mifare_classic.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314
  1. #include "mifare_classic.h"
  2. #include "nfca.h"
  3. #include "nfc_util.h"
  4. // Algorithm from https://github.com/RfidResearchGroup/proxmark3.git
  5. #define TAG "MfClassic"
  6. #define MF_CLASSIC_AUTH_KEY_A_CMD (0x60U)
  7. #define MF_CLASSIC_AUTH_KEY_B_CMD (0x61U)
  8. #define MF_CLASSIC_READ_SECT_CMD (0x30)
  9. static uint8_t mf_classic_get_first_block_num_of_sector(uint8_t sector) {
  10. furi_assert(sector < 40);
  11. if(sector < 32) {
  12. return sector * 4;
  13. } else {
  14. return 32 * 4 + (sector - 32) * 16;
  15. }
  16. }
  17. static uint8_t mf_classic_get_blocks_num_in_sector(uint8_t sector) {
  18. furi_assert(sector < 40);
  19. return sector < 32 ? 4 : 16;
  20. }
  21. uint8_t mf_classic_get_total_sectors_num(MfClassicReader* reader) {
  22. furi_assert(reader);
  23. if(reader->type == MfClassicType1k) {
  24. return MF_CLASSIC_1K_TOTAL_SECTORS_NUM;
  25. } else if(reader->type == MfClassicType4k) {
  26. return MF_CLASSIC_4K_TOTAL_SECTORS_NUM;
  27. } else {
  28. return 0;
  29. }
  30. }
  31. bool mf_classic_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
  32. if((ATQA0 == 0x44 || ATQA0 == 0x04) && (SAK == 0x08)) {
  33. return true;
  34. } else if((ATQA0 == 0x42 || ATQA0 == 0x02) && (SAK == 0x18)) {
  35. return true;
  36. } else {
  37. return false;
  38. }
  39. }
  40. bool mf_classic_get_type(
  41. uint8_t* uid,
  42. uint8_t uid_len,
  43. uint8_t ATQA0,
  44. uint8_t ATQA1,
  45. uint8_t SAK,
  46. MfClassicReader* reader) {
  47. furi_assert(uid);
  48. furi_assert(reader);
  49. memset(reader, 0, sizeof(MfClassicReader));
  50. if((ATQA0 == 0x44 || ATQA0 == 0x04) && (SAK == 0x08)) {
  51. reader->type = MfClassicType1k;
  52. } else if((ATQA0 == 0x42 || ATQA0 == 0x02) && (SAK == 0x18)) {
  53. reader->type = MfClassicType4k;
  54. } else {
  55. return false;
  56. }
  57. uint8_t* cuid_start = uid;
  58. if(uid_len == 7) {
  59. cuid_start = &uid[3];
  60. }
  61. reader->cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) |
  62. (cuid_start[3]);
  63. return true;
  64. }
  65. void mf_classic_reader_add_sector(
  66. MfClassicReader* reader,
  67. uint8_t sector,
  68. uint64_t key_a,
  69. uint64_t key_b) {
  70. furi_assert(reader);
  71. furi_assert(sector < MF_CLASSIC_SECTORS_MAX);
  72. furi_assert((key_a != MF_CLASSIC_NO_KEY) || (key_b != MF_CLASSIC_NO_KEY));
  73. if(reader->sectors_to_read < MF_CLASSIC_SECTORS_MAX - 1) {
  74. reader->sector_reader[reader->sectors_to_read].key_a = key_a;
  75. reader->sector_reader[reader->sectors_to_read].key_b = key_b;
  76. reader->sector_reader[reader->sectors_to_read].sector_num = sector;
  77. reader->sectors_to_read++;
  78. }
  79. }
  80. void mf_classic_auth_init_context(MfClassicAuthContext* auth_ctx, uint32_t cuid, uint8_t sector) {
  81. furi_assert(auth_ctx);
  82. auth_ctx->cuid = cuid;
  83. auth_ctx->sector = sector;
  84. auth_ctx->key_a = MF_CLASSIC_NO_KEY;
  85. auth_ctx->key_b = MF_CLASSIC_NO_KEY;
  86. }
  87. static bool mf_classic_auth(
  88. FuriHalNfcTxRxContext* tx_rx,
  89. uint32_t cuid,
  90. uint32_t block,
  91. uint64_t key,
  92. MfClassicKey key_type,
  93. Crypto1* crypto) {
  94. bool auth_success = false;
  95. memset(tx_rx, 0, sizeof(FuriHalNfcTxRxContext));
  96. do {
  97. if(key_type == MfClassicKeyA) {
  98. tx_rx->tx_data[0] = MF_CLASSIC_AUTH_KEY_A_CMD;
  99. } else {
  100. tx_rx->tx_data[0] = MF_CLASSIC_AUTH_KEY_B_CMD;
  101. }
  102. tx_rx->tx_data[1] = block;
  103. tx_rx->tx_rx_type = FURI_HAL_NFC_TX_DEFAULT_RX_NO_CRC;
  104. tx_rx->tx_bits = 2 * 8;
  105. if(!furi_hal_nfc_tx_rx(tx_rx)) break;
  106. uint32_t nt = (uint32_t)nfc_util_bytes2num(tx_rx->rx_data, 4);
  107. crypto1_init(crypto, key);
  108. crypto1_word(crypto, nt ^ cuid, 0);
  109. uint8_t nr[4] = {};
  110. // uint8_t parity = 0;
  111. nfc_util_num2bytes(prng_successor(DWT->CYCCNT, 32), 4, nr);
  112. // uint8_t nr_ar[8] = {};
  113. for(uint8_t i = 0; i < 4; i++) {
  114. tx_rx->tx_data[i] = crypto1_byte(crypto, nr[i], 0) ^ nr[i];
  115. tx_rx->tx_parity[0] |=
  116. (((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(nr[i])) & 0x01) << (7 - i));
  117. }
  118. nt = prng_successor(nt, 32);
  119. for(uint8_t i = 4; i < 8; i++) {
  120. nt = prng_successor(nt, 8);
  121. tx_rx->tx_data[i] = crypto1_byte(crypto, 0x00, 0) ^ (nt & 0xff);
  122. tx_rx->tx_parity[0] |=
  123. (((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(nt & 0xff)) & 0x01)
  124. << (7 - i));
  125. }
  126. tx_rx->tx_rx_type = FURI_HAL_NFC_TXRX_RAW;
  127. tx_rx->tx_bits = 8 * 8;
  128. if(!furi_hal_nfc_tx_rx(tx_rx)) break;
  129. if(tx_rx->rx_bits == 32) {
  130. crypto1_word(crypto, 0, 0);
  131. auth_success = true;
  132. }
  133. } while(false);
  134. return auth_success;
  135. }
  136. bool mf_classic_auth_attempt(
  137. FuriHalNfcTxRxContext* tx_rx,
  138. MfClassicAuthContext* auth_ctx,
  139. uint64_t key) {
  140. furi_assert(tx_rx);
  141. furi_assert(auth_ctx);
  142. bool found_key = false;
  143. bool need_halt = (auth_ctx->key_a == MF_CLASSIC_NO_KEY) &&
  144. (auth_ctx->key_b == MF_CLASSIC_NO_KEY);
  145. Crypto1 crypto;
  146. if(auth_ctx->key_a == MF_CLASSIC_NO_KEY) {
  147. // Try AUTH with key A
  148. if(mf_classic_auth(
  149. tx_rx,
  150. auth_ctx->cuid,
  151. mf_classic_get_first_block_num_of_sector(auth_ctx->sector),
  152. key,
  153. MfClassicKeyA,
  154. &crypto)) {
  155. auth_ctx->key_a = key;
  156. found_key = true;
  157. }
  158. }
  159. if(need_halt) {
  160. furi_hal_nfc_deactivate();
  161. furi_hal_nfc_activate_nfca(300, &auth_ctx->cuid);
  162. }
  163. if(auth_ctx->key_b == MF_CLASSIC_NO_KEY) {
  164. // Try AUTH with key B
  165. if(mf_classic_auth(
  166. tx_rx,
  167. auth_ctx->cuid,
  168. mf_classic_get_first_block_num_of_sector(auth_ctx->sector),
  169. key,
  170. MfClassicKeyB,
  171. &crypto)) {
  172. auth_ctx->key_b = key;
  173. found_key = true;
  174. }
  175. }
  176. return found_key;
  177. }
  178. bool mf_classic_read_block(
  179. FuriHalNfcTxRxContext* tx_rx,
  180. Crypto1* crypto,
  181. uint8_t block_num,
  182. MfClassicBlock* block) {
  183. furi_assert(tx_rx);
  184. furi_assert(crypto);
  185. furi_assert(block_num < MF_CLASSIC_TOTAL_BLOCKS_MAX);
  186. furi_assert(block);
  187. bool read_block_success = false;
  188. uint8_t plain_cmd[4] = {MF_CLASSIC_READ_SECT_CMD, block_num, 0x00, 0x00};
  189. nfca_append_crc16(plain_cmd, 2);
  190. memset(tx_rx, 0, sizeof(FuriHalNfcTxRxContext));
  191. for(uint8_t i = 0; i < 4; i++) {
  192. tx_rx->tx_data[i] = crypto1_byte(crypto, 0x00, 0) ^ plain_cmd[i];
  193. tx_rx->tx_parity[0] |=
  194. ((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(plain_cmd[i])) & 0x01) << (7 - i);
  195. }
  196. tx_rx->tx_bits = 4 * 9;
  197. tx_rx->tx_rx_type = FURI_HAL_NFC_TXRX_RAW;
  198. if(furi_hal_nfc_tx_rx(tx_rx)) {
  199. if(tx_rx->rx_bits == 8 * 18) {
  200. for(uint8_t i = 0; i < 18; i++) {
  201. block->value[i] = crypto1_byte(crypto, 0, 0) ^ tx_rx->rx_data[i];
  202. }
  203. read_block_success = true;
  204. }
  205. }
  206. return read_block_success;
  207. }
  208. bool mf_classic_read_sector(
  209. FuriHalNfcTxRxContext* tx_rx,
  210. Crypto1* crypto,
  211. MfClassicSectorReader* sector_reader,
  212. MfClassicSector* sector) {
  213. furi_assert(tx_rx);
  214. furi_assert(sector_reader);
  215. furi_assert(sector);
  216. uint32_t cuid = 0;
  217. uint64_t key;
  218. MfClassicKey key_type;
  219. uint8_t first_block;
  220. bool sector_read = false;
  221. furi_hal_nfc_deactivate();
  222. do {
  223. // Activate card
  224. if(!furi_hal_nfc_activate_nfca(200, &cuid)) break;
  225. first_block = mf_classic_get_first_block_num_of_sector(sector_reader->sector_num);
  226. if(sector_reader->key_a != MF_CLASSIC_NO_KEY) {
  227. key = sector_reader->key_a;
  228. key_type = MfClassicKeyA;
  229. } else if(sector_reader->key_b != MF_CLASSIC_NO_KEY) {
  230. key = sector_reader->key_b;
  231. key_type = MfClassicKeyB;
  232. } else {
  233. break;
  234. }
  235. // Auth to first block in sector
  236. if(!mf_classic_auth(tx_rx, cuid, first_block, key, key_type, crypto)) break;
  237. sector->total_blocks = mf_classic_get_blocks_num_in_sector(sector_reader->sector_num);
  238. // Read blocks
  239. for(uint8_t i = 0; i < sector->total_blocks; i++) {
  240. mf_classic_read_block(tx_rx, crypto, first_block + i, &sector->block[i]);
  241. }
  242. // Save sector keys in last block
  243. if(sector_reader->key_a != MF_CLASSIC_NO_KEY) {
  244. nfc_util_num2bytes(
  245. sector_reader->key_a, 6, &sector->block[sector->total_blocks - 1].value[0]);
  246. }
  247. if(sector_reader->key_b != MF_CLASSIC_NO_KEY) {
  248. nfc_util_num2bytes(
  249. sector_reader->key_b, 6, &sector->block[sector->total_blocks - 1].value[10]);
  250. }
  251. sector_read = true;
  252. } while(false);
  253. return sector_read;
  254. }
  255. uint8_t mf_classic_read_card(
  256. FuriHalNfcTxRxContext* tx_rx,
  257. MfClassicReader* reader,
  258. MfClassicData* data) {
  259. furi_assert(tx_rx);
  260. furi_assert(reader);
  261. furi_assert(data);
  262. uint8_t sectors_read = 0;
  263. data->type = reader->type;
  264. MfClassicSector temp_sector = {};
  265. for(uint8_t i = 0; i < reader->sectors_to_read; i++) {
  266. if(mf_classic_read_sector(
  267. tx_rx, &reader->crypto, &reader->sector_reader[i], &temp_sector)) {
  268. uint8_t first_block =
  269. mf_classic_get_first_block_num_of_sector(reader->sector_reader[i].sector_num);
  270. for(uint8_t j = 0; j < temp_sector.total_blocks; j++) {
  271. data->block[first_block + j] = temp_sector.block[j];
  272. }
  273. sectors_read++;
  274. }
  275. }
  276. return sectors_read;
  277. }