert x_new == x_old // 58
- assert r == x_old % 58
- def assert_bn_divmod1000(x_old):
- bn_x = int_to_bignum(x_old)
- uint32_p_r = uint32_p()
- lib.bn_divmod1000(bn_x, uint32_p_r)
- x_new = bignum_to_int(bn_x)
- r = uint32_p_to_int(uint32_p_r)
- assert bignum_is_normalised(bn_x)
- assert x_new == x_old // 1000
- assert r == x_old % 1000
- def assert_bn_divmod10(x_old):
- bn_x = int_to_bignum(x_old)
- uint32_p_r = uint32_p()
- lib.bn_divmod10(bn_x, uint32_p_r)
- x_new = bignum_to_int(bn_x)
- r = uint32_p_to_int(uint32_p_r)
- assert bignum_is_normalised(bn_x)
- assert x_new == x_old // 10
- assert r == x_old % 10
- def assert_bn_format(x, prefix, suffix, decimals, exponent, trailing, thousands):
- def format(amount, prefix, suffix, decimals, exponent, trailing, thousands):
- if exponent >= 0:
- amount *= 10**exponent
- else:
- amount //= 10 ** (-exponent)
- d = pow(10, decimals)
- integer_part = amount // d
- integer_str = f"{integer_part:,}".replace(",", thousands or "")
- if decimals:
- decimal_part = amount % d
- decimal_str = f".{decimal_part:0{decimals}d}"
- if not trailing:
- decimal_str = decimal_str.rstrip("0").rstrip(".")
- else:
- decimal_str = ""
- return prefix + integer_str + decimal_str + suffix
- def string_to_char_p(string):
- return ctypes.create_string_buffer(string.encode("ascii"))
- def char_p_to_string(pointer):
- return str(pointer.value, "ascii")
- bn_x = int_to_bignum(x)
- output_length = 100
- output = string_to_char_p("?" * output_length)
- return_value = lib.bn_format(
- bn_x,
- string_to_char_p(prefix),
- string_to_char_p(suffix),
- c_uint(decimals),
- c_int(exponent),
- c_bool(trailing),
- c_char(0),
- output,
- c_size_t(output_length),
- )
- correct_output = format(x, prefix, suffix, decimals, exponent, trailing, "")
- correct_return_value = len(correct_output)
- if len(correct_output) >= output_length:
- correct_output = ""
- correct_return_value = 0
- assert char_p_to_string(output) == correct_output
- assert return_value == correct_return_value
- def test_bn_read_be(r):
- assert_bn_read_be(r.rand_int_256())
- def test_bn_read_le(r):
- assert_bn_read_le(r.rand_int_256())
- def test_bn_write_be(r):
- assert_bn_write_be(r.rand_int_256())
- def test_bn_write_le(r):
- assert_bn_write_le(r.rand_int_256())
- def test_bn_read_uint32(r):
- assert_bn_read_uint32(r.rand_int_bitsize(32))
- def test_bn_read_uint64(r):
- assert_bn_read_uint64(r.rand_int_bitsize(64))
- def test_bn_bitcount_1(r):
- assert_bn_bitcount(r.rand_int_normalized())
- def test_bn_bitcount_2(bignum_bit_index):
- assert_bn_bitcount(2**bignum_bit_index - 1)
- assert_bn_bitcount(2**bignum_bit_index)
- def test_bn_digitcount_1(r):
- assert_bn_digitcount(r.rand_int_normalized())
- def test_bn_digitcount_2(bignum_decimal_digit_index):
- assert_bn_digitcount(10**bignum_decimal_digit_index - 1)
- assert_bn_digitcount(10**bignum_decimal_digit_index)
- def test_bn_zero():
- assert_bn_zero()
- def test_bn_one():
- assert_bn_one()
- def test_bn_is_zero_1():
- assert_bn_is_zero(0)
- assert_bn_is_zero(1)
- def test_bn_is_zero_2(bignum_bit_index):
- assert_bn_is_zero(2**bignum_bit_index)
- def test_bn_is_one_1():
- assert_bn_is_one(0)
- assert_bn_is_one(1)
- def test_bn_is_one_2(bignum_bit_index):
- assert_bn_is_one(2**bignum_bit_index)
- def test_bn_is_less_1(r):
- a = r.rand_int_normalized()
- b = r.rand_int_normalized()
- assert_bn_is_less(a, a)
- assert_bn_is_less(a, b)
- assert_bn_is_less(b, a)
- def test_bn_is_less_2(r):
- a = r.rand_int_normalized()
- i = r.rand_bit_index()
- b = a ^ 2**i
- assert_bn_is_less(a, b)
- def test_bn_is_less_3():
- assert_bn_is_less(0, 0)
- assert_bn_is_less(1, 0)
- assert_bn_is_less(0, 1)
- assert_bn_is_less(1, 1)
- def test_bn_is_equal_1(r):
- a = r.rand_int_normalized()
- b = r.rand_int_normalized()
- assert_bn_is_equal(a, a)
- assert_bn_is_equal(a, b)
- def test_bn_is_equal_2():
- assert_bn_is_equal(0, 0)
- assert_bn_is_equal(1, 0)
- assert_bn_is_equal(0, 1)
- assert_bn_is_equal(1, 1)
- def test_bn_cmov(r):
- a = r.rand_int_normalized()
- b = r.rand_int_normalized()
- assert_bn_cmov(0, a, b)
- assert_bn_cmov(1, a, b)
- def test_bn_cnegate(r, prime):
- a = r.rand_int_reduced(prime)
- assert_bn_cnegate(0, a, prime)
- assert_bn_cnegate(1, a, prime)
- def test_bn_lshift(r):
- assert_bn_lshift(r.rand_int_normalized() // 2)
- def test_bn_rshift(r):
- assert_bn_rshift(r.rand_int_normalized())
- def test_bn_testbit(r):
- assert_bn_testbit(r.rand_int_normalized(), r.rand_bit_index())
- def test_bn_setbit(r):
- assert_bn_setbit(r.rand_int_normalized(), r.rand_bit_index())
- def test_bn_clearbit(r):
- assert_bn_clearbit(r.rand_int_normalized(), r.rand_bit_index())
- def test_bn_xor(r):
- assert_bn_xor(r.rand_int_normalized(), r.rand_int_normalized())
- def test_bn_mult_half_1(r, prime):
- assert_bn_mult_half(r.rand_int_reduced(prime), prime)
- def test_bn_mult_half_2(r, prime):
- assert_bn_mult_half(r.rand_int_normalized(), prime)
- def test_bn_mult_k(r, prime):
- assert_bn_mult_k(r.rand_int_normalized(), r.randrange(9), prime)
- def test_bn_mod_1(r, prime):
- assert_bn_mod(r.rand_int_reduced(prime), prime)
- def test_bn_mod_2(r, prime):
- for x in [
- 0,
- 1,
- 2,
- prime - 2,
- prime - 1,
- prime,
- prime + 1,
- prime + 2,
- 2 * prime - 2,
- 2 * prime - 1,
- ]:
- assert_bn_mod(x, prime)
- def test_bn_multiply_long(r, prime):
- x = r.randrange(floor(sqrt(2**519)))
- k = r.randrange(floor(sqrt(2**519)))
- assert_bn_multiply_long(k, x)
- def test_bn_multiply_reduce_step(r, prime):
- k = r.randrange(0, limbs_number)
- res = r.randrange(2 ** (256 + 29 * k + 31))
- assert_bn_multiply_reduce_step(res, prime, k)
- def test_bn_multiply(r, prime):
- x = r.randrange(floor(sqrt(2**519)))
- k = r.randrange(floor(sqrt(2**519)))
- assert_bn_multiply(k, x, prime)
- def test_bn_fast_mod_1(r, prime):
- assert_bn_fast_mod(r.rand_int_normalized(), prime)
- def test_bn_fast_mod_2(r, prime):
- bn_x = r.rand_bignum()
- assert_bn_fast_mod_bn(bn_x, prime)
- def test_bn_power_mod(r, prime):
- x = r.rand_int_bitsize(259)
- e = r.rand_int_normalized()
- assert_bn_power_mod(x, e, prime)
- def test_bn_sqrt_1(prime):
- assert_bn_sqrt(0, prime)
- assert_bn_sqrt(1, prime)
- def test_bn_sqrt_2(r, prime):
- def is_quadratic_residuum(x, p):
- return pow(x, (p - 1) // 2, p) == 1
- while True:
- x = r.rand_int_bitsize(259)
- if is_quadratic_residuum(x, prime):
- break
- assert_bn_sqrt(x, prime)
- def test_inverse_mod_power_two(r):
- m = r.randrange(1, 33)
- i = r.randrange(1, 2**29, 2)
- assert_inverse_mod_power_two(i, m)
- def test_bn_divide_base(r, prime):
- assert_bn_divide_base(r.rand_int_256(), prime)
- def test_bn_inverse_1(prime):
- assert_bn_inverse(0, prime)
- assert_bn_inverse(1, prime)
- def test_bn_inverse_2(r, prime):
- from math import gcd
- while True:
- n = r.randrange(0, prime)
- if gcd(n, prime) == 1:
- break
- assert_bn_inverse(n, prime)
- def test_bn_normalize(r):
- assert_bn_normalize(r.rand_bignum())
- def test_bn_add_1(r):
- assert_bn_add(r.rand_int_256(), r.rand_int_256())
- def test_bn_add_2(r):
- while True:
- a = r.rand_int_normalized()
- b = r.rand_int_normalized()
- if a + b < 2 ** (limbs_number * bits_per_limb):
- break
- assert_bn_add(a, b)
- def test_bn_add_3():
- a = Random().rand_int_normalized()
- b = 2 ** (limbs_number * bits_per_limb) - 1 - a
- assert_bn_add(a, b)
- def test_bn_addmod(r, prime):
- assert_bn_addmod(r.rand_int_normalized(), r.rand_int_normalized(), prime)
- def test_bn_addi_1(r):
- while True:
- a = r.rand_int_normalized()
- b = r.randrange(2**32 - 2**bits_per_limb + 1)
- if a + b < 2 ** (limbs_number * bits_per_limb):
- break
- assert_bn_addi(a, b)
- def test_bn_addi_2():
- b = 2**32 - 2**bits_per_limb
- a = 2 ** (limbs_number * bits_per_limb) - 1 - b
- assert_bn_addi(a, b)
- def test_bn_subi_1(r, prime):
- while True:
- a = r.rand_int_normalized()
- b = r.randrange(prime % 2**bits_per_limb)
- if a + prime - b < 2 ** (limbs_number * bits_per_limb):
- break
- assert_bn_subi(a, b, prime)
- def test_bn_subi_2(prime):
- b = (prime % 2**bits_per_limb) - 1
- a = 2 ** (limbs_number * bits_per_limb) - 1 - prime + b
- assert_bn_subi(a, b, prime)
- def test_bn_subtractmod_1(r, prime):
- assert_bn_subtractmod(r.rand_int_256(), r.rand_int_256(), prime)
- def test_bn_subtractmod_2(r, prime):
- while True:
- a = r.rand_int_normalized()
- b = r.rand_int_reduced(prime)
- if a + 2 * prime - b < 2 ** (limbs_number * bits_per_limb):
- break
- assert_bn_subtractmod(a, b, prime)
- def test_bn_subtractmod_3(prime):
- b = 2 * prime - 1
- a = 2 ** (limbs_number * bits_per_limb) - 1 - (2 * prime - b)
- assert_bn_subtractmod(a, b, prime)
- def test_bn_subtract_1(r):
- a = r.rand_int_256()
- b = r.rand_int_256()
- if a < b:
- a, b = b, a
- assert_bn_subtract(a, b)
- def test_bn_subtract_2(r):
- a = r.rand_int_normalized()
- b = r.rand_int_normalized()
- if a < b:
- a, b = b, a
- assert_bn_subtract(a, b)
- def test_bn_long_division(r):
- x = r.rand_int_normalized()
- d = r.randrange(1, 61304 + 1)
- assert_bn_long_division(x, d)
- def test_bn_divmod58(r):
- x = r.rand_int_normalized()
- assert_bn_divmod58(x)
- def test_bn_divmod1000(r):
- x = r.rand_int_normalized()
- assert_bn_divmod1000(x)
- def test_bn_divmod10(r):
- x = r.rand_int_normalized()
- assert_bn_divmod10(x)
- @pytest.mark.parametrize(
- "decimals,exponent,trailing,prefix,suffix,thousands,value",
- itertools.product(
- range(0, 5),
- range(-5, 5),
- [True, False],
- ["", "prefix"],
- ["", "suffix"],
- ["", ",", " "],
- [123, 120, 123_456, 12_345, 100001, 10001000],
- ),
- )
- def test_bn_format(decimals, exponent, trailing, prefix, suffix, thousands, value):
- assert_bn_format(value, prefix, suffix, decimals, exponent, trailing, thousands)
|