furi_hal_memory.c 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119
  1. #include <furi_hal.h>
  2. #include <furi_hal_memory.h>
  3. #include <furi_hal_rtc.h>
  4. #define TAG "FuriHalMemory"
  5. typedef enum {
  6. SRAM_A,
  7. SRAM_B,
  8. SRAM_MAX,
  9. } SRAM;
  10. typedef struct {
  11. void* start;
  12. uint32_t size;
  13. } FuriHalMemoryRegion;
  14. typedef struct {
  15. FuriHalMemoryRegion region[SRAM_MAX];
  16. } FuriHalMemory;
  17. static FuriHalMemory* furi_hal_memory = NULL;
  18. extern const void __sram2a_start__;
  19. extern const void __sram2a_free__;
  20. extern const void __sram2b_start__;
  21. void furi_hal_memory_init() {
  22. if(furi_hal_rtc_get_boot_mode() != FuriHalRtcBootModeNormal) {
  23. return;
  24. }
  25. if(!ble_glue_wait_for_c2_start(FURI_HAL_BT_C2_START_TIMEOUT)) {
  26. FURI_LOG_E(TAG, "C2 start timeout");
  27. return;
  28. }
  29. FuriHalMemory* memory = malloc(sizeof(FuriHalMemory));
  30. const BleGlueC2Info* c2_ver = ble_glue_get_c2_info();
  31. if(c2_ver->mode == BleGlueC2ModeStack) {
  32. uint32_t sram2a_busy_size = (uint32_t)&__sram2a_free__ - (uint32_t)&__sram2a_start__;
  33. uint32_t sram2a_unprotected_size = (32 - c2_ver->MemorySizeSram2A) * 1024;
  34. uint32_t sram2b_unprotected_size = (32 - c2_ver->MemorySizeSram2B) * 1024;
  35. memory->region[SRAM_A].start = (uint8_t*)&__sram2a_free__;
  36. memory->region[SRAM_B].start = (uint8_t*)&__sram2b_start__;
  37. if(sram2a_unprotected_size > sram2a_busy_size) {
  38. memory->region[SRAM_A].size = sram2a_unprotected_size - sram2a_busy_size;
  39. } else {
  40. memory->region[SRAM_A].size = 0;
  41. }
  42. memory->region[SRAM_B].size = sram2b_unprotected_size;
  43. FURI_LOG_I(
  44. TAG, "SRAM2A: 0x%p, %ld", memory->region[SRAM_A].start, memory->region[SRAM_A].size);
  45. FURI_LOG_I(
  46. TAG, "SRAM2B: 0x%p, %ld", memory->region[SRAM_B].start, memory->region[SRAM_B].size);
  47. if((memory->region[SRAM_A].size > 0) || (memory->region[SRAM_B].size > 0)) {
  48. if((memory->region[SRAM_A].size > 0)) {
  49. FURI_LOG_I(TAG, "SRAM2A clear");
  50. memset(memory->region[SRAM_A].start, 0, memory->region[SRAM_A].size);
  51. }
  52. if((memory->region[SRAM_B].size > 0)) {
  53. FURI_LOG_I(TAG, "SRAM2B clear");
  54. memset(memory->region[SRAM_B].start, 0, memory->region[SRAM_B].size);
  55. }
  56. furi_hal_memory = memory;
  57. FURI_LOG_I(TAG, "Enabled");
  58. } else {
  59. free(memory);
  60. FURI_LOG_E(TAG, "No SRAM2 available");
  61. }
  62. } else {
  63. free(memory);
  64. FURI_LOG_E(TAG, "No Core2 available");
  65. }
  66. }
  67. void* furi_hal_memory_alloc(size_t size) {
  68. if(furi_hal_memory == NULL) {
  69. return NULL;
  70. }
  71. for(int i = 0; i < SRAM_MAX; i++) {
  72. if(furi_hal_memory->region[i].size >= size) {
  73. void* ptr = furi_hal_memory->region[i].start;
  74. furi_hal_memory->region[i].start += size;
  75. furi_hal_memory->region[i].size -= size;
  76. return ptr;
  77. }
  78. }
  79. return NULL;
  80. }
  81. size_t furi_hal_memory_get_free() {
  82. if(furi_hal_memory == NULL) return 0;
  83. size_t free = 0;
  84. for(int i = 0; i < SRAM_MAX; i++) {
  85. free += furi_hal_memory->region[i].size;
  86. }
  87. return free;
  88. }
  89. size_t furi_hal_memory_max_pool_block() {
  90. if(furi_hal_memory == NULL) return 0;
  91. size_t max = 0;
  92. for(int i = 0; i < SRAM_MAX; i++) {
  93. if(furi_hal_memory->region[i].size > max) {
  94. max = furi_hal_memory->region[i].size;
  95. }
  96. }
  97. return max;
  98. }