sam_api.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139
  1. #include "sam_api.h"
  2. #include <toolbox/path.h>
  3. #include <toolbox/version.h>
  4. #include <bit_lib/bit_lib.h>
  5. //#define ASN1_DEBUG true
  6. #define TAG "SAMAPI"
  7. #define ASN1_PREFIX 6
  8. #define SEADER_ICLASS_SR_SIO_BASE_BLOCK 10
  9. #define SEADER_SERIAL_FILE_NAME "sam_serial"
  10. const uint8_t picopass_iclass_key[] = {0xaf, 0xa7, 0x85, 0xa7, 0xda, 0xb3, 0x33, 0x78};
  11. static char display[SEADER_UART_RX_BUF_SIZE * 2 + 1] = {0};
  12. #ifdef ASN1_DEBUG
  13. char asn1_log[SEADER_UART_RX_BUF_SIZE] = {0};
  14. #endif
  15. uint8_t read4Block6[] = {RFAL_PICOPASS_CMD_READ4, 0x06, 0x45, 0x56};
  16. uint8_t read4Block9[] = {RFAL_PICOPASS_CMD_READ4, 0x09, 0xB2, 0xAE};
  17. uint8_t read4Block10[] = {RFAL_PICOPASS_CMD_READ4, 0x0A, 0x29, 0x9C};
  18. uint8_t read4Block13[] = {RFAL_PICOPASS_CMD_READ4, 0x0D, 0x96, 0xE8};
  19. //uint8_t read4Block14[] = {RFAL_PICOPASS_CMD_READ4, 0x0E, 0x0d, 0xda};
  20. uint8_t updateBlock2[] = {RFAL_PICOPASS_CMD_UPDATE, 0x02};
  21. uint8_t ev2_request[] =
  22. {0x00, 0xa4, 0x04, 0x00, 0x0a, 0xa0, 0x00, 0x00, 0x04, 0x40, 0x00, 0x01, 0x01, 0x00, 0x01, 0x00};
  23. uint8_t FILE_NOT_FOUND[] = {0x6a, 0x82};
  24. void* calloc(size_t count, size_t size) {
  25. return malloc(count * size);
  26. }
  27. // Forward declarations
  28. void seader_send_nfc_rx(Seader* seader, uint8_t* buffer, size_t len);
  29. PicopassError seader_worker_fake_epurse_update(BitBuffer* tx_buffer, BitBuffer* rx_buffer) {
  30. const uint8_t* buffer = bit_buffer_get_data(tx_buffer);
  31. uint8_t fake_response[8];
  32. memset(fake_response, 0, sizeof(fake_response));
  33. memcpy(fake_response + 0, buffer + 6, 4);
  34. memcpy(fake_response + 4, buffer + 2, 4);
  35. bit_buffer_append_bytes(rx_buffer, fake_response, sizeof(fake_response));
  36. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  37. memset(display, 0, sizeof(display));
  38. for(uint8_t i = 0; i < bit_buffer_get_size_bytes(rx_buffer); i++) {
  39. snprintf(display + (i * 2), sizeof(display), "%02x", bit_buffer_get_data(rx_buffer)[i]);
  40. }
  41. FURI_LOG_I(TAG, "Fake update E-Purse response: %s", display);
  42. return PicopassErrorNone;
  43. }
  44. void seader_picopass_state_machine(Seader* seader, uint8_t* buffer, size_t len) {
  45. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  46. bit_buffer_append_bytes(tx_buffer, buffer, len);
  47. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  48. uint8_t config[PICOPASS_BLOCK_LEN] = {0x12, 0xff, 0xff, 0xff, 0x7f, 0x1f, 0xff, 0x3c};
  49. uint8_t sr_aia[PICOPASS_BLOCK_LEN] = {0xFF, 0xff, 0xff, 0xff, 0xFF, 0xFf, 0xff, 0xFF};
  50. uint8_t epurse[PICOPASS_BLOCK_LEN] = {0xff, 0xff, 0xff, 0xff, 0xe3, 0xff, 0xff, 0xff};
  51. uint8_t pacs_sr_cfg[PICOPASS_BLOCK_LEN] = {0xA3, 0x03, 0x03, 0x03, 0x00, 0x03, 0xe0, 0x14};
  52. uint8_t zeroes[PICOPASS_BLOCK_LEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
  53. uint8_t tmac[4] = {};
  54. uint8_t cc_p[12] = {};
  55. uint8_t div_key[PICOPASS_BLOCK_LEN] = {};
  56. uint8_t offset; // for READ4
  57. do {
  58. switch(buffer[0]) {
  59. case RFAL_PICOPASS_CMD_READ_OR_IDENTIFY:
  60. if(buffer[1] == AIA_INDEX) {
  61. bit_buffer_append_bytes(rx_buffer, sr_aia, sizeof(sr_aia));
  62. } else if(buffer[1] == PACS_CFG_INDEX) {
  63. bit_buffer_append_bytes(rx_buffer, pacs_sr_cfg, sizeof(pacs_sr_cfg));
  64. } else { // What i've seen is 0c 12
  65. offset = buffer[1] - SEADER_ICLASS_SR_SIO_BASE_BLOCK;
  66. bit_buffer_append_bytes(
  67. rx_buffer,
  68. seader->credential->sio + (PICOPASS_BLOCK_LEN * offset),
  69. PICOPASS_BLOCK_LEN);
  70. }
  71. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  72. break;
  73. case RFAL_PICOPASS_CMD_UPDATE:
  74. seader_worker_fake_epurse_update(tx_buffer, rx_buffer);
  75. break;
  76. case RFAL_PICOPASS_CMD_READCHECK_KD:
  77. if(buffer[1] == EPURSE_INDEX) {
  78. bit_buffer_append_bytes(rx_buffer, epurse, sizeof(epurse));
  79. }
  80. break;
  81. case RFAL_PICOPASS_CMD_CHECK:
  82. loclass_iclass_calc_div_key(
  83. seader->credential->diversifier, picopass_iclass_key, div_key, false);
  84. memcpy(cc_p, epurse, PICOPASS_BLOCK_LEN);
  85. memcpy(cc_p + 8, buffer + 1, PICOPASS_MAC_LEN);
  86. loclass_opt_doTagMAC(cc_p, div_key, tmac);
  87. bit_buffer_append_bytes(rx_buffer, tmac, sizeof(tmac));
  88. break;
  89. case RFAL_PICOPASS_CMD_READ4:
  90. if(buffer[1] < SEADER_ICLASS_SR_SIO_BASE_BLOCK) {
  91. if(buffer[1] == PACS_CFG_INDEX) {
  92. bit_buffer_append_bytes(rx_buffer, pacs_sr_cfg, sizeof(pacs_sr_cfg));
  93. bit_buffer_append_bytes(rx_buffer, zeroes, sizeof(zeroes));
  94. bit_buffer_append_bytes(rx_buffer, zeroes, sizeof(zeroes));
  95. bit_buffer_append_bytes(rx_buffer, zeroes, sizeof(zeroes));
  96. }
  97. } else {
  98. offset = buffer[1] - SEADER_ICLASS_SR_SIO_BASE_BLOCK;
  99. bit_buffer_append_bytes(
  100. rx_buffer,
  101. seader->credential->sio + (PICOPASS_BLOCK_LEN * offset),
  102. PICOPASS_BLOCK_LEN * 4);
  103. }
  104. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  105. break;
  106. case RFAL_PICOPASS_CMD_PAGESEL:
  107. // this should be considered an attempt, but realisticly not working
  108. bit_buffer_append_bytes(rx_buffer, config, sizeof(config));
  109. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  110. break;
  111. }
  112. seader_send_nfc_rx(
  113. seader,
  114. (uint8_t*)bit_buffer_get_data(rx_buffer),
  115. bit_buffer_get_size_bytes(rx_buffer));
  116. } while(false);
  117. bit_buffer_free(tx_buffer);
  118. bit_buffer_free(rx_buffer);
  119. }
  120. uint8_t APDU_HEADER_LEN = 5;
  121. bool seader_send_apdu(
  122. Seader* seader,
  123. uint8_t CLA,
  124. uint8_t INS,
  125. uint8_t P1,
  126. uint8_t P2,
  127. uint8_t* payload,
  128. uint8_t payloadLen) {
  129. SeaderWorker* seader_worker = seader->worker;
  130. SeaderUartBridge* seader_uart = seader_worker->uart;
  131. if(seader_uart->T == 1) {
  132. APDU_HEADER_LEN = 7;
  133. }
  134. if(APDU_HEADER_LEN + payloadLen > SEADER_UART_RX_BUF_SIZE) {
  135. FURI_LOG_E(TAG, "Cannot send message, too long: %d", APDU_HEADER_LEN + payloadLen);
  136. return false;
  137. }
  138. uint8_t length = APDU_HEADER_LEN + payloadLen;
  139. uint8_t* apdu = malloc(length);
  140. if(!apdu) {
  141. FURI_LOG_E(TAG, "Failed to allocate memory for apdu in seader_send_apdu");
  142. return false;
  143. }
  144. apdu[0] = CLA;
  145. apdu[1] = INS;
  146. apdu[2] = P1;
  147. apdu[3] = P2;
  148. if(seader_uart->T == 1) {
  149. apdu[4] = 0x00;
  150. apdu[5] = 0x00;
  151. apdu[6] = payloadLen;
  152. } else {
  153. apdu[4] = payloadLen;
  154. }
  155. memcpy(apdu + APDU_HEADER_LEN, payload, payloadLen);
  156. memset(display, 0, sizeof(display));
  157. for(uint8_t i = 0; i < length; i++) {
  158. snprintf(display + (i * 2), sizeof(display), "%02x", apdu[i]);
  159. }
  160. FURI_LOG_D(TAG, "seader_send_apdu %s", display);
  161. if(seader_uart->T == 1) {
  162. seader_send_t1(seader_uart, apdu, length);
  163. } else {
  164. seader_ccid_XfrBlock(seader_uart, apdu, length);
  165. }
  166. free(apdu);
  167. return true;
  168. }
  169. #ifdef ASN1_DEBUG
  170. static int seader_print_struct_callback(const void* buffer, size_t size, void* app_key) {
  171. if(app_key) {
  172. char* str = (char*)app_key;
  173. size_t next = strlen(str);
  174. strncpy(str + next, buffer, size);
  175. } else {
  176. uint8_t next = strlen(asn1_log);
  177. strncpy(asn1_log + next, buffer, size);
  178. }
  179. return 0;
  180. }
  181. #else
  182. static int seader_print_struct_callback(const void* buffer, size_t size, void* app_key) {
  183. UNUSED(buffer);
  184. UNUSED(size);
  185. UNUSED(app_key);
  186. return 0;
  187. }
  188. #endif
  189. void seader_send_payload(
  190. Seader* seader,
  191. Payload_t* payload,
  192. uint8_t to,
  193. uint8_t from,
  194. uint8_t replyTo) {
  195. uint8_t rBuffer[SEADER_UART_RX_BUF_SIZE] = {0};
  196. asn_enc_rval_t er = der_encode_to_buffer(
  197. &asn_DEF_Payload, payload, rBuffer + ASN1_PREFIX, sizeof(rBuffer) - ASN1_PREFIX);
  198. #ifdef ASN1_DEBUG
  199. if(er.encoded > -1) {
  200. char payloadDebug[1024] = {0};
  201. memset(payloadDebug, 0, sizeof(payloadDebug));
  202. (&asn_DEF_Payload)
  203. ->op->print_struct(
  204. &asn_DEF_Payload, payload, 1, seader_print_struct_callback, payloadDebug);
  205. if(strlen(payloadDebug) > 0) {
  206. FURI_LOG_D(TAG, "Sending payload[%d %d %d]: %s", to, from, replyTo, payloadDebug);
  207. }
  208. } else {
  209. FURI_LOG_W(TAG, "Failed to print_struct payload");
  210. }
  211. #endif
  212. //0xa0, 0xda, 0x02, 0x63, 0x00, 0x00, 0x0a,
  213. //0x44, 0x0a, 0x44, 0x00, 0x00, 0x00, 0xa0, 0x02, 0x96, 0x00
  214. rBuffer[0] = to;
  215. rBuffer[1] = from;
  216. rBuffer[2] = replyTo;
  217. seader_send_apdu(seader, 0xA0, 0xDA, 0x02, 0x63, rBuffer, 6 + er.encoded);
  218. }
  219. void seader_send_response(
  220. Seader* seader,
  221. Response_t* response,
  222. uint8_t to,
  223. uint8_t from,
  224. uint8_t replyTo) {
  225. Payload_t* payload = 0;
  226. payload = calloc(1, sizeof *payload);
  227. assert(payload);
  228. payload->present = Payload_PR_response;
  229. payload->choice.response = *response;
  230. seader_send_payload(seader, payload, to, from, replyTo);
  231. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  232. }
  233. void seader_send_request_pacs(Seader* seader) {
  234. RequestPacs_t* requestPacs = 0;
  235. requestPacs = calloc(1, sizeof *requestPacs);
  236. assert(requestPacs);
  237. requestPacs->contentElementTag = ContentElementTag_implicitFormatPhysicalAccessBits;
  238. SamCommand_t* samCommand = 0;
  239. samCommand = calloc(1, sizeof *samCommand);
  240. assert(samCommand);
  241. samCommand->present = SamCommand_PR_requestPacs;
  242. seader->samCommand = samCommand->present;
  243. samCommand->choice.requestPacs = *requestPacs;
  244. Payload_t* payload = 0;
  245. payload = calloc(1, sizeof *payload);
  246. assert(payload);
  247. payload->present = Payload_PR_samCommand;
  248. payload->choice.samCommand = *samCommand;
  249. seader_send_payload(seader, payload, 0x44, 0x0a, 0x44);
  250. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  251. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  252. ASN_STRUCT_FREE(asn_DEF_RequestPacs, requestPacs);
  253. }
  254. void seader_worker_send_serial_number(Seader* seader) {
  255. SamCommand_t* samCommand = 0;
  256. samCommand = calloc(1, sizeof *samCommand);
  257. assert(samCommand);
  258. samCommand->present = SamCommand_PR_serialNumber;
  259. seader->samCommand = samCommand->present;
  260. Payload_t* payload = 0;
  261. payload = calloc(1, sizeof *payload);
  262. assert(payload);
  263. payload->present = Payload_PR_samCommand;
  264. payload->choice.samCommand = *samCommand;
  265. seader_send_payload(seader, payload, 0x44, 0x0a, 0x44);
  266. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  267. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  268. }
  269. void seader_worker_send_version(Seader* seader) {
  270. SamCommand_t* samCommand = 0;
  271. samCommand = calloc(1, sizeof *samCommand);
  272. assert(samCommand);
  273. samCommand->present = SamCommand_PR_version;
  274. seader->samCommand = samCommand->present;
  275. Payload_t* payload = 0;
  276. payload = calloc(1, sizeof *payload);
  277. assert(payload);
  278. payload->present = Payload_PR_samCommand;
  279. payload->choice.samCommand = *samCommand;
  280. seader_send_payload(seader, payload, 0x44, 0x0a, 0x44);
  281. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  282. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  283. }
  284. void seader_send_card_detected(Seader* seader, CardDetails_t* cardDetails) {
  285. CardDetected_t* cardDetected = 0;
  286. cardDetected = calloc(1, sizeof *cardDetected);
  287. assert(cardDetected);
  288. cardDetected->detectedCardDetails = *cardDetails;
  289. SamCommand_t* samCommand = 0;
  290. samCommand = calloc(1, sizeof *samCommand);
  291. assert(samCommand);
  292. samCommand->present = SamCommand_PR_cardDetected;
  293. seader->samCommand = samCommand->present;
  294. samCommand->choice.cardDetected = *cardDetected;
  295. Payload_t* payload = 0;
  296. payload = calloc(1, sizeof *payload);
  297. assert(payload);
  298. payload->present = Payload_PR_samCommand;
  299. payload->choice.samCommand = *samCommand;
  300. seader_send_payload(seader, payload, 0x44, 0x0a, 0x44);
  301. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  302. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  303. ASN_STRUCT_FREE(asn_DEF_CardDetected, cardDetected);
  304. }
  305. bool seader_unpack_pacs(Seader* seader, uint8_t* buf, size_t size) {
  306. SeaderCredential* seader_credential = seader->credential;
  307. PAC_t* pac = 0;
  308. pac = calloc(1, sizeof *pac);
  309. assert(pac);
  310. bool rtn = false;
  311. asn_dec_rval_t rval = asn_decode(0, ATS_DER, &asn_DEF_PAC, (void**)&pac, buf, size);
  312. if(rval.code == RC_OK) {
  313. char pacDebug[384] = {0};
  314. (&asn_DEF_PAC)
  315. ->op->print_struct(&asn_DEF_PAC, pac, 1, seader_print_struct_callback, pacDebug);
  316. if(strlen(pacDebug) > 0) {
  317. FURI_LOG_D(TAG, "Received pac: %s", pacDebug);
  318. memset(display, 0, sizeof(display));
  319. if(seader_credential->sio[0] == 0x30) {
  320. for(uint8_t i = 0; i < seader_credential->sio_len; i++) {
  321. snprintf(
  322. display + (i * 2), sizeof(display), "%02x", seader_credential->sio[i]);
  323. }
  324. FURI_LOG_D(TAG, "SIO %s", display);
  325. }
  326. }
  327. if(pac->size <= sizeof(seader_credential->credential)) {
  328. // TODO: make credential into a 12 byte array
  329. seader_credential->bit_length = pac->size * 8 - pac->bits_unused;
  330. memcpy(&seader_credential->credential, pac->buf, pac->size);
  331. seader_credential->credential = __builtin_bswap64(seader_credential->credential);
  332. seader_credential->credential = seader_credential->credential >>
  333. (64 - seader_credential->bit_length);
  334. FURI_LOG_D(
  335. TAG,
  336. "credential (%d) %016llx",
  337. seader_credential->bit_length,
  338. seader_credential->credential);
  339. rtn = true;
  340. } else {
  341. // PACS too big (probably bad data)
  342. view_dispatcher_send_custom_event(
  343. seader->view_dispatcher, SeaderCustomEventWorkerExit);
  344. }
  345. }
  346. ASN_STRUCT_FREE(asn_DEF_PAC, pac);
  347. return rtn;
  348. }
  349. // 800201298106683d052026b6820101
  350. //300F800201298106683D052026B6820101
  351. bool seader_parse_version(SeaderWorker* seader_worker, uint8_t* buf, size_t size) {
  352. bool rtn = false;
  353. if(size > 30) {
  354. // Too large to handle now
  355. FURI_LOG_W(TAG, "Version of %d is to long to parse", size);
  356. return false;
  357. }
  358. SamVersion_t* version = 0;
  359. version = calloc(1, sizeof *version);
  360. assert(version);
  361. // Add sequence prefix
  362. uint8_t seq[32] = {0x30};
  363. seq[1] = (uint8_t)size;
  364. memcpy(seq + 2, buf, size);
  365. asn_dec_rval_t rval =
  366. asn_decode(0, ATS_DER, &asn_DEF_SamVersion, (void**)&version, seq, size + 2);
  367. if(rval.code == RC_OK) {
  368. char versionDebug[128] = {0};
  369. (&asn_DEF_SamVersion)
  370. ->op->print_struct(
  371. &asn_DEF_SamVersion, version, 1, seader_print_struct_callback, versionDebug);
  372. if(strlen(versionDebug) > 0) {
  373. FURI_LOG_D(TAG, "Received version: %s", versionDebug);
  374. }
  375. if(version->version.size == 2) {
  376. memcpy(seader_worker->sam_version, version->version.buf, version->version.size);
  377. }
  378. rtn = true;
  379. }
  380. ASN_STRUCT_FREE(asn_DEF_SamVersion, version);
  381. return rtn;
  382. }
  383. bool seader_sam_save_serial(Seader* seader, uint8_t* buf, size_t size) {
  384. SeaderCredential* cred = seader->credential;
  385. const char* file_header = "SAM Serial Number";
  386. const uint32_t file_version = 1;
  387. bool use_load_path = true;
  388. bool saved = false;
  389. FlipperFormat* file = flipper_format_file_alloc(cred->storage);
  390. FuriString* temp_str;
  391. temp_str = furi_string_alloc();
  392. do {
  393. if(use_load_path && !furi_string_empty(cred->load_path)) {
  394. // Get directory name
  395. path_extract_dirname(furi_string_get_cstr(cred->load_path), temp_str);
  396. // Make path to file to save
  397. furi_string_cat_printf(temp_str, "/%s%s", SEADER_SERIAL_FILE_NAME, ".txt");
  398. } else {
  399. furi_string_printf(
  400. temp_str, "%s/%s%s", STORAGE_APP_DATA_PATH_PREFIX, SEADER_SERIAL_FILE_NAME, ".txt");
  401. }
  402. // Open file
  403. if(!flipper_format_file_open_always(file, furi_string_get_cstr(temp_str))) break;
  404. if(!flipper_format_write_header_cstr(file, file_header, file_version)) break;
  405. if(!flipper_format_write_hex(file, "Chip Serial Number", buf, size)) break;
  406. saved = true;
  407. } while(false);
  408. if(!saved) {
  409. dialog_message_show_storage_error(cred->dialogs, "Can not save\nserial file");
  410. }
  411. furi_string_free(temp_str);
  412. flipper_format_free(file);
  413. return saved;
  414. }
  415. bool seader_sam_save_serial_QR(Seader* seader, char* serial) {
  416. SeaderCredential* cred = seader->credential;
  417. const char* file_header = "QRCode";
  418. const uint32_t file_version = 0;
  419. bool saved = false;
  420. FlipperFormat* file = flipper_format_file_alloc(cred->storage);
  421. FuriString* temp_str;
  422. temp_str = furi_string_alloc();
  423. do {
  424. storage_simply_mkdir(cred->storage, EXT_PATH("qrcodes"));
  425. furi_string_printf(
  426. temp_str, "%s/%s%s", EXT_PATH("qrcodes"), "seader_sam_serial", ".qrcode");
  427. // Open file
  428. if(!flipper_format_file_open_always(file, furi_string_get_cstr(temp_str))) break;
  429. if(!flipper_format_write_header_cstr(file, file_header, file_version)) break;
  430. if(!flipper_format_write_string_cstr(file, "Message", serial)) break;
  431. saved = true;
  432. } while(false);
  433. if(!saved) {
  434. dialog_message_show_storage_error(cred->dialogs, "Can not save\nQR file");
  435. }
  436. furi_string_free(temp_str);
  437. flipper_format_free(file);
  438. return saved;
  439. }
  440. bool seader_parse_serial_number(Seader* seader, uint8_t* buf, size_t size) {
  441. memset(display, 0, sizeof(display));
  442. for(uint8_t i = 0; i < size; i++) {
  443. snprintf(display + (i * 2), sizeof(display), "%02x", buf[i]);
  444. }
  445. FURI_LOG_D(TAG, "Received serial: %s", display);
  446. seader_sam_save_serial_QR(seader, display);
  447. return seader_sam_save_serial(seader, buf, size);
  448. }
  449. bool seader_parse_sam_response(Seader* seader, SamResponse_t* samResponse) {
  450. SeaderWorker* seader_worker = seader->worker;
  451. switch(seader->samCommand) {
  452. case SamCommand_PR_requestPacs:
  453. FURI_LOG_I(TAG, "samResponse SamCommand_PR_requestPacs");
  454. seader_unpack_pacs(seader, samResponse->buf, samResponse->size);
  455. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventPollerSuccess);
  456. seader->samCommand = SamCommand_PR_NOTHING;
  457. break;
  458. case SamCommand_PR_version:
  459. FURI_LOG_I(TAG, "samResponse SamCommand_PR_version");
  460. seader_parse_version(seader_worker, samResponse->buf, samResponse->size);
  461. seader_worker_send_serial_number(seader);
  462. break;
  463. case SamCommand_PR_serialNumber:
  464. FURI_LOG_I(TAG, "samResponse SamCommand_PR_serialNumber");
  465. seader_parse_serial_number(seader, samResponse->buf, samResponse->size);
  466. seader->samCommand = SamCommand_PR_NOTHING;
  467. break;
  468. case SamCommand_PR_cardDetected:
  469. FURI_LOG_I(TAG, "samResponse SamCommand_PR_cardDetected");
  470. seader_send_request_pacs(seader);
  471. break;
  472. case SamCommand_PR_NOTHING:
  473. FURI_LOG_I(TAG, "samResponse SamCommand_PR_NOTHING");
  474. memset(display, 0, sizeof(display));
  475. for(uint8_t i = 0; i < samResponse->size; i++) {
  476. snprintf(display + (i * 2), sizeof(display), "%02x", samResponse->buf[i]);
  477. }
  478. FURI_LOG_I(TAG, "Unknown samResponse %d: %s", samResponse->size, display);
  479. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventWorkerExit);
  480. break;
  481. }
  482. return false;
  483. }
  484. bool seader_parse_response(Seader* seader, Response_t* response) {
  485. switch(response->present) {
  486. case Response_PR_samResponse:
  487. seader_parse_sam_response(seader, &response->choice.samResponse);
  488. break;
  489. default:
  490. FURI_LOG_D(TAG, "non-sam response");
  491. break;
  492. };
  493. return false;
  494. }
  495. void seader_send_nfc_rx(Seader* seader, uint8_t* buffer, size_t len) {
  496. OCTET_STRING_t rxData = {.buf = buffer, .size = len};
  497. uint8_t status[] = {0x00, 0x00};
  498. RfStatus_t rfStatus = {.buf = status, .size = 2};
  499. NFCRx_t* nfcRx = 0;
  500. nfcRx = calloc(1, sizeof *nfcRx);
  501. assert(nfcRx);
  502. nfcRx->rfStatus = rfStatus;
  503. nfcRx->data = &rxData;
  504. NFCResponse_t* nfcResponse = 0;
  505. nfcResponse = calloc(1, sizeof *nfcResponse);
  506. assert(nfcResponse);
  507. nfcResponse->present = NFCResponse_PR_nfcRx;
  508. nfcResponse->choice.nfcRx = *nfcRx;
  509. Response_t* response = 0;
  510. response = calloc(1, sizeof *response);
  511. assert(response);
  512. response->present = Response_PR_nfcResponse;
  513. response->choice.nfcResponse = *nfcResponse;
  514. seader_send_response(seader, response, 0x14, 0x0a, 0x0);
  515. ASN_STRUCT_FREE(asn_DEF_NFCRx, nfcRx);
  516. ASN_STRUCT_FREE(asn_DEF_NFCResponse, nfcResponse);
  517. ASN_STRUCT_FREE(asn_DEF_Response, response);
  518. }
  519. void seader_capture_sio(BitBuffer* tx_buffer, BitBuffer* rx_buffer, SeaderCredential* credential) {
  520. const uint8_t* buffer = bit_buffer_get_data(tx_buffer);
  521. size_t len = bit_buffer_get_size_bytes(tx_buffer);
  522. const uint8_t* rxBuffer = bit_buffer_get_data(rx_buffer);
  523. if(credential->type == SeaderCredentialTypePicopass) {
  524. if(memcmp(buffer, read4Block6, len) == 0 && rxBuffer[0] == 0x30) {
  525. memcpy(credential->sio, rxBuffer, 32);
  526. credential->sio_len += 32;
  527. } else if(memcmp(buffer, read4Block10, len) == 0 && rxBuffer[0] == 0x30) {
  528. memcpy(credential->sio, rxBuffer, 32);
  529. credential->sio_len += 32;
  530. } else if(memcmp(buffer, read4Block9, len) == 0) {
  531. memcpy(credential->sio + 32, rxBuffer + 8, 24);
  532. credential->sio_len += 24;
  533. } else if(memcmp(buffer, read4Block13, len) == 0) {
  534. memcpy(credential->sio + 32, rxBuffer + 8, 24);
  535. credential->sio_len += 24;
  536. }
  537. } else if(credential->type == SeaderCredentialType14A) {
  538. // Desfire EV1 passes SIO in the clear
  539. uint8_t desfire_read[] = {
  540. 0x90, 0xbd, 0x00, 0x00, 0x07, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
  541. if(memcmp(buffer, desfire_read, len) == 0 && rxBuffer[0] == 0x30) {
  542. credential->sio_len =
  543. bit_buffer_get_size_bytes(rx_buffer) - 2; // -2 for the APDU response bytes
  544. memcpy(credential->sio, rxBuffer, credential->sio_len);
  545. }
  546. }
  547. }
  548. void seader_iso15693_transmit(
  549. Seader* seader,
  550. PicopassPoller* picopass_poller,
  551. uint8_t* buffer,
  552. size_t len) {
  553. SeaderWorker* seader_worker = seader->worker;
  554. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  555. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  556. PicopassError error = PicopassErrorNone;
  557. do {
  558. bit_buffer_append_bytes(tx_buffer, buffer, len);
  559. if(memcmp(buffer, updateBlock2, sizeof(updateBlock2)) == 0) {
  560. error = seader_worker_fake_epurse_update(tx_buffer, rx_buffer);
  561. } else {
  562. error = picopass_poller_send_frame(
  563. picopass_poller, tx_buffer, rx_buffer, SEADER_POLLER_MAX_FWT);
  564. }
  565. if(error == PicopassErrorIncorrectCrc) {
  566. error = PicopassErrorNone;
  567. }
  568. if(error != PicopassErrorNone) {
  569. seader_worker->stage = SeaderPollerEventTypeFail;
  570. break;
  571. }
  572. seader_capture_sio(tx_buffer, rx_buffer, seader->credential);
  573. seader_send_nfc_rx(
  574. seader,
  575. (uint8_t*)bit_buffer_get_data(rx_buffer),
  576. bit_buffer_get_size_bytes(rx_buffer));
  577. } while(false);
  578. bit_buffer_free(tx_buffer);
  579. bit_buffer_free(rx_buffer);
  580. }
  581. /* Assumes this is called in the context of the NFC API callback */
  582. void seader_iso14443a_transmit(
  583. Seader* seader,
  584. Iso14443_4aPoller* iso14443_4a_poller,
  585. uint8_t* buffer,
  586. size_t len,
  587. uint16_t timeout,
  588. uint8_t format[3]) {
  589. UNUSED(timeout);
  590. UNUSED(format);
  591. furi_assert(seader);
  592. furi_assert(buffer);
  593. furi_assert(iso14443_4a_poller);
  594. SeaderWorker* seader_worker = seader->worker;
  595. SeaderCredential* credential = seader->credential;
  596. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  597. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  598. do {
  599. if(credential->isDesfire && memcmp(buffer, ev2_request, len) == 0) {
  600. FURI_LOG_I(TAG, "Intercept Desfire EV2 response and return File Not Found");
  601. bit_buffer_append_bytes(rx_buffer, FILE_NOT_FOUND, sizeof(FILE_NOT_FOUND));
  602. } else {
  603. bit_buffer_append_bytes(tx_buffer, buffer, len);
  604. Iso14443_4aError error =
  605. iso14443_4a_poller_send_block(iso14443_4a_poller, tx_buffer, rx_buffer);
  606. if(error != Iso14443_4aErrorNone) {
  607. FURI_LOG_W(TAG, "iso14443_4a_poller_send_block error %d", error);
  608. seader_worker->stage = SeaderPollerEventTypeFail;
  609. break;
  610. }
  611. }
  612. seader_capture_sio(tx_buffer, rx_buffer, credential);
  613. seader_send_nfc_rx(
  614. seader,
  615. (uint8_t*)bit_buffer_get_data(rx_buffer),
  616. bit_buffer_get_size_bytes(rx_buffer));
  617. } while(false);
  618. bit_buffer_free(tx_buffer);
  619. bit_buffer_free(rx_buffer);
  620. }
  621. /* Assumes this is called in the context of the NFC API callback */
  622. #define MF_CLASSIC_FWT_FC (60000)
  623. void seader_mfc_transmit(
  624. Seader* seader,
  625. MfClassicPoller* mfc_poller,
  626. uint8_t* buffer,
  627. size_t len,
  628. uint16_t timeout,
  629. uint8_t format[3]) {
  630. UNUSED(timeout);
  631. furi_assert(seader);
  632. furi_assert(buffer);
  633. furi_assert(mfc_poller);
  634. SeaderWorker* seader_worker = seader->worker;
  635. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  636. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  637. do {
  638. if(format[0] == 0x00 && format[1] == 0xC0 && format[2] == 0x00) {
  639. bit_buffer_append_bytes(tx_buffer, buffer, len);
  640. MfClassicError error =
  641. mf_classic_poller_send_frame(mfc_poller, tx_buffer, rx_buffer, MF_CLASSIC_FWT_FC);
  642. if(error != MfClassicErrorNone) {
  643. FURI_LOG_W(TAG, "mf_classic_poller_send_frame error %d", error);
  644. seader_worker->stage = SeaderPollerEventTypeFail;
  645. break;
  646. }
  647. } else if(
  648. (format[0] == 0x00 && format[1] == 0x00 && format[2] == 0x40) ||
  649. (format[0] == 0x00 && format[1] == 0x00 && format[2] == 0x24) ||
  650. (format[0] == 0x00 && format[1] == 0x00 && format[2] == 0x44)) {
  651. memset(display, 0, sizeof(display));
  652. for(uint8_t i = 0; i < len; i++) {
  653. snprintf(display + (i * 2), sizeof(display), "%02x", buffer[i]);
  654. }
  655. FURI_LOG_D(TAG, "NFC Send with parity %d: %s", len, display);
  656. // Only handles message up to 8 data bytes
  657. uint8_t tx_parity = 0;
  658. uint8_t len_without_parity = len - 1;
  659. // Don't forget to swap the bits of buffer[8]
  660. for(size_t i = 0; i < len; i++) {
  661. bit_lib_reverse_bits(buffer + i, 0, 8);
  662. }
  663. // Pull out parity bits
  664. for(size_t i = 0; i < len_without_parity; i++) {
  665. bool val = bit_lib_get_bit(buffer + i + 1, i);
  666. bit_lib_set_bit(&tx_parity, i, val);
  667. }
  668. for(size_t i = 0; i < len_without_parity; i++) {
  669. buffer[i] = (buffer[i] << i) | (buffer[i + 1] >> (8 - i));
  670. }
  671. bit_buffer_append_bytes(tx_buffer, buffer, len_without_parity);
  672. for(size_t i = 0; i < len_without_parity; i++) {
  673. bit_lib_reverse_bits(buffer + i, 0, 8);
  674. bit_buffer_set_byte_with_parity(
  675. tx_buffer, i, buffer[i], bit_lib_get_bit(&tx_parity, i));
  676. }
  677. memset(display, 0, sizeof(display));
  678. for(uint8_t i = 0; i < bit_buffer_get_size_bytes(tx_buffer); i++) {
  679. snprintf(
  680. display + (i * 2), sizeof(display), "%02x", bit_buffer_get_byte(tx_buffer, i));
  681. }
  682. FURI_LOG_D(
  683. TAG,
  684. "NFC Send without parity %d: %s [%02x]",
  685. bit_buffer_get_size_bytes(tx_buffer),
  686. display,
  687. tx_parity);
  688. MfClassicError error = mf_classic_poller_send_custom_parity_frame(
  689. mfc_poller, tx_buffer, rx_buffer, MF_CLASSIC_FWT_FC);
  690. if(error != MfClassicErrorNone) {
  691. FURI_LOG_W(TAG, "mf_classic_poller_send_encrypted_frame error %d", error);
  692. seader_worker->stage = SeaderPollerEventTypeFail;
  693. break;
  694. }
  695. size_t length = bit_buffer_get_size_bytes(rx_buffer);
  696. const uint8_t* rx_parity = bit_buffer_get_parity(rx_buffer);
  697. memset(display, 0, sizeof(display));
  698. for(uint8_t i = 0; i < length; i++) {
  699. snprintf(
  700. display + (i * 2), sizeof(display), "%02x", bit_buffer_get_byte(rx_buffer, i));
  701. }
  702. FURI_LOG_D(
  703. TAG, "NFC Response without parity %d: %s [%02x]", length, display, rx_parity[0]);
  704. uint8_t with_parity[SEADER_POLLER_MAX_BUFFER_SIZE];
  705. memset(with_parity, 0, sizeof(with_parity));
  706. for(size_t i = 0; i < length; i++) {
  707. uint8_t b = bit_buffer_get_byte(rx_buffer, i);
  708. bit_lib_reverse_bits(&b, 0, 8);
  709. bit_buffer_set_byte(rx_buffer, i, b);
  710. }
  711. length = length + (length / 8) + 1;
  712. uint8_t parts = 1 + length / 9;
  713. for(size_t p = 0; p < parts; p++) {
  714. uint8_t doffset = p * 9;
  715. uint8_t soffset = p * 8;
  716. for(size_t i = 0; i < 9; i++) {
  717. with_parity[i + doffset] = bit_buffer_get_byte(rx_buffer, i + soffset) >> i;
  718. if(i > 0) {
  719. with_parity[i + doffset] |= bit_buffer_get_byte(rx_buffer, i + soffset - 1)
  720. << (9 - i);
  721. }
  722. if(i > 0) {
  723. bool val = bit_lib_get_bit(rx_parity, i - 1);
  724. bit_lib_set_bit(with_parity + i, i - 1, val);
  725. }
  726. }
  727. }
  728. for(size_t i = 0; i < length; i++) {
  729. bit_lib_reverse_bits(with_parity + i, 0, 8);
  730. }
  731. bit_buffer_copy_bytes(rx_buffer, with_parity, length);
  732. memset(display, 0, sizeof(display));
  733. for(uint8_t i = 0; i < length; i++) {
  734. snprintf(
  735. display + (i * 2), sizeof(display), "%02x", bit_buffer_get_byte(rx_buffer, i));
  736. }
  737. FURI_LOG_D(
  738. TAG, "NFC Response with parity %d: %s [%02x]", length, display, rx_parity[0]);
  739. } else {
  740. FURI_LOG_W(TAG, "UNHANDLED FORMAT");
  741. }
  742. seader_send_nfc_rx(
  743. seader,
  744. (uint8_t*)bit_buffer_get_data(rx_buffer),
  745. bit_buffer_get_size_bytes(rx_buffer));
  746. } while(false);
  747. bit_buffer_free(tx_buffer);
  748. bit_buffer_free(rx_buffer);
  749. }
  750. void seader_parse_nfc_command_transmit(
  751. Seader* seader,
  752. NFCSend_t* nfcSend,
  753. SeaderPollerContainer* spc) {
  754. long timeOut = nfcSend->timeOut;
  755. Protocol_t protocol = nfcSend->protocol;
  756. FrameProtocol_t frameProtocol = protocol.buf[1];
  757. #ifdef ASN1_DEBUG
  758. memset(display, 0, sizeof(display));
  759. for(uint8_t i = 0; i < nfcSend->data.size; i++) {
  760. snprintf(display + (i * 2), sizeof(display), "%02x", nfcSend->data.buf[i]);
  761. }
  762. FURI_LOG_D(
  763. TAG,
  764. "Transmit (%ld timeout) %d bytes [%s] via %lx",
  765. timeOut,
  766. nfcSend->data.size,
  767. display,
  768. frameProtocol);
  769. #endif
  770. if(seader->credential->type == SeaderCredentialTypeVirtual) {
  771. seader_picopass_state_machine(seader, nfcSend->data.buf, nfcSend->data.size);
  772. } else if(frameProtocol == FrameProtocol_iclass) {
  773. seader_iso15693_transmit(
  774. seader, spc->picopass_poller, nfcSend->data.buf, nfcSend->data.size);
  775. } else if(frameProtocol == FrameProtocol_nfc) {
  776. if(spc->iso14443_4a_poller) {
  777. seader_iso14443a_transmit(
  778. seader,
  779. spc->iso14443_4a_poller,
  780. nfcSend->data.buf,
  781. nfcSend->data.size,
  782. (uint16_t)timeOut,
  783. nfcSend->format->buf);
  784. } else if(spc->mfc_poller) {
  785. seader_mfc_transmit(
  786. seader,
  787. spc->mfc_poller,
  788. nfcSend->data.buf,
  789. nfcSend->data.size,
  790. (uint16_t)timeOut,
  791. nfcSend->format->buf);
  792. }
  793. } else {
  794. FURI_LOG_W(TAG, "unknown frame protocol %lx", frameProtocol);
  795. }
  796. }
  797. void seader_parse_nfc_off(Seader* seader) {
  798. FURI_LOG_D(TAG, "Set Field Off");
  799. NFCResponse_t* nfcResponse = 0;
  800. nfcResponse = calloc(1, sizeof *nfcResponse);
  801. assert(nfcResponse);
  802. nfcResponse->present = NFCResponse_PR_nfcAck;
  803. Response_t* response = 0;
  804. response = calloc(1, sizeof *response);
  805. assert(response);
  806. response->present = Response_PR_nfcResponse;
  807. response->choice.nfcResponse = *nfcResponse;
  808. seader_send_response(seader, response, 0x44, 0x0a, 0);
  809. free(response);
  810. free(nfcResponse);
  811. }
  812. void seader_parse_nfc_command(Seader* seader, NFCCommand_t* nfcCommand, SeaderPollerContainer* spc) {
  813. switch(nfcCommand->present) {
  814. case NFCCommand_PR_nfcSend:
  815. seader_parse_nfc_command_transmit(seader, &nfcCommand->choice.nfcSend, spc);
  816. break;
  817. case NFCCommand_PR_nfcOff:
  818. seader_parse_nfc_off(seader);
  819. seader->worker->stage = SeaderPollerEventTypeComplete;
  820. break;
  821. default:
  822. FURI_LOG_W(TAG, "unparsed NFCCommand");
  823. break;
  824. };
  825. }
  826. bool seader_worker_state_machine(
  827. Seader* seader,
  828. Payload_t* payload,
  829. bool online,
  830. SeaderPollerContainer* spc) {
  831. bool processed = false;
  832. switch(payload->present) {
  833. case Payload_PR_response:
  834. FURI_LOG_D(TAG, "Payload_PR_response");
  835. seader_parse_response(seader, &payload->choice.response);
  836. processed = true;
  837. break;
  838. case Payload_PR_nfcCommand:
  839. FURI_LOG_D(TAG, "Payload_PR_nfcCommand");
  840. if(online) {
  841. seader_parse_nfc_command(seader, &payload->choice.nfcCommand, spc);
  842. processed = true;
  843. }
  844. break;
  845. case Payload_PR_errorResponse:
  846. FURI_LOG_W(TAG, "Payload_PR_errorResponse");
  847. processed = true;
  848. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventWorkerExit);
  849. break;
  850. default:
  851. FURI_LOG_W(TAG, "unhandled payload");
  852. break;
  853. };
  854. return processed;
  855. }
  856. bool seader_process_success_response_i(
  857. Seader* seader,
  858. uint8_t* apdu,
  859. size_t len,
  860. bool online,
  861. SeaderPollerContainer* spc) {
  862. Payload_t* payload = 0;
  863. payload = calloc(1, sizeof *payload);
  864. assert(payload);
  865. bool processed = false;
  866. asn_dec_rval_t rval =
  867. asn_decode(0, ATS_DER, &asn_DEF_Payload, (void**)&payload, apdu + 6, len - 6);
  868. if(rval.code == RC_OK) {
  869. #ifdef ASN1_DEBUG
  870. if(online == false) {
  871. memset(display, 0, sizeof(display));
  872. for(uint8_t i = 0; i < len - 6; i++) {
  873. snprintf(display + (i * 2), sizeof(display), "%02x", apdu[i + 6]);
  874. }
  875. FURI_LOG_D(TAG, "incoming APDU %s", display);
  876. char payloadDebug[384] = {0};
  877. memset(payloadDebug, 0, sizeof(payloadDebug));
  878. (&asn_DEF_Payload)
  879. ->op->print_struct(
  880. &asn_DEF_Payload, payload, 1, seader_print_struct_callback, payloadDebug);
  881. if(strlen(payloadDebug) > 0) {
  882. FURI_LOG_D(TAG, "Received Payload: %s", payloadDebug);
  883. } else {
  884. FURI_LOG_D(TAG, "Received empty Payload");
  885. }
  886. } else {
  887. FURI_LOG_D(TAG, "Online mode");
  888. }
  889. #endif
  890. processed = seader_worker_state_machine(seader, payload, online, spc);
  891. } else {
  892. memset(display, 0, sizeof(display));
  893. for(uint8_t i = 0; i < len; i++) {
  894. snprintf(display + (i * 2), sizeof(display), "%02x", apdu[i]);
  895. }
  896. FURI_LOG_D(TAG, "Failed to decode APDU payload: [%s]", display);
  897. }
  898. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  899. return processed;
  900. }
  901. bool seader_mf_df_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
  902. return ATQA0 == 0x44 && ATQA1 == 0x03 && SAK == 0x20;
  903. }
  904. NfcCommand seader_worker_card_detect(
  905. Seader* seader,
  906. uint8_t sak,
  907. uint8_t* atqa,
  908. const uint8_t* uid,
  909. uint8_t uid_len,
  910. uint8_t* ats,
  911. uint8_t ats_len) {
  912. UNUSED(ats);
  913. UNUSED(ats_len);
  914. SeaderCredential* credential = seader->credential;
  915. CardDetails_t* cardDetails = 0;
  916. cardDetails = calloc(1, sizeof *cardDetails);
  917. assert(cardDetails);
  918. OCTET_STRING_fromBuf(&cardDetails->csn, (const char*)uid, uid_len);
  919. OCTET_STRING_t sak_string = {.buf = &sak, .size = 1};
  920. OCTET_STRING_t atqa_string = {.buf = atqa, .size = 2};
  921. uint8_t protocol_bytes[] = {0x00, 0x00};
  922. if(sak == 0 && atqa == NULL) { // picopass
  923. protocol_bytes[1] = FrameProtocol_iclass;
  924. OCTET_STRING_fromBuf(
  925. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  926. memcpy(credential->diversifier, uid, uid_len);
  927. credential->diversifier_len = uid_len;
  928. credential->isDesfire = false;
  929. } else if(atqa == 0) { // MFC
  930. protocol_bytes[1] = FrameProtocol_nfc;
  931. OCTET_STRING_fromBuf(
  932. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  933. cardDetails->sak = &sak_string;
  934. } else { // type 4
  935. protocol_bytes[1] = FrameProtocol_nfc;
  936. OCTET_STRING_fromBuf(
  937. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  938. cardDetails->sak = &sak_string;
  939. cardDetails->atqa = &atqa_string;
  940. credential->isDesfire = seader_mf_df_check_card_type(atqa[0], atqa[1], sak);
  941. if(credential->isDesfire) {
  942. memcpy(credential->diversifier, uid, uid_len);
  943. credential->diversifier_len = uid_len;
  944. }
  945. }
  946. seader_send_card_detected(seader, cardDetails);
  947. // Print version information for app and firmware for later review in log
  948. const Version* version = version_get();
  949. FURI_LOG_I(
  950. TAG,
  951. "Firmware origin: %s firmware version: %s app version: %s",
  952. version_get_firmware_origin(version),
  953. version_get_version(version),
  954. FAP_VERSION);
  955. free(cardDetails);
  956. return NfcCommandContinue;
  957. }