sam_api.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686
  1. #include "sam_api.h"
  2. #define TAG "SAMAPI"
  3. #define APDU_HEADER_LEN 5
  4. #define ASN1_PREFIX 6
  5. #define ASN1_DEBUG true
  6. static char display[SEADER_UART_RX_BUF_SIZE * 2 + 1] = {0};
  7. char asn1_log[SEADER_UART_RX_BUF_SIZE] = {0};
  8. bool requestPacs = true;
  9. void* calloc(size_t count, size_t size) {
  10. return malloc(count * size);
  11. }
  12. bool seader_send_apdu(
  13. SeaderUartBridge* seader_uart,
  14. uint8_t CLA,
  15. uint8_t INS,
  16. uint8_t P1,
  17. uint8_t P2,
  18. uint8_t* payload,
  19. uint8_t length) {
  20. if(APDU_HEADER_LEN + length > SEADER_UART_RX_BUF_SIZE) {
  21. FURI_LOG_E(TAG, "Cannot send message, too long: %d", APDU_HEADER_LEN + length);
  22. return false;
  23. }
  24. uint8_t apdu[SEADER_UART_RX_BUF_SIZE];
  25. apdu[0] = CLA;
  26. apdu[1] = INS;
  27. apdu[2] = P1;
  28. apdu[3] = P2;
  29. apdu[4] = length;
  30. memcpy(apdu + APDU_HEADER_LEN, payload, length);
  31. seader_ccid_XfrBlock(seader_uart, apdu, APDU_HEADER_LEN + length);
  32. return true;
  33. }
  34. static int seader_print_struct_callback(const void* buffer, size_t size, void* app_key) {
  35. if(app_key) {
  36. char* str = (char*)app_key;
  37. size_t next = strlen(str);
  38. strncpy(str + next, buffer, size);
  39. } else {
  40. uint8_t next = strlen(asn1_log);
  41. strncpy(asn1_log + next, buffer, size);
  42. }
  43. return 0;
  44. }
  45. void seader_send_payload(
  46. SeaderUartBridge* seader_uart,
  47. Payload_t* payload,
  48. uint8_t to,
  49. uint8_t from,
  50. uint8_t replyTo) {
  51. uint8_t rBuffer[SEADER_UART_RX_BUF_SIZE] = {0};
  52. asn_enc_rval_t er = der_encode_to_buffer(
  53. &asn_DEF_Payload, payload, rBuffer + ASN1_PREFIX, sizeof(rBuffer) - ASN1_PREFIX);
  54. #ifdef ASN1_DEBUG
  55. if(er.encoded > -1) {
  56. char payloadDebug[384] = {0};
  57. memset(payloadDebug, 0, sizeof(payloadDebug));
  58. (&asn_DEF_Payload)
  59. ->op->print_struct(
  60. &asn_DEF_Payload, payload, 1, seader_print_struct_callback, payloadDebug);
  61. if(strlen(payloadDebug) > 0) {
  62. FURI_LOG_D(TAG, "Sending payload[%d %d %d]: %s", to, from, replyTo, payloadDebug);
  63. }
  64. }
  65. #endif
  66. //0xa0, 0xda, 0x02, 0x63, 0x00, 0x00, 0x0a,
  67. //0x44, 0x0a, 0x44, 0x00, 0x00, 0x00, 0xa0, 0x02, 0x96, 0x00
  68. rBuffer[0] = to;
  69. rBuffer[1] = from;
  70. rBuffer[2] = replyTo;
  71. seader_send_apdu(seader_uart, 0xA0, 0xDA, 0x02, 0x63, rBuffer, 6 + er.encoded);
  72. }
  73. void seader_send_response(
  74. SeaderUartBridge* seader_uart,
  75. Response_t* response,
  76. uint8_t to,
  77. uint8_t from,
  78. uint8_t replyTo) {
  79. Payload_t* payload = 0;
  80. payload = calloc(1, sizeof *payload);
  81. assert(payload);
  82. payload->present = Payload_PR_response;
  83. payload->choice.response = *response;
  84. seader_send_payload(seader_uart, payload, to, from, replyTo);
  85. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  86. }
  87. void sendRequestPacs(SeaderUartBridge* seader_uart) {
  88. RequestPacs_t* requestPacs = 0;
  89. requestPacs = calloc(1, sizeof *requestPacs);
  90. assert(requestPacs);
  91. requestPacs->contentElementTag = ContentElementTag_implicitFormatPhysicalAccessBits;
  92. SamCommand_t* samCommand = 0;
  93. samCommand = calloc(1, sizeof *samCommand);
  94. assert(samCommand);
  95. samCommand->present = SamCommand_PR_requestPacs;
  96. samCommand->choice.requestPacs = *requestPacs;
  97. Payload_t* payload = 0;
  98. payload = calloc(1, sizeof *payload);
  99. assert(payload);
  100. payload->present = Payload_PR_samCommand;
  101. payload->choice.samCommand = *samCommand;
  102. seader_send_payload(seader_uart, payload, 0x44, 0x0a, 0x44);
  103. ASN_STRUCT_FREE(asn_DEF_RequestPacs, requestPacs);
  104. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  105. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  106. }
  107. void seader_worker_send_version(SeaderWorker* seader_worker) {
  108. SeaderUartBridge* seader_uart = seader_worker->uart;
  109. SamCommand_t* samCommand = 0;
  110. samCommand = calloc(1, sizeof *samCommand);
  111. assert(samCommand);
  112. samCommand->present = SamCommand_PR_version;
  113. Payload_t* payload = 0;
  114. payload = calloc(1, sizeof *payload);
  115. assert(payload);
  116. payload->present = Payload_PR_samCommand;
  117. payload->choice.samCommand = *samCommand;
  118. seader_send_payload(seader_uart, payload, 0x44, 0x0a, 0x44);
  119. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  120. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  121. }
  122. void seader_send_card_detected(SeaderUartBridge* seader_uart, CardDetails_t* cardDetails) {
  123. CardDetected_t* cardDetected = 0;
  124. cardDetected = calloc(1, sizeof *cardDetected);
  125. assert(cardDetected);
  126. cardDetected->detectedCardDetails = *cardDetails;
  127. SamCommand_t* samCommand = 0;
  128. samCommand = calloc(1, sizeof *samCommand);
  129. assert(samCommand);
  130. samCommand->present = SamCommand_PR_cardDetected;
  131. samCommand->choice.cardDetected = *cardDetected;
  132. Payload_t* payload = 0;
  133. payload = calloc(1, sizeof *payload);
  134. assert(payload);
  135. payload->present = Payload_PR_samCommand;
  136. payload->choice.samCommand = *samCommand;
  137. seader_send_payload(seader_uart, payload, 0x44, 0x0a, 0x44);
  138. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  139. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  140. ASN_STRUCT_FREE(asn_DEF_CardDetected, cardDetected);
  141. }
  142. bool seader_unpack_pacs(Seader* seader, uint8_t* buf, size_t size) {
  143. SeaderCredential* seader_credential = seader->credential;
  144. PAC_t* pac = 0;
  145. pac = calloc(1, sizeof *pac);
  146. assert(pac);
  147. bool rtn = false;
  148. asn_dec_rval_t rval = asn_decode(0, ATS_DER, &asn_DEF_PAC, (void**)&pac, buf, size);
  149. if(rval.code == RC_OK) {
  150. char pacDebug[384] = {0};
  151. (&asn_DEF_PAC)
  152. ->op->print_struct(&asn_DEF_PAC, pac, 1, seader_print_struct_callback, pacDebug);
  153. if(strlen(pacDebug) > 0) {
  154. FURI_LOG_D(TAG, "Received pac: %s", pacDebug);
  155. memset(display, 0, sizeof(display));
  156. if(seader_credential->sio[0] == 0x30) {
  157. for(uint8_t i = 0; i < sizeof(seader_credential->sio); i++) {
  158. snprintf(
  159. display + (i * 2), sizeof(display), "%02x", seader_credential->sio[i]);
  160. }
  161. FURI_LOG_D(TAG, "SIO %s", display);
  162. }
  163. }
  164. if(pac->size <= sizeof(seader_credential->credential)) {
  165. // TODO: make credential into a 12 byte array
  166. seader_credential->bit_length = pac->size * 8 - pac->bits_unused;
  167. memcpy(&seader_credential->credential, pac->buf, pac->size);
  168. seader_credential->credential = __builtin_bswap64(seader_credential->credential);
  169. seader_credential->credential = seader_credential->credential >>
  170. (64 - seader_credential->bit_length);
  171. rtn = true;
  172. } else {
  173. // PACS too big (probably bad data)
  174. view_dispatcher_send_custom_event(
  175. seader->view_dispatcher, SeaderCustomEventWorkerExit);
  176. }
  177. }
  178. ASN_STRUCT_FREE(asn_DEF_PAC, pac);
  179. return rtn;
  180. }
  181. // 800201298106683d052026b6820101
  182. //300F800201298106683D052026B6820101
  183. bool seader_parse_version(SeaderWorker* seader_worker, uint8_t* buf, size_t size) {
  184. SamVersion_t* version = 0;
  185. version = calloc(1, sizeof *version);
  186. assert(version);
  187. bool rtn = false;
  188. if(size > 30) {
  189. // Too large to handle now
  190. FURI_LOG_W(TAG, "Version of %d is to long to parse", size);
  191. return false;
  192. }
  193. // Add sequence prefix
  194. uint8_t seq[32] = {0x30};
  195. seq[1] = (uint8_t)size;
  196. memcpy(seq + 2, buf, size);
  197. asn_dec_rval_t rval =
  198. asn_decode(0, ATS_DER, &asn_DEF_SamVersion, (void**)&version, seq, size + 2);
  199. if(rval.code == RC_OK) {
  200. char versionDebug[128] = {0};
  201. (&asn_DEF_SamVersion)
  202. ->op->print_struct(
  203. &asn_DEF_SamVersion, version, 1, seader_print_struct_callback, versionDebug);
  204. if(strlen(versionDebug) > 0) {
  205. // FURI_LOG_D(TAG, "Received version: %s", versionDebug);
  206. }
  207. if(version->version.size == 2) {
  208. memcpy(seader_worker->sam_version, version->version.buf, version->version.size);
  209. }
  210. rtn = true;
  211. }
  212. ASN_STRUCT_FREE(asn_DEF_SamVersion, version);
  213. return rtn;
  214. }
  215. bool seader_parse_sam_response(Seader* seader, SamResponse_t* samResponse) {
  216. SeaderWorker* seader_worker = seader->worker;
  217. SeaderUartBridge* seader_uart = seader_worker->uart;
  218. if(samResponse->size == 0) {
  219. if(requestPacs) {
  220. FURI_LOG_D(TAG, "samResponse %d => requesting PACS", samResponse->size);
  221. sendRequestPacs(seader_uart);
  222. requestPacs = false;
  223. } else {
  224. FURI_LOG_D(
  225. TAG, "samResponse %d, PACS already requested, pushing view", samResponse->size);
  226. view_dispatcher_send_custom_event(
  227. seader->view_dispatcher, SeaderCustomEventWorkerExit);
  228. }
  229. } else if(seader_parse_version(seader_worker, samResponse->buf, samResponse->size)) {
  230. // no-op
  231. } else if(seader_unpack_pacs(seader, samResponse->buf, samResponse->size)) {
  232. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventWorkerExit);
  233. } else {
  234. memset(display, 0, sizeof(display));
  235. for(uint8_t i = 0; i < samResponse->size; i++) {
  236. snprintf(display + (i * 2), sizeof(display), "%02x", samResponse->buf[i]);
  237. }
  238. FURI_LOG_D(TAG, "Unknown samResponse %d: %s", samResponse->size, display);
  239. }
  240. return false;
  241. }
  242. bool seader_parse_response(Seader* seader, Response_t* response) {
  243. switch(response->present) {
  244. case Response_PR_samResponse:
  245. seader_parse_sam_response(seader, &response->choice.samResponse);
  246. break;
  247. default:
  248. FURI_LOG_D(TAG, "non-sam response");
  249. break;
  250. };
  251. return false;
  252. }
  253. void seader_send_nfc_rx(SeaderUartBridge* seader_uart, uint8_t* buffer, size_t len) {
  254. OCTET_STRING_t rxData = {.buf = buffer, .size = len};
  255. uint8_t status[] = {0x00, 0x00};
  256. RfStatus_t rfStatus = {.buf = status, .size = 2};
  257. NFCRx_t* nfcRx = 0;
  258. nfcRx = calloc(1, sizeof *nfcRx);
  259. assert(nfcRx);
  260. nfcRx->rfStatus = rfStatus;
  261. nfcRx->data = &rxData;
  262. NFCResponse_t* nfcResponse = 0;
  263. nfcResponse = calloc(1, sizeof *nfcResponse);
  264. assert(nfcResponse);
  265. nfcResponse->present = NFCResponse_PR_nfcRx;
  266. nfcResponse->choice.nfcRx = *nfcRx;
  267. Response_t* response = 0;
  268. response = calloc(1, sizeof *response);
  269. assert(response);
  270. response->present = Response_PR_nfcResponse;
  271. response->choice.nfcResponse = *nfcResponse;
  272. seader_send_response(seader_uart, response, 0x14, 0x0a, 0x0);
  273. ASN_STRUCT_FREE(asn_DEF_NFCRx, nfcRx);
  274. ASN_STRUCT_FREE(asn_DEF_NFCResponse, nfcResponse);
  275. ASN_STRUCT_FREE(asn_DEF_Response, response);
  276. }
  277. static uint16_t seader_worker_picopass_update_ccitt(uint16_t crcSeed, uint8_t dataByte) {
  278. uint16_t crc = crcSeed;
  279. uint8_t dat = dataByte;
  280. dat ^= (uint8_t)(crc & 0xFFU);
  281. dat ^= (dat << 4);
  282. crc = (crc >> 8) ^ (((uint16_t)dat) << 8) ^ (((uint16_t)dat) << 3) ^ (((uint16_t)dat) >> 4);
  283. return crc;
  284. }
  285. static uint16_t seader_worker_picopass_calculate_ccitt(
  286. uint16_t preloadValue,
  287. const uint8_t* buf,
  288. uint16_t length) {
  289. uint16_t crc = preloadValue;
  290. uint16_t index;
  291. for(index = 0; index < length; index++) {
  292. crc = seader_worker_picopass_update_ccitt(crc, buf[index]);
  293. }
  294. return crc;
  295. }
  296. uint8_t read4Block6[] = {0x06, 0x06, 0x45, 0x56};
  297. uint8_t read4Block9[] = {0x06, 0x09, 0xB2, 0xAE};
  298. uint8_t read4Block10[] = {0x06, 0x0A, 0x29, 0x9C};
  299. uint8_t read4Block13[] = {0x06, 0x0D, 0x96, 0xE8};
  300. uint8_t updateBlock2[] = {0x87, 0x02}; // TODO
  301. void seader_capture_sio(BitBuffer* tx_buffer, BitBuffer* rx_buffer, SeaderCredential* credential) {
  302. const uint8_t* buffer = bit_buffer_get_data(tx_buffer);
  303. size_t len = bit_buffer_get_size_bytes(tx_buffer);
  304. const uint8_t* rxBuffer = bit_buffer_get_data(rx_buffer);
  305. if(memcmp(buffer, read4Block6, len) == 0 && rxBuffer[0] == 0x30) {
  306. memcpy(credential->sio, rxBuffer, 32);
  307. } else if(memcmp(buffer, read4Block10, len) == 0 && rxBuffer[0] == 0x30) {
  308. memcpy(credential->sio, rxBuffer, 32);
  309. } else if(memcmp(buffer, read4Block9, len) == 0) {
  310. memcpy(credential->sio + 32, rxBuffer + 8, 24);
  311. } else if(memcmp(buffer, read4Block13, len) == 0) {
  312. memcpy(credential->sio + 32, rxBuffer + 8, 24);
  313. }
  314. }
  315. PicopassError seader_worker_fake_epurse_update(BitBuffer* tx_buffer, BitBuffer* rx_buffer) {
  316. const uint8_t* buffer = bit_buffer_get_data(tx_buffer);
  317. uint8_t fake_response[10];
  318. memset(fake_response, 0, sizeof(fake_response));
  319. memcpy(fake_response + 0, buffer + 6, 4);
  320. memcpy(fake_response + 4, buffer + 2, 4);
  321. uint16_t crc = seader_worker_picopass_calculate_ccitt(0xE012, fake_response, 8);
  322. memcpy(fake_response + 8, &crc, sizeof(uint16_t));
  323. bit_buffer_append_bytes(rx_buffer, fake_response, sizeof(fake_response));
  324. memset(display, 0, sizeof(display));
  325. for(uint8_t i = 0; i < sizeof(fake_response); i++) {
  326. snprintf(display + (i * 2), sizeof(display), "%02x", fake_response[i]);
  327. }
  328. FURI_LOG_I(TAG, "Fake update E-Purse response: %s", display);
  329. return PicopassErrorNone;
  330. }
  331. void seader_iso15693_transmit(
  332. Seader* seader,
  333. PicopassPoller* picopass_poller,
  334. uint8_t* buffer,
  335. size_t len) {
  336. UNUSED(seader);
  337. UNUSED(buffer);
  338. UNUSED(len);
  339. SeaderWorker* seader_worker = seader->worker;
  340. SeaderUartBridge* seader_uart = seader_worker->uart;
  341. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  342. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  343. PicopassError error = PicopassErrorNone;
  344. do {
  345. bit_buffer_append_bytes(tx_buffer, buffer, len);
  346. if(memcmp(buffer, updateBlock2, sizeof(updateBlock2)) == 0) {
  347. error = seader_worker_fake_epurse_update(tx_buffer, rx_buffer);
  348. } else {
  349. error = picopass_poller_send_frame(
  350. picopass_poller, tx_buffer, rx_buffer, SEADER_POLLER_MAX_FWT);
  351. }
  352. if(error == PicopassErrorIncorrectCrc) {
  353. error = PicopassErrorNone;
  354. }
  355. if(error != PicopassErrorNone) {
  356. seader_worker->stage = SeaderPollerEventTypeFail;
  357. break;
  358. }
  359. seader_capture_sio(tx_buffer, rx_buffer, seader->credential);
  360. seader_send_nfc_rx(
  361. seader_uart,
  362. (uint8_t*)bit_buffer_get_data(rx_buffer),
  363. bit_buffer_get_size_bytes(rx_buffer));
  364. } while(false);
  365. bit_buffer_free(tx_buffer);
  366. bit_buffer_free(rx_buffer);
  367. }
  368. /* Assumes this is called in the context of the NFC API callback */
  369. void seader_iso14443a_transmit(
  370. Seader* seader,
  371. Iso14443_4aPoller* iso14443_4a_poller,
  372. uint8_t* buffer,
  373. size_t len,
  374. uint16_t timeout,
  375. uint8_t format[3]) {
  376. UNUSED(timeout);
  377. UNUSED(format);
  378. furi_assert(seader);
  379. furi_assert(buffer);
  380. furi_assert(iso14443_4a_poller);
  381. SeaderWorker* seader_worker = seader->worker;
  382. SeaderUartBridge* seader_uart = seader_worker->uart;
  383. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  384. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  385. do {
  386. bit_buffer_append_bytes(tx_buffer, buffer, len);
  387. Iso14443_4aError error =
  388. iso14443_4a_poller_send_block(iso14443_4a_poller, tx_buffer, rx_buffer);
  389. if(error != Iso14443_4aErrorNone) {
  390. FURI_LOG_W(TAG, "iso14443_4a_poller_send_block error %d", error);
  391. seader_worker->stage = SeaderPollerEventTypeFail;
  392. break;
  393. }
  394. seader_send_nfc_rx(
  395. seader_uart,
  396. (uint8_t*)bit_buffer_get_data(rx_buffer),
  397. bit_buffer_get_size_bytes(rx_buffer));
  398. } while(false);
  399. bit_buffer_free(tx_buffer);
  400. bit_buffer_free(rx_buffer);
  401. }
  402. void seader_parse_nfc_command_transmit(
  403. Seader* seader,
  404. NFCSend_t* nfcSend,
  405. SeaderPollerContainer* spc) {
  406. long timeOut = nfcSend->timeOut;
  407. Protocol_t protocol = nfcSend->protocol;
  408. FrameProtocol_t frameProtocol = protocol.buf[1];
  409. #ifdef ASN1_DEBUG
  410. memset(display, 0, sizeof(display));
  411. for(uint8_t i = 0; i < nfcSend->data.size; i++) {
  412. snprintf(display + (i * 2), sizeof(display), "%02x", nfcSend->data.buf[i]);
  413. }
  414. FURI_LOG_D(
  415. TAG,
  416. "Transmit (%ld timeout) %d bytes [%s] via %lx",
  417. timeOut,
  418. nfcSend->data.size,
  419. display,
  420. frameProtocol);
  421. #endif
  422. if(frameProtocol == FrameProtocol_iclass) {
  423. seader_iso15693_transmit(
  424. seader, spc->picopass_poller, nfcSend->data.buf, nfcSend->data.size);
  425. } else if(frameProtocol == FrameProtocol_nfc) {
  426. seader_iso14443a_transmit(
  427. seader,
  428. spc->iso14443_4a_poller,
  429. nfcSend->data.buf,
  430. nfcSend->data.size,
  431. (uint16_t)timeOut,
  432. nfcSend->format->buf);
  433. } else {
  434. FURI_LOG_W(TAG, "unknown frame protocol %lx", frameProtocol);
  435. }
  436. }
  437. void seader_parse_nfc_off(SeaderUartBridge* seader_uart) {
  438. FURI_LOG_D(TAG, "Set Field Off");
  439. NFCResponse_t* nfcResponse = 0;
  440. nfcResponse = calloc(1, sizeof *nfcResponse);
  441. assert(nfcResponse);
  442. nfcResponse->present = NFCResponse_PR_nfcAck;
  443. Response_t* response = 0;
  444. response = calloc(1, sizeof *response);
  445. assert(response);
  446. response->present = Response_PR_nfcResponse;
  447. response->choice.nfcResponse = *nfcResponse;
  448. seader_send_response(seader_uart, response, 0x44, 0x0a, 0);
  449. ASN_STRUCT_FREE(asn_DEF_Response, response);
  450. ASN_STRUCT_FREE(asn_DEF_NFCResponse, nfcResponse);
  451. }
  452. void seader_parse_nfc_command(Seader* seader, NFCCommand_t* nfcCommand, SeaderPollerContainer* spc) {
  453. SeaderWorker* seader_worker = seader->worker;
  454. SeaderUartBridge* seader_uart = seader_worker->uart;
  455. switch(nfcCommand->present) {
  456. case NFCCommand_PR_nfcSend:
  457. seader_parse_nfc_command_transmit(seader, &nfcCommand->choice.nfcSend, spc);
  458. break;
  459. case NFCCommand_PR_nfcOff:
  460. seader_parse_nfc_off(seader_uart);
  461. seader->worker->stage = SeaderPollerEventTypeComplete;
  462. break;
  463. default:
  464. FURI_LOG_W(TAG, "unparsed NFCCommand");
  465. break;
  466. };
  467. }
  468. bool seader_worker_state_machine(
  469. Seader* seader,
  470. Payload_t* payload,
  471. bool online,
  472. SeaderPollerContainer* spc) {
  473. bool processed = false;
  474. switch(payload->present) {
  475. case Payload_PR_response:
  476. seader_parse_response(seader, &payload->choice.response);
  477. processed = true;
  478. break;
  479. case Payload_PR_nfcCommand:
  480. if(online) {
  481. seader_parse_nfc_command(seader, &payload->choice.nfcCommand, spc);
  482. processed = true;
  483. }
  484. break;
  485. case Payload_PR_errorResponse:
  486. FURI_LOG_W(TAG, "Error Response");
  487. processed = true;
  488. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventWorkerExit);
  489. break;
  490. default:
  491. FURI_LOG_W(TAG, "unhandled payload");
  492. break;
  493. };
  494. return processed;
  495. }
  496. bool seader_process_success_response_i(
  497. Seader* seader,
  498. uint8_t* apdu,
  499. size_t len,
  500. bool online,
  501. SeaderPollerContainer* spc) {
  502. Payload_t* payload = 0;
  503. payload = calloc(1, sizeof *payload);
  504. assert(payload);
  505. bool processed = false;
  506. asn_dec_rval_t rval =
  507. asn_decode(0, ATS_DER, &asn_DEF_Payload, (void**)&payload, apdu + 6, len - 6);
  508. if(rval.code == RC_OK) {
  509. processed = seader_worker_state_machine(seader, payload, online, spc);
  510. #ifdef ASN1_DEBUG
  511. if(processed) {
  512. char payloadDebug[384] = {0};
  513. memset(payloadDebug, 0, sizeof(payloadDebug));
  514. (&asn_DEF_Payload)
  515. ->op->print_struct(
  516. &asn_DEF_Payload, payload, 1, seader_print_struct_callback, payloadDebug);
  517. if(strlen(payloadDebug) > 0) {
  518. FURI_LOG_D(TAG, "Payload processed: %s", payloadDebug);
  519. }
  520. }
  521. #endif
  522. } else {
  523. FURI_LOG_D(TAG, "Failed to decode APDU payload");
  524. }
  525. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  526. return processed;
  527. }
  528. NfcCommand seader_worker_card_detect(
  529. Seader* seader,
  530. uint8_t sak,
  531. uint8_t* atqa,
  532. const uint8_t* uid,
  533. uint8_t uid_len,
  534. uint8_t* ats,
  535. uint8_t ats_len) {
  536. UNUSED(ats);
  537. UNUSED(ats_len);
  538. // We're telling the SAM we've seen a new card, so reset out requestPacs check
  539. requestPacs = true;
  540. SeaderWorker* seader_worker = seader->worker;
  541. SeaderUartBridge* seader_uart = seader_worker->uart;
  542. CardDetails_t* cardDetails = 0;
  543. cardDetails = calloc(1, sizeof *cardDetails);
  544. assert(cardDetails);
  545. OCTET_STRING_fromBuf(&cardDetails->csn, (const char*)uid, uid_len);
  546. OCTET_STRING_t sak_string = {.buf = &sak, .size = 1};
  547. OCTET_STRING_t atqa_string = {.buf = atqa, .size = 2};
  548. uint8_t protocol_bytes[] = {0x00, 0x00};
  549. if(sak == 0 && atqa == NULL) {
  550. protocol_bytes[1] = FrameProtocol_iclass;
  551. OCTET_STRING_fromBuf(
  552. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  553. } else {
  554. protocol_bytes[1] = FrameProtocol_nfc;
  555. OCTET_STRING_fromBuf(
  556. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  557. cardDetails->sak = &sak_string;
  558. cardDetails->atqa = &atqa_string;
  559. }
  560. seader_send_card_detected(seader_uart, cardDetails);
  561. ASN_STRUCT_FREE(asn_DEF_CardDetails, cardDetails);
  562. return NfcCommandContinue;
  563. }