irda.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. #include <furi.h>
  2. #include <gui/gui.h>
  3. #include <input/input.h>
  4. #include "irda_nec.h"
  5. #include "irda_samsung.h"
  6. #include "irda_protocols.h"
  7. #include "irda-decoder/irda-decoder.h"
  8. typedef enum {
  9. EventTypeTick,
  10. EventTypeKey,
  11. EventTypeRX,
  12. } EventType;
  13. typedef struct {
  14. bool edge;
  15. uint32_t lasted;
  16. } RXValue;
  17. typedef struct {
  18. union {
  19. InputEvent input;
  20. RXValue rx;
  21. } value;
  22. EventType type;
  23. } AppEvent;
  24. typedef struct {
  25. IrDAProtocolType protocol;
  26. uint32_t address;
  27. uint32_t command;
  28. } IrDAPacket;
  29. #define IRDA_PACKET_COUNT 8
  30. typedef struct {
  31. uint8_t mode_id;
  32. uint16_t carrier_freq;
  33. uint8_t carrier_duty_cycle_id;
  34. uint8_t packet_id;
  35. IrDAPacket packets[IRDA_PACKET_COUNT];
  36. } State;
  37. typedef void (*ModeInput)(AppEvent*, State*);
  38. typedef void (*ModeRender)(Canvas*, State*);
  39. void input_carrier(AppEvent* event, State* state);
  40. void render_carrier(Canvas* canvas, State* state);
  41. void input_packet(AppEvent* event, State* state);
  42. void render_packet(Canvas* canvas, State* state);
  43. typedef struct {
  44. ModeRender render;
  45. ModeInput input;
  46. } Mode;
  47. const Mode modes[] = {
  48. {.render = render_carrier, .input = input_carrier},
  49. {.render = render_packet, .input = input_packet},
  50. };
  51. const float duty_cycles[] = {0.1, 0.25, 0.333, 0.5, 1.0};
  52. void render_carrier(Canvas* canvas, State* state) {
  53. canvas_set_font(canvas, FontSecondary);
  54. canvas_draw_str(canvas, 2, 25, "carrier mode >");
  55. canvas_draw_str(canvas, 2, 37, "? /\\ freq | \\/ duty cycle");
  56. {
  57. char buf[24];
  58. sprintf(buf, "frequency: %u Hz", state->carrier_freq);
  59. canvas_draw_str(canvas, 2, 50, buf);
  60. sprintf(
  61. buf, "duty cycle: %d/1000", (int)(duty_cycles[state->carrier_duty_cycle_id] * 1000));
  62. canvas_draw_str(canvas, 2, 62, buf);
  63. }
  64. }
  65. void input_carrier(AppEvent* event, State* state) {
  66. if(event->value.input.key == InputKeyOk) {
  67. if(event->value.input.type == InputTypePress) {
  68. irda_pwm_set(duty_cycles[state->carrier_duty_cycle_id], state->carrier_freq);
  69. } else if(event->value.input.type == InputTypeRelease) {
  70. irda_pwm_stop();
  71. }
  72. }
  73. if(event->value.input.type == InputTypeShort && event->value.input.key == InputKeyUp) {
  74. if(state->carrier_freq < 45000) {
  75. state->carrier_freq += 1000;
  76. } else {
  77. state->carrier_freq = 33000;
  78. }
  79. }
  80. if(event->value.input.type == InputTypeShort && event->value.input.key == InputKeyDown) {
  81. uint8_t duty_cycles_count = sizeof(duty_cycles) / sizeof(duty_cycles[0]);
  82. if(state->carrier_duty_cycle_id < (duty_cycles_count - 1)) {
  83. state->carrier_duty_cycle_id++;
  84. } else {
  85. state->carrier_duty_cycle_id = 0;
  86. }
  87. }
  88. }
  89. void render_packet(Canvas* canvas, State* state) {
  90. canvas_set_font(canvas, FontSecondary);
  91. canvas_draw_str(canvas, 2, 25, "< packet mode");
  92. canvas_draw_str(canvas, 2, 37, "? /\\ \\/ packet");
  93. {
  94. const char* protocol;
  95. switch(state->packets[state->packet_id].protocol) {
  96. case IRDA_NEC:
  97. protocol = "NEC";
  98. break;
  99. case IRDA_SAMSUNG:
  100. protocol = "SAMS";
  101. break;
  102. case IRDA_UNKNOWN:
  103. default:
  104. protocol = "UNK";
  105. break;
  106. }
  107. char buf[24];
  108. sprintf(
  109. buf,
  110. "P[%d]: %s 0x%lX 0x%lX",
  111. state->packet_id,
  112. protocol,
  113. state->packets[state->packet_id].address,
  114. state->packets[state->packet_id].command);
  115. canvas_draw_str(canvas, 2, 50, buf);
  116. }
  117. }
  118. void input_packet(AppEvent* event, State* state) {
  119. if(event->value.input.key == InputKeyOk) {
  120. if(event->value.input.type == InputTypeShort) {
  121. switch(state->packets[state->packet_id].protocol) {
  122. case IRDA_NEC:
  123. ir_nec_send(
  124. state->packets[state->packet_id].address,
  125. state->packets[state->packet_id].command);
  126. break;
  127. case IRDA_SAMSUNG:
  128. ir_samsung_send(
  129. state->packets[state->packet_id].address,
  130. state->packets[state->packet_id].command);
  131. break;
  132. default:
  133. break;
  134. }
  135. }
  136. }
  137. if(event->value.input.type == InputTypeShort && event->value.input.key == InputKeyDown) {
  138. if(state->packet_id < (IRDA_PACKET_COUNT - 1)) {
  139. state->packet_id++;
  140. };
  141. }
  142. if(event->value.input.type == InputTypeShort && event->value.input.key == InputKeyUp) {
  143. if(state->packet_id > 0) {
  144. state->packet_id--;
  145. };
  146. }
  147. }
  148. static void render_callback(Canvas* canvas, void* ctx) {
  149. State* state = (State*)acquire_mutex((ValueMutex*)ctx, 25);
  150. if(state != NULL) {
  151. canvas_clear(canvas);
  152. canvas_set_color(canvas, ColorBlack);
  153. canvas_set_font(canvas, FontPrimary);
  154. canvas_draw_str(canvas, 2, 12, "irda test");
  155. modes[state->mode_id].render(canvas, state);
  156. release_mutex((ValueMutex*)ctx, state);
  157. }
  158. }
  159. static void input_callback(InputEvent* input_event, void* ctx) {
  160. osMessageQueueId_t event_queue = ctx;
  161. AppEvent event;
  162. event.type = EventTypeKey;
  163. event.value.input = *input_event;
  164. osMessageQueuePut(event_queue, &event, 0, 0);
  165. }
  166. void irda_timer_capture_callback(void* htim, void* comp_ctx) {
  167. TIM_HandleTypeDef* _htim = (TIM_HandleTypeDef*)htim;
  168. osMessageQueueId_t event_queue = (osMessageQueueId_t)comp_ctx;
  169. if(_htim->Instance == TIM2) {
  170. AppEvent event;
  171. event.type = EventTypeRX;
  172. uint32_t channel;
  173. if(_htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1) {
  174. // falling event
  175. event.value.rx.edge = false;
  176. channel = TIM_CHANNEL_1;
  177. } else if(_htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2) {
  178. // rising event
  179. event.value.rx.edge = true;
  180. channel = TIM_CHANNEL_2;
  181. } else {
  182. // not our event
  183. return;
  184. }
  185. event.value.rx.lasted = HAL_TIM_ReadCapturedValue(_htim, channel);
  186. __HAL_TIM_SET_COUNTER(_htim, 0);
  187. osMessageQueuePut(event_queue, &event, 0, 0);
  188. }
  189. }
  190. void init_packet(
  191. State* state,
  192. uint8_t index,
  193. IrDAProtocolType protocol,
  194. uint32_t address,
  195. uint32_t command) {
  196. if(index >= IRDA_PACKET_COUNT) return;
  197. state->packets[index].protocol = protocol;
  198. state->packets[index].address = address;
  199. state->packets[index].command = command;
  200. }
  201. void irda(void* p) {
  202. osMessageQueueId_t event_queue = osMessageQueueNew(32, sizeof(AppEvent), NULL);
  203. State _state;
  204. uint8_t mode_count = sizeof(modes) / sizeof(modes[0]);
  205. uint8_t duty_cycles_count = sizeof(duty_cycles) / sizeof(duty_cycles[0]);
  206. _state.carrier_duty_cycle_id = duty_cycles_count - 2;
  207. _state.carrier_freq = 36000;
  208. _state.mode_id = 0;
  209. _state.packet_id = 0;
  210. for(uint8_t i = 0; i < IRDA_PACKET_COUNT; i++) {
  211. init_packet(&_state, i, IRDA_UNKNOWN, 0, 0);
  212. }
  213. init_packet(&_state, 0, IRDA_NEC, 0xFF00, 0x11);
  214. init_packet(&_state, 1, IRDA_NEC, 0xF708, 0x59);
  215. init_packet(&_state, 2, IRDA_NEC, 0xFF00, 0x10);
  216. init_packet(&_state, 3, IRDA_NEC, 0xFF00, 0x15);
  217. init_packet(&_state, 4, IRDA_NEC, 0xFF00, 0x25);
  218. init_packet(&_state, 5, IRDA_SAMSUNG, 0xE0E, 0xF30C);
  219. init_packet(&_state, 6, IRDA_SAMSUNG, 0xE0E, 0xF40D);
  220. init_packet(&_state, 7, IRDA_SAMSUNG, 0xE0E, 0xF50E);
  221. ValueMutex state_mutex;
  222. if(!init_mutex(&state_mutex, &_state, sizeof(State))) {
  223. printf("cannot create mutex\r\n");
  224. furiac_exit(NULL);
  225. }
  226. ViewPort* view_port = view_port_alloc();
  227. view_port_draw_callback_set(view_port, render_callback, &state_mutex);
  228. view_port_input_callback_set(view_port, input_callback, event_queue);
  229. // Open GUI and register view_port
  230. Gui* gui = furi_record_open("gui");
  231. gui_add_view_port(gui, view_port, GuiLayerFullscreen);
  232. // Red LED
  233. // TODO open record
  234. const GpioPin* red_led_record = &led_gpio[0];
  235. const GpioPin* green_led_record = &led_gpio[1];
  236. // configure pin
  237. gpio_init(red_led_record, GpioModeOutputOpenDrain);
  238. gpio_init(green_led_record, GpioModeOutputOpenDrain);
  239. // setup irda rx timer
  240. tim_irda_rx_init();
  241. // add timer capture interrupt
  242. api_interrupt_add(irda_timer_capture_callback, InterruptTypeTimerCapture, event_queue);
  243. IrDADecoder* decoder = alloc_decoder();
  244. AppEvent event;
  245. while(1) {
  246. osStatus_t event_status = osMessageQueueGet(event_queue, &event, NULL, 500);
  247. State* state = (State*)acquire_mutex_block(&state_mutex);
  248. if(event_status == osOK) {
  249. if(event.type == EventTypeKey) {
  250. // press events
  251. if(event.value.input.type == InputTypeShort &&
  252. event.value.input.key == InputKeyBack) {
  253. // remove all view_ports create by app
  254. view_port_enabled_set(view_port, false);
  255. gui_remove_view_port(gui, view_port);
  256. // free decoder
  257. free_decoder(decoder);
  258. // exit
  259. furiac_exit(NULL);
  260. }
  261. if(event.value.input.type == InputTypeShort &&
  262. event.value.input.key == InputKeyLeft) {
  263. if(state->mode_id > 0) {
  264. state->mode_id--;
  265. }
  266. }
  267. if(event.value.input.type == InputTypeShort &&
  268. event.value.input.key == InputKeyRight) {
  269. if(state->mode_id < (mode_count - 1)) {
  270. state->mode_id++;
  271. }
  272. }
  273. modes[state->mode_id].input(&event, state);
  274. } else if(event.type == EventTypeRX) {
  275. IrDADecoderOutputData out;
  276. const uint8_t out_data_length = 4;
  277. uint8_t out_data[out_data_length];
  278. out.data_length = out_data_length;
  279. out.data = out_data;
  280. gpio_write(red_led_record, event.value.rx.edge);
  281. bool decoded =
  282. process_decoder(decoder, event.value.rx.edge, &event.value.rx.lasted, 1, &out);
  283. if(decoded) {
  284. // save only if we in packet mode
  285. if(state->mode_id == 1) {
  286. if(out.protocol == IRDA_NEC) {
  287. printf("P=NEC ");
  288. printf("A=0x%02X%02X ", out_data[1], out_data[0]);
  289. printf("C=0x%02X ", out_data[2]);
  290. if(out.flags & IRDA_REPEAT) {
  291. printf("R");
  292. }
  293. printf("\r\n");
  294. state->packets[state->packet_id].protocol = IRDA_NEC;
  295. state->packets[state->packet_id].address = out_data[1] << 8 |
  296. out_data[0];
  297. state->packets[state->packet_id].command = out_data[2];
  298. } else {
  299. printf("Unknown protocol\r\n");
  300. }
  301. }
  302. // blink anyway
  303. gpio_write(green_led_record, false);
  304. delay(10);
  305. gpio_write(green_led_record, true);
  306. }
  307. }
  308. } else {
  309. // event timeout
  310. }
  311. release_mutex(&state_mutex, state);
  312. view_port_update(view_port);
  313. }
  314. }