subghz_protocol_keeloq.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426
  1. #include "subghz_protocol_keeloq.h"
  2. #include "subghz_protocol_keeloq_common.h"
  3. #include "../subghz_keystore.h"
  4. #include <furi.h>
  5. #include <m-string.h>
  6. struct SubGhzProtocolKeeloq {
  7. SubGhzProtocolCommon common;
  8. SubGhzKeystore* keystore;
  9. const char* manufacture_name;
  10. };
  11. SubGhzProtocolKeeloq* subghz_protocol_keeloq_alloc(SubGhzKeystore* keystore) {
  12. SubGhzProtocolKeeloq* instance = furi_alloc(sizeof(SubGhzProtocolKeeloq));
  13. instance->keystore = keystore;
  14. instance->common.name = "KeeLoq";
  15. instance->common.code_min_count_bit_for_found = 64;
  16. instance->common.te_short = 400;
  17. instance->common.te_long = 800;
  18. instance->common.te_delta = 140;
  19. instance->common.type_protocol = TYPE_PROTOCOL_DYNAMIC;
  20. instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_keeloq_to_str;
  21. instance->common.to_save_string =
  22. (SubGhzProtocolCommonGetStrSave)subghz_protocol_keeloq_to_save_str;
  23. instance->common.to_load_protocol =
  24. (SubGhzProtocolCommonLoad)subghz_protocol_keeloq_to_load_protocol;
  25. instance->common.get_upload_protocol =
  26. (SubGhzProtocolEncoderCommonGetUpLoad)subghz_protocol_keeloq_send_key;
  27. return instance;
  28. }
  29. void subghz_protocol_keeloq_free(SubGhzProtocolKeeloq* instance) {
  30. furi_assert(instance);
  31. free(instance);
  32. }
  33. /** Checking the accepted code against the database manafacture key
  34. *
  35. * @param instance SubGhzProtocolKeeloq instance
  36. * @param fix fix part of the parcel
  37. * @param hop hop encrypted part of the parcel
  38. * @return true on successful search
  39. */
  40. uint8_t subghz_protocol_keeloq_check_remote_controller_selector(
  41. SubGhzProtocolKeeloq* instance,
  42. uint32_t fix,
  43. uint32_t hop) {
  44. uint16_t end_serial = (uint16_t)(fix & 0x3FF);
  45. uint8_t btn = (uint8_t)(fix >> 28);
  46. uint32_t decrypt = 0;
  47. uint64_t man_normal_learning;
  48. for
  49. M_EACH(manufacture_code, *subghz_keystore_get_data(instance->keystore), SubGhzKeyArray_t) {
  50. switch(manufacture_code->type) {
  51. case KEELOQ_LEARNING_SIMPLE:
  52. //Simple Learning
  53. decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
  54. if((decrypt >> 28 == btn) &&
  55. ((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial)) {
  56. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  57. instance->common.cnt = decrypt & 0x0000FFFF;
  58. return 1;
  59. }
  60. break;
  61. case KEELOQ_LEARNING_NORMAL:
  62. // Normal_Learning
  63. // https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
  64. man_normal_learning =
  65. subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
  66. decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
  67. if((decrypt >> 28 == btn) &&
  68. ((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial)) {
  69. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  70. instance->common.cnt = decrypt & 0x0000FFFF;
  71. return 1;
  72. }
  73. break;
  74. case KEELOQ_LEARNING_UNKNOWN:
  75. // Simple Learning
  76. decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
  77. if((decrypt >> 28 == btn) &&
  78. ((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial)) {
  79. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  80. instance->common.cnt = decrypt & 0x0000FFFF;
  81. return 1;
  82. }
  83. // Check for mirrored man
  84. uint64_t man_rev = 0;
  85. uint64_t man_rev_byte = 0;
  86. for(uint8_t i = 0; i < 64; i += 8) {
  87. man_rev_byte = (uint8_t)(manufacture_code->key >> i);
  88. man_rev = man_rev | man_rev_byte << (56 - i);
  89. }
  90. decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_rev);
  91. if((decrypt >> 28 == btn) &&
  92. ((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial)) {
  93. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  94. instance->common.cnt = decrypt & 0x0000FFFF;
  95. return 1;
  96. }
  97. //###########################
  98. // Normal_Learning
  99. // https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
  100. man_normal_learning =
  101. subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
  102. decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
  103. if((decrypt >> 28 == btn) &&
  104. ((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial)) {
  105. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  106. instance->common.cnt = decrypt & 0x0000FFFF;
  107. return 1;
  108. }
  109. // Check for mirrored man
  110. man_rev = 0;
  111. man_rev_byte = 0;
  112. for(uint8_t i = 0; i < 64; i += 8) {
  113. man_rev_byte = (uint8_t)(manufacture_code->key >> i);
  114. man_rev = man_rev | man_rev_byte << (56 - i);
  115. }
  116. man_normal_learning = subghz_protocol_keeloq_common_normal_learning(fix, man_rev);
  117. decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
  118. if((decrypt >> 28 == btn) &&
  119. ((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial)) {
  120. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  121. instance->common.cnt = decrypt & 0x0000FFFF;
  122. return 1;
  123. }
  124. break;
  125. }
  126. }
  127. instance->manufacture_name = "Unknown";
  128. instance->common.cnt = 0;
  129. return 0;
  130. }
  131. /** Analysis of received data
  132. *
  133. * @param instance SubGhzProtocolKeeloq instance
  134. */
  135. void subghz_protocol_keeloq_check_remote_controller(SubGhzProtocolKeeloq* instance) {
  136. uint64_t key = subghz_protocol_common_reverse_key(
  137. instance->common.code_last_found, instance->common.code_last_count_bit);
  138. uint32_t key_fix = key >> 32;
  139. uint32_t key_hop = key & 0x00000000ffffffff;
  140. // Check key AN-Motors
  141. if((key_hop >> 24) == ((key_hop >> 16) & 0x00ff) &&
  142. (key_fix >> 28) == ((key_hop >> 12) & 0x0f) && (key_hop & 0xFFF) == 0x404) {
  143. instance->manufacture_name = "AN-Motors";
  144. instance->common.cnt = key_hop >> 16;
  145. } else if((key_hop & 0xFFF) == (0x000) && (key_fix >> 28) == ((key_hop >> 12) & 0x0f)) {
  146. instance->manufacture_name = "HCS101";
  147. instance->common.cnt = key_hop >> 16;
  148. } else {
  149. subghz_protocol_keeloq_check_remote_controller_selector(instance, key_fix, key_hop);
  150. }
  151. instance->common.serial = key_fix & 0x0FFFFFFF;
  152. instance->common.btn = key_fix >> 28;
  153. }
  154. void subghz_protocol_keeloq_set_manufacture_name (void* context, const char* manufacture_name){
  155. SubGhzProtocolKeeloq* instance = context;
  156. instance->manufacture_name = manufacture_name;
  157. }
  158. uint64_t subghz_protocol_keeloq_gen_key(void* context) {
  159. SubGhzProtocolKeeloq* instance = context;
  160. uint32_t fix = instance->common.btn << 28 | instance->common.serial;
  161. uint32_t decrypt = instance->common.btn << 28 | (instance->common.serial & 0x3FF) << 16 |
  162. instance->common.cnt;
  163. uint32_t hop = 0;
  164. uint64_t man_normal_learning = 0;
  165. int res = 0;
  166. for
  167. M_EACH(manufacture_code, *subghz_keystore_get_data(instance->keystore), SubGhzKeyArray_t) {
  168. res = strcmp(string_get_cstr(manufacture_code->name), instance->manufacture_name);
  169. if(res == 0) {
  170. switch(manufacture_code->type) {
  171. case KEELOQ_LEARNING_SIMPLE:
  172. //Simple Learning
  173. hop = subghz_protocol_keeloq_common_encrypt(decrypt, manufacture_code->key);
  174. break;
  175. case KEELOQ_LEARNING_NORMAL:
  176. //Simple Learning
  177. man_normal_learning =
  178. subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
  179. hop = subghz_protocol_keeloq_common_encrypt(decrypt, man_normal_learning);
  180. break;
  181. case KEELOQ_LEARNING_UNKNOWN:
  182. hop = 0; //todo
  183. break;
  184. }
  185. break;
  186. }
  187. }
  188. uint64_t yek = (uint64_t)fix << 32 | hop;
  189. return subghz_protocol_common_reverse_key(yek, instance->common.code_last_count_bit);
  190. }
  191. bool subghz_protocol_keeloq_send_key(SubGhzProtocolKeeloq* instance, SubGhzProtocolEncoderCommon* encoder){
  192. furi_assert(instance);
  193. furi_assert(encoder);
  194. //gen new key
  195. instance->common.cnt++;
  196. instance->common.code_last_found = subghz_protocol_keeloq_gen_key(instance);
  197. if(instance->common.callback)instance->common.callback((SubGhzProtocolCommon*)instance, instance->common.context);
  198. size_t index = 0;
  199. encoder->size_upload =11*2+2+(instance->common.code_last_count_bit * 2) + 4;
  200. if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
  201. //Send header
  202. for(uint8_t i = 11; i > 0; i--) {
  203. encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
  204. encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short);
  205. }
  206. encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
  207. encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short*10);
  208. //Send key data
  209. for (uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
  210. if(bit_read(instance->common.code_last_found, i - 1)){
  211. //send bit 1
  212. encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
  213. encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_long);
  214. }else{
  215. //send bit 0
  216. encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_long);
  217. encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short);
  218. }
  219. }
  220. // +send 2 status bit
  221. encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
  222. encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_long);
  223. //encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_long);
  224. //encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short);
  225. // send end
  226. encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
  227. encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short*40);
  228. return true;
  229. }
  230. void subghz_protocol_keeloq_reset(SubGhzProtocolKeeloq* instance) {
  231. instance->common.parser_step = 0;
  232. }
  233. void subghz_protocol_keeloq_parse(SubGhzProtocolKeeloq* instance, bool level, uint32_t duration) {
  234. switch(instance->common.parser_step) {
  235. case 0:
  236. if((level) &&
  237. DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) {
  238. instance->common.parser_step = 1;
  239. instance->common.header_count++;
  240. } else {
  241. instance->common.parser_step = 0;
  242. }
  243. break;
  244. case 1:
  245. if((!level) &&
  246. (DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
  247. instance->common.parser_step = 0;
  248. break;
  249. }
  250. if((instance->common.header_count > 2) &&
  251. (DURATION_DIFF(duration, instance->common.te_short * 10) <
  252. instance->common.te_delta * 10)) {
  253. // Found header
  254. instance->common.parser_step = 2;
  255. instance->common.code_found = 0;
  256. instance->common.code_count_bit = 0;
  257. } else {
  258. instance->common.parser_step = 0;
  259. instance->common.header_count = 0;
  260. }
  261. break;
  262. case 2:
  263. if(level) {
  264. instance->common.te_last = duration;
  265. instance->common.parser_step = 3;
  266. }
  267. break;
  268. case 3:
  269. if(!level) {
  270. if(duration >= (instance->common.te_short * 2 + instance->common.te_delta)) {
  271. // Found end TX
  272. instance->common.parser_step = 0;
  273. if(instance->common.code_count_bit >=
  274. instance->common.code_min_count_bit_for_found) {
  275. if(instance->common.code_last_found != instance->common.code_found) {
  276. instance->common.code_last_found = instance->common.code_found;
  277. instance->common.code_last_count_bit = instance->common.code_count_bit;
  278. if(instance->common.callback)
  279. instance->common.callback(
  280. (SubGhzProtocolCommon*)instance, instance->common.context);
  281. }
  282. instance->common.code_found = 0;
  283. instance->common.code_count_bit = 0;
  284. instance->common.header_count = 0;
  285. }
  286. break;
  287. } else if(
  288. (DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
  289. instance->common.te_delta) &&
  290. (DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
  291. if(instance->common.code_count_bit <
  292. instance->common.code_min_count_bit_for_found) {
  293. subghz_protocol_common_add_bit(&instance->common, 1);
  294. }
  295. instance->common.parser_step = 2;
  296. } else if(
  297. (DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
  298. instance->common.te_delta) &&
  299. (DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
  300. if(instance->common.code_count_bit <
  301. instance->common.code_min_count_bit_for_found) {
  302. subghz_protocol_common_add_bit(&instance->common, 0);
  303. }
  304. instance->common.parser_step = 2;
  305. } else {
  306. instance->common.parser_step = 0;
  307. instance->common.header_count = 0;
  308. }
  309. } else {
  310. instance->common.parser_step = 0;
  311. instance->common.header_count = 0;
  312. }
  313. break;
  314. }
  315. }
  316. void subghz_protocol_keeloq_to_str(SubGhzProtocolKeeloq* instance, string_t output) {
  317. subghz_protocol_keeloq_check_remote_controller(instance);
  318. uint32_t code_found_hi = instance->common.code_last_found >> 32;
  319. uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
  320. uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
  321. instance->common.code_last_found, instance->common.code_last_count_bit);
  322. uint32_t code_found_reverse_hi = code_found_reverse >> 32;
  323. uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
  324. string_cat_printf(
  325. output,
  326. "%s, %d Bit\r\n"
  327. "KEY:0x%lX%lX\r\n"
  328. "FIX:%08lX MF:%s \r\n"
  329. "HOP:%08lX \r\n"
  330. "SN:%07lX CNT:%04X B:%02lX\r\n",
  331. instance->common.name,
  332. instance->common.code_last_count_bit,
  333. code_found_hi,
  334. code_found_lo,
  335. code_found_reverse_hi,
  336. instance->manufacture_name,
  337. code_found_reverse_lo,
  338. instance->common.serial,
  339. instance->common.cnt,
  340. instance->common.btn);
  341. }
  342. void subghz_protocol_keeloq_to_save_str(SubGhzProtocolKeeloq* instance, string_t output) {
  343. string_printf(
  344. output,
  345. "Protocol: %s\n"
  346. "Bit: %d\n"
  347. "Key: %08lX%08lX\n",
  348. instance->common.name,
  349. instance->common.code_last_count_bit,
  350. (uint32_t)(instance->common.code_last_found >> 32),
  351. (uint32_t)(instance->common.code_last_found & 0xFFFFFFFF)
  352. );
  353. }
  354. bool subghz_protocol_keeloq_to_load_protocol(
  355. FileWorker* file_worker,
  356. SubGhzProtocolKeeloq* instance) {
  357. bool loaded = false;
  358. string_t temp_str;
  359. string_init(temp_str);
  360. int res = 0;
  361. int data = 0;
  362. do {
  363. // Read and parse bit data from 2nd line
  364. if(!file_worker_read_until(file_worker, temp_str, '\n')) {
  365. break;
  366. }
  367. res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
  368. if(res != 1) {
  369. break;
  370. }
  371. instance->common.code_last_count_bit = (uint8_t)data;
  372. // Read and parse key data from 3nd line
  373. if(!file_worker_read_until(file_worker, temp_str, '\n')) {
  374. break;
  375. }
  376. // strlen("Key: ") = 5
  377. string_right(temp_str, 5);
  378. uint8_t buf_key[8]={0};
  379. if(!subghz_protocol_common_read_hex(temp_str, buf_key, 8)){
  380. break;
  381. }
  382. for(uint8_t i = 0; i < 8; i++){
  383. instance->common.code_last_found = instance->common.code_last_found << 8 | buf_key[i];
  384. }
  385. loaded = true;
  386. } while(0);
  387. string_clear(temp_str);
  388. return loaded;
  389. }