signal.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591
  1. /* Copyright (C) 2022-2023 Salvatore Sanfilippo -- All Rights Reserved
  2. * See the LICENSE file for information about the license. */
  3. #include "app.h"
  4. bool decode_signal(RawSamplesBuffer *s, uint64_t len, ProtoViewMsgInfo *info);
  5. /* =============================================================================
  6. * Raw signal detection
  7. * ===========================================================================*/
  8. /* Return the time difference between a and b, always >= 0 since
  9. * the absolute value is returned. */
  10. uint32_t duration_delta(uint32_t a, uint32_t b) {
  11. return a > b ? a - b : b - a;
  12. }
  13. /* Reset the current signal, so that a new one can be detected. */
  14. void reset_current_signal(ProtoViewApp *app) {
  15. app->signal_bestlen = 0;
  16. app->signal_offset = 0;
  17. app->signal_decoded = false;
  18. raw_samples_reset(DetectedSamples);
  19. raw_samples_reset(RawSamples);
  20. free_msg_info(app->msg_info);
  21. app->msg_info = NULL;
  22. }
  23. /* This function starts scanning samples at offset idx looking for the
  24. * longest run of pulses, either high or low, that are not much different
  25. * from each other, for a maximum of three duration classes.
  26. * So for instance 50 successive pulses that are roughly long 340us or 670us
  27. * will be sensed as a coherent signal (example: 312, 361, 700, 334, 667, ...)
  28. *
  29. * The classes are counted separtely for high and low signals (RF on / off)
  30. * because many devices tend to have different pulse lenghts depending on
  31. * the level of the pulse.
  32. *
  33. * For instance Oregon2 sensors, in the case of protocol 2.1 will send
  34. * pulses of ~400us (RF on) VS ~580us (RF off). */
  35. #define SEARCH_CLASSES 3
  36. uint32_t search_coherent_signal(RawSamplesBuffer *s, uint32_t idx) {
  37. struct {
  38. uint32_t dur[2]; /* dur[0] = low, dur[1] = high */
  39. uint32_t count[2]; /* Associated observed frequency. */
  40. } classes[SEARCH_CLASSES];
  41. memset(classes,0,sizeof(classes));
  42. uint32_t minlen = 30, maxlen = 4000; /* Depends on data rate, here we
  43. allow for high and low. */
  44. uint32_t len = 0; /* Observed len of coherent samples. */
  45. s->short_pulse_dur = 0;
  46. for (uint32_t j = idx; j < idx+500; j++) {
  47. bool level;
  48. uint32_t dur;
  49. raw_samples_get(s, j, &level, &dur);
  50. if (dur < minlen || dur > maxlen) break; /* return. */
  51. /* Let's see if it matches a class we already have or if we
  52. * can populate a new (yet empty) class. */
  53. uint32_t k;
  54. for (k = 0; k < SEARCH_CLASSES; k++) {
  55. if (classes[k].count[level] == 0) {
  56. classes[k].dur[level] = dur;
  57. classes[k].count[level] = 1;
  58. break; /* Sample accepted. */
  59. } else {
  60. uint32_t classavg = classes[k].dur[level];
  61. uint32_t count = classes[k].count[level];
  62. uint32_t delta = duration_delta(dur,classavg);
  63. /* Is the difference in duration between this signal and
  64. * the class we are inspecting less than a given percentage?
  65. * If so, accept this signal. */
  66. if (delta < classavg/5) { /* 100%/5 = 20%. */
  67. /* It is useful to compute the average of the class
  68. * we are observing. We know how many samples we got so
  69. * far, so we can recompute the average easily.
  70. * By always having a better estimate of the pulse len
  71. * we can avoid missing next samples in case the first
  72. * observed samples are too off. */
  73. classavg = ((classavg * count) + dur) / (count+1);
  74. classes[k].dur[level] = classavg;
  75. classes[k].count[level]++;
  76. break; /* Sample accepted. */
  77. }
  78. }
  79. }
  80. if (k == SEARCH_CLASSES) break; /* No match, return. */
  81. /* If we are here, we accepted this sample. Try with the next
  82. * one. */
  83. len++;
  84. }
  85. /* Update the buffer setting the shortest pulse we found
  86. * among the three classes. This will be used when scaling
  87. * for visualization. */
  88. uint32_t short_dur[2] = {0,0};
  89. for (int j = 0; j < SEARCH_CLASSES; j++) {
  90. for (int level = 0; level < 2; level++) {
  91. if (classes[j].dur[level] == 0) continue;
  92. if (classes[j].count[level] < 3) continue;
  93. if (short_dur[level] == 0 ||
  94. short_dur[level] > classes[j].dur[level])
  95. {
  96. short_dur[level] = classes[j].dur[level];
  97. }
  98. }
  99. }
  100. /* Use the average between high and low short pulses duration.
  101. * Often they are a bit different, and using the average is more robust
  102. * when we do decoding sampling at short_pulse_dur intervals. */
  103. if (short_dur[0] == 0) short_dur[0] = short_dur[1];
  104. if (short_dur[1] == 0) short_dur[1] = short_dur[0];
  105. s->short_pulse_dur = (short_dur[0]+short_dur[1])/2;
  106. return len;
  107. }
  108. /* Search the buffer with the stored signal (last N samples received)
  109. * in order to find a coherent signal. If a signal that does not appear to
  110. * be just noise is found, it is set in DetectedSamples global signal
  111. * buffer, that is what is rendered on the screen. */
  112. void scan_for_signal(ProtoViewApp *app) {
  113. /* We need to work on a copy: the RawSamples buffer is populated
  114. * by the background thread receiving data. */
  115. RawSamplesBuffer *copy = raw_samples_alloc();
  116. raw_samples_copy(copy,RawSamples);
  117. /* Try to seek on data that looks to have a regular high low high low
  118. * pattern. */
  119. uint32_t minlen = 18; /* Min run of coherent samples. With less
  120. than a few samples it's very easy to
  121. mistake noise for signal. */
  122. uint32_t i = 0;
  123. while (i < copy->total-1) {
  124. uint32_t thislen = search_coherent_signal(copy,i);
  125. /* For messages that are long enough, attempt decoding. */
  126. if (thislen > minlen) {
  127. /* Allocate the message information that some decoder may
  128. * fill, in case it is able to decode a message. */
  129. ProtoViewMsgInfo *info = malloc(sizeof(ProtoViewMsgInfo));
  130. init_msg_info(info,app);
  131. info->short_pulse_dur = copy->short_pulse_dur;
  132. uint32_t saved_idx = copy->idx; /* Save index, see later. */
  133. /* decode_signal() expects the detected signal to start
  134. * from index zero .*/
  135. raw_samples_center(copy,i);
  136. bool decoded = decode_signal(copy,thislen,info);
  137. copy->idx = saved_idx; /* Restore the index as we are scanning
  138. the signal in the loop. */
  139. /* Accept this signal as the new signal if either it's longer
  140. * than the previous undecoded one, or the previous one was
  141. * unknown and this is decoded. */
  142. if ((thislen > app->signal_bestlen && app->signal_decoded == false)
  143. || (app->signal_decoded == false && decoded))
  144. {
  145. free_msg_info(app->msg_info);
  146. app->msg_info = info;
  147. app->signal_bestlen = thislen;
  148. app->signal_decoded = decoded;
  149. raw_samples_copy(DetectedSamples,copy);
  150. raw_samples_center(DetectedSamples,i);
  151. FURI_LOG_E(TAG, "===> Displayed sample updated (%d samples %lu us)",
  152. (int)thislen, DetectedSamples->short_pulse_dur);
  153. /* Adjust raw view scale if the signal has an high
  154. * data rate. */
  155. if (DetectedSamples->short_pulse_dur < 75)
  156. app->us_scale = 10;
  157. else if (DetectedSamples->short_pulse_dur < 145)
  158. app->us_scale = 30;
  159. } else {
  160. /* If the structure was not filled, discard it. Otherwise
  161. * now the owner is app->msg_info. */
  162. free_msg_info(info);
  163. }
  164. }
  165. i += thislen ? thislen : 1;
  166. }
  167. raw_samples_free(copy);
  168. }
  169. /* =============================================================================
  170. * Decoding
  171. *
  172. * The following code will translates the raw singals as received by
  173. * the CC1101 into logical signals: a bitmap of 0s and 1s sampled at
  174. * the detected data clock interval.
  175. *
  176. * Then the converted signal is passed to the protocols decoders, that look
  177. * for protocol-specific information. We stop at the first decoder that is
  178. * able to decode the data, so protocols here should be registered in
  179. * order of complexity and specificity, with the generic ones at the end.
  180. * ===========================================================================*/
  181. /* Set the 'bitpos' bit to value 'val', in the specified bitmap
  182. * 'b' of len 'blen'.
  183. * Out of range bits will silently be discarded. */
  184. void bitmap_set(uint8_t *b, uint32_t blen, uint32_t bitpos, bool val) {
  185. uint32_t byte = bitpos/8;
  186. uint32_t bit = 7-(bitpos&7);
  187. if (byte >= blen) return;
  188. if (val)
  189. b[byte] |= 1<<bit;
  190. else
  191. b[byte] &= ~(1<<bit);
  192. }
  193. /* Get the bit 'bitpos' of the bitmap 'b' of 'blen' bytes.
  194. * Out of range bits return false (not bit set). */
  195. bool bitmap_get(uint8_t *b, uint32_t blen, uint32_t bitpos) {
  196. uint32_t byte = bitpos/8;
  197. uint32_t bit = 7-(bitpos&7);
  198. if (byte >= blen) return 0;
  199. return (b[byte] & (1<<bit)) != 0;
  200. }
  201. /* Copy 'count' bits from the bitmap 's' of 'slen' total bytes, to the
  202. * bitmap 'd' of 'dlen' total bytes. The bits are copied starting from
  203. * offset 'soff' of the source bitmap to the offset 'doff' of the
  204. * destination bitmap. */
  205. void bitmap_copy(uint8_t *d, uint32_t dlen, uint32_t doff,
  206. uint8_t *s, uint32_t slen, uint32_t soff,
  207. uint32_t count)
  208. {
  209. /* If we are byte-aligned in both source and destination, use a fast
  210. * path for the number of bytes we can consume this way. */
  211. if ((doff & 7) == 0 && (soff & 7) == 0) {
  212. uint32_t didx = doff/8;
  213. uint32_t sidx = soff/8;
  214. while(count > 8 && didx < dlen && sidx < slen) {
  215. d[didx++] = s[sidx++];
  216. count -= 8;
  217. }
  218. doff = didx * 8;
  219. soff = sidx * 8;
  220. /* Note that if we entered this path, the count at the end
  221. * of the loop will be < 8. */
  222. }
  223. /* Copy the bits needed to reach an offset where we can copy
  224. * two half bytes of src to a full byte of destination. */
  225. while(count > 8 && (doff&7) != 0) {
  226. bool bit = bitmap_get(s,slen,soff++);
  227. bitmap_set(d,dlen,doff++,bit);
  228. count--;
  229. }
  230. /* If we are here and count > 8, we have an offset that is byte aligned
  231. * to the destination bitmap, but not aligned to the source bitmap.
  232. * We can copy fast enough by shifting each two bytes of the original
  233. * bitmap.
  234. *
  235. * This is how it works:
  236. *
  237. * dst:
  238. * +--------+--------+--------+
  239. * | 0 | 1 | 2 |
  240. * | | | | <- data to fill
  241. * +--------+--------+--------+
  242. * ^
  243. * |
  244. * doff = 8
  245. *
  246. * src:
  247. * +--------+--------+--------+
  248. * | 0 | 1 | 2 |
  249. * |hellowor|ld!HELLO|WORLDS!!| <- data to copy
  250. * +--------+--------+--------+
  251. * ^
  252. * |
  253. * soff = 11
  254. *
  255. * skew = 11%8 = 3
  256. * each destination byte in dst will receive:
  257. *
  258. * dst[doff/8] = (src[soff/8] << skew) | (src[soff/8+1] >> (8-skew))
  259. *
  260. * dstbyte = doff/8 = 8/8 = 1
  261. * srcbyte = soff/8 = 11/8 = 1
  262. *
  263. * so dst[1] will get:
  264. * src[1] << 3, that is "ld!HELLO" << 3 = "HELLO..."
  265. * xored with
  266. * src[2] << 5, that is "WORLDS!!" >> 5 = ".....WOR"
  267. * That is "HELLOWOR"
  268. */
  269. if (count > 8) {
  270. uint8_t skew = soff % 8; /* Don't worry, compiler will optimize. */
  271. uint32_t didx = doff/8;
  272. uint32_t sidx = soff/8;
  273. while(count > 8 && didx < dlen && sidx < slen) {
  274. d[didx] = ((s[sidx] << skew) |
  275. (s[sidx+1] >> (8-skew)));
  276. sidx++;
  277. didx++;
  278. soff += 8;
  279. doff += 8;
  280. count -= 8;
  281. }
  282. }
  283. /* Here count is guaranteed to be < 8.
  284. * Copy the final bits bit by bit. */
  285. while(count) {
  286. bool bit = bitmap_get(s,slen,soff++);
  287. bitmap_set(d,dlen,doff++,bit);
  288. count--;
  289. }
  290. }
  291. /* We decode bits assuming the first bit we receive is the MSB
  292. * (see bitmap_set/get functions). Certain devices send data
  293. * encoded in the reverse way. */
  294. void bitmap_reverse_bytes(uint8_t *p, uint32_t len) {
  295. for (uint32_t j = 0; j < len; j++) {
  296. uint32_t b = p[j];
  297. /* Step 1: swap the two nibbles: 12345678 -> 56781234 */
  298. b = (b&0xf0)>>4 | (b&0x0f)<<4;
  299. /* Step 2: swap adjacent pairs : 56781234 -> 78563412 */
  300. b = (b&0xcc)>>2 | (b&0x33)<<2;
  301. /* Step 3: swap adjacent bits : 78563412 -> 87654321 */
  302. b = (b&0xaa)>>1 | (b&0x55)<<1;
  303. p[j] = b;
  304. }
  305. }
  306. /* Return true if the specified sequence of bits, provided as a string in the
  307. * form "11010110..." is found in the 'b' bitmap of 'blen' bits at 'bitpos'
  308. * position. */
  309. bool bitmap_match_bits(uint8_t *b, uint32_t blen, uint32_t bitpos, const char *bits) {
  310. for (size_t j = 0; bits[j]; j++) {
  311. bool expected = (bits[j] == '1') ? true : false;
  312. if (bitmap_get(b,blen,bitpos+j) != expected) return false;
  313. }
  314. return true;
  315. }
  316. /* Search for the specified bit sequence (see bitmap_match_bits() for details)
  317. * in the bitmap 'b' of 'blen' bytes, looking forward at most 'maxbits' ahead.
  318. * Returns the offset (in bits) of the match, or BITMAP_SEEK_NOT_FOUND if not
  319. * found.
  320. *
  321. * Note: there are better algorithms, such as Boyer-Moore. Here we hope that
  322. * for the kind of patterns we search we'll have a lot of early stops so
  323. * we use a vanilla approach. */
  324. uint32_t bitmap_seek_bits(uint8_t *b, uint32_t blen, uint32_t startpos, uint32_t maxbits, const char *bits) {
  325. uint32_t endpos = startpos+blen*8;
  326. uint32_t end2 = startpos+maxbits;
  327. if (end2 < endpos) endpos = end2;
  328. for (uint32_t j = startpos; j < endpos; j++)
  329. if (bitmap_match_bits(b,blen,j,bits)) return j;
  330. return BITMAP_SEEK_NOT_FOUND;
  331. }
  332. /* Set the pattern 'pat' into the bitmap 'b' of max length 'blen' bytes.
  333. * The pattern is given as a string of 0s and 1s characters, like "01101001".
  334. * This function is useful in order to set the test vectors in the protocol
  335. * decoders, to see if the decoding works regardless of the fact we are able
  336. * to actually receive a given signal. */
  337. void bitmap_set_pattern(uint8_t *b, uint32_t blen, const char *pat) {
  338. uint32_t i = 0;
  339. while(pat[i]) {
  340. bitmap_set(b,blen,i,pat[i] == '1');
  341. i++;
  342. }
  343. }
  344. /* Take the raw signal and turn it into a sequence of bits inside the
  345. * buffer 'b'. Note that such 0s and 1s are NOT the actual data in the
  346. * signal, but is just a low level representation of the line code. Basically
  347. * if the short pulse we find in the signal is 320us, we convert high and
  348. * low levels in the raw sample in this way:
  349. *
  350. * If for instance we see a high level lasting ~600 us, we will add
  351. * two 1s bit. If then the signal goes down for 330us, we will add one zero,
  352. * and so forth. So for each period of high and low we find the closest
  353. * multiple and set the relevant number of bits.
  354. *
  355. * In case of a short pulse of 320us detected, 320*2 is the closest to a
  356. * high pulse of 600us, so 2 bits will be set.
  357. *
  358. * In other terms what this function does is sampling the signal at
  359. * fixed 'rate' intervals.
  360. *
  361. * This representation makes it simple to decode the signal at a higher
  362. * level later, translating it from Marshal coding or other line codes
  363. * to the actual bits/bytes.
  364. *
  365. * The 'idx' argument marks the detected signal start index into the
  366. * raw samples buffer. The 'count' tells the function how many raw
  367. * samples to convert into bits. The function returns the number of
  368. * bits set into the buffer 'b'. The 'rate' argument, in microseconds, is
  369. * the detected short-pulse duration. We expect the line code to be
  370. * meaningful when interpreted at multiples of 'rate'. */
  371. uint32_t convert_signal_to_bits(uint8_t *b, uint32_t blen, RawSamplesBuffer *s, uint32_t idx, uint32_t count, uint32_t rate) {
  372. if (rate == 0) return 0; /* We can't perform the conversion. */
  373. uint32_t bitpos = 0;
  374. for (uint32_t j = 0; j < count; j++) {
  375. uint32_t dur;
  376. bool level;
  377. raw_samples_get(s, j+idx, &level, &dur);
  378. uint32_t numbits = dur / rate; /* full bits that surely fit. */
  379. uint32_t rest = dur % rate; /* How much we are left with. */
  380. if (rest > rate/2) numbits++; /* There is another one. */
  381. /* Limit how much a single sample can spawn. There are likely no
  382. * protocols doing such long pulses when the rate is low. */
  383. if (numbits > 1024) numbits = 1024;
  384. if (0) /* Super verbose, so not under the DEBUG_MSG define. */
  385. FURI_LOG_E(TAG, "%lu converted into %lu (%d) bits",
  386. dur,numbits,(int)level);
  387. /* If the signal is too short, let's claim it an interference
  388. * and ignore it completely. */
  389. if (numbits == 0) continue;
  390. while(numbits--) bitmap_set(b,blen,bitpos++,level);
  391. }
  392. return bitpos;
  393. }
  394. /* This function converts the line code used to the final data representation.
  395. * The representation is put inside 'buf', for up to 'buflen' bytes of total
  396. * data. For instance in order to convert manchester you can use "10" and "01"
  397. * as zero and one patterns. However this function does not handle differential
  398. * encodings. See below for convert_from_diff_manchester().
  399. *
  400. * The function returns the number of bits converted. It will stop as soon
  401. * as it finds a pattern that does not match zero or one patterns, or when
  402. * the end of the bitmap pointed by 'bits' is reached (the length is
  403. * specified in bytes by the caller, via the 'len' parameters).
  404. *
  405. * The decoding starts at the specified offset (in bits) 'off'. */
  406. uint32_t convert_from_line_code(uint8_t *buf, uint64_t buflen, uint8_t *bits, uint32_t len, uint32_t off, const char *zero_pattern, const char *one_pattern)
  407. {
  408. uint32_t decoded = 0; /* Number of bits extracted. */
  409. len *= 8; /* Convert bytes to bits. */
  410. while(off < len) {
  411. bool bitval;
  412. if (bitmap_match_bits(bits,len,off,zero_pattern)) {
  413. bitval = false;
  414. off += strlen(zero_pattern);
  415. } else if (bitmap_match_bits(bits,len,off,one_pattern)) {
  416. bitval = true;
  417. off += strlen(one_pattern);
  418. } else {
  419. break;
  420. }
  421. bitmap_set(buf,buflen,decoded++,bitval);
  422. if (decoded/8 == buflen) break; /* No space left on target buffer. */
  423. }
  424. return decoded;
  425. }
  426. /* Convert the differential Manchester code to bits. This is similar to
  427. * convert_from_line_code() but specific for Manchester. The user must
  428. * supply the value of the previous symbol before this stream, since
  429. * in differential codings the next bits depend on the previous one.
  430. *
  431. * Parameters and return values are like convert_from_line_code(). */
  432. uint32_t convert_from_diff_manchester(uint8_t *buf, uint64_t buflen, uint8_t *bits, uint32_t len, uint32_t off, bool previous)
  433. {
  434. uint32_t decoded = 0;
  435. len *= 8; /* Conver to bits. */
  436. for (uint32_t j = off; j < len; j += 2) {
  437. bool b0 = bitmap_get(bits,len,j);
  438. bool b1 = bitmap_get(bits,len,j+1);
  439. if (b0 == previous) break; /* Each new bit must switch value. */
  440. bitmap_set(buf,buflen,decoded++,b0 == b1);
  441. previous = b1;
  442. if (decoded/8 == buflen) break; /* No space left on target buffer. */
  443. }
  444. return decoded;
  445. }
  446. /* Supported protocols go here, with the relevant implementation inside
  447. * protocols/<name>.c */
  448. extern ProtoViewDecoder Oregon2Decoder;
  449. extern ProtoViewDecoder B4B1Decoder;
  450. extern ProtoViewDecoder RenaultTPMSDecoder;
  451. extern ProtoViewDecoder ToyotaTPMSDecoder;
  452. extern ProtoViewDecoder SchraderTPMSDecoder;
  453. extern ProtoViewDecoder SchraderEG53MA4TPMSDecoder;
  454. extern ProtoViewDecoder CitroenTPMSDecoder;
  455. extern ProtoViewDecoder FordTPMSDecoder;
  456. extern ProtoViewDecoder KeeloqDecoder;
  457. ProtoViewDecoder *Decoders[] = {
  458. &Oregon2Decoder, /* Oregon sensors v2.1 protocol. */
  459. &B4B1Decoder, /* PT, SC, ... 24 bits remotes. */
  460. &RenaultTPMSDecoder, /* Renault TPMS. */
  461. &ToyotaTPMSDecoder, /* Toyota TPMS. */
  462. &SchraderTPMSDecoder, /* Schrader TPMS. */
  463. &SchraderEG53MA4TPMSDecoder, /* Schrader EG53MA4 TPMS. */
  464. &CitroenTPMSDecoder, /* Citroen TPMS. */
  465. &FordTPMSDecoder, /* Ford TPMS. */
  466. &KeeloqDecoder, /* Keeloq remote. */
  467. NULL
  468. };
  469. /* Free the message info and allocated data. */
  470. void free_msg_info(ProtoViewMsgInfo *i) {
  471. if (i == NULL) return;
  472. free(i->bits);
  473. free(i);
  474. }
  475. /* Reset the message info structure before passing it to the decoding
  476. * functions. */
  477. void init_msg_info(ProtoViewMsgInfo *i, ProtoViewApp *app) {
  478. UNUSED(app);
  479. memset(i,0,sizeof(ProtoViewMsgInfo));
  480. i->bits = NULL;
  481. }
  482. /* This function is called when a new signal is detected. It converts it
  483. * to a bitstream, and the calls the protocol specific functions for
  484. * decoding. If the signal was decoded correctly by some protocol, true
  485. * is returned. Otherwise false is returned. */
  486. bool decode_signal(RawSamplesBuffer *s, uint64_t len, ProtoViewMsgInfo *info) {
  487. uint32_t bitmap_bits_size = 4096*8;
  488. uint32_t bitmap_size = bitmap_bits_size/8;
  489. /* We call the decoders with an offset a few samples before the actual
  490. * signal detected and for a len of a few bits after its end. */
  491. uint32_t before_samples = 20;
  492. uint32_t after_samples = 100;
  493. uint8_t *bitmap = malloc(bitmap_size);
  494. uint32_t bits = convert_signal_to_bits(bitmap,bitmap_size,s,-before_samples,len+before_samples+after_samples,s->short_pulse_dur);
  495. if (DEBUG_MSG) { /* Useful for debugging purposes. Don't remove. */
  496. char *str = malloc(1024);
  497. uint32_t j;
  498. for (j = 0; j < bits && j < 1023; j++) {
  499. str[j] = bitmap_get(bitmap,bitmap_size,j) ? '1' : '0';
  500. }
  501. str[j] = 0;
  502. FURI_LOG_E(TAG, "%lu bits sampled: %s", bits, str);
  503. free(str);
  504. }
  505. /* Try all the decoders available. */
  506. int j = 0;
  507. bool decoded = false;
  508. while(Decoders[j]) {
  509. uint32_t start_time = furi_get_tick();
  510. decoded = Decoders[j]->decode(bitmap,bitmap_size,bits,info);
  511. uint32_t delta = furi_get_tick() - start_time;
  512. FURI_LOG_E(TAG, "Decoder %s took %lu ms",
  513. Decoders[j]->name, (unsigned long)delta);
  514. if (decoded) break;
  515. j++;
  516. }
  517. if (!decoded) {
  518. FURI_LOG_E(TAG, "No decoding possible");
  519. } else {
  520. FURI_LOG_E(TAG, "Decoded %s, raw=%s info=[%s,%s,%s,%s]",
  521. info->name, info->raw, info->info1, info->info2,
  522. info->info3, info->info4);
  523. /* The message was correctly decoded: fill the info structure
  524. * with the decoded signal. The decoder may not implement offset/len
  525. * filling of the structure. In such case we have no info and
  526. * pulses_count will be set to zero. */
  527. if (info->pulses_count) {
  528. info->bits_bytes = (info->pulses_count+7)/8; // Round to full byte.
  529. info->bits = malloc(info->bits_bytes);
  530. bitmap_copy(info->bits,info->bits_bytes,0,
  531. bitmap,bitmap_size,info->start_off,
  532. info->pulses_count);
  533. }
  534. }
  535. free(bitmap);
  536. return decoded;
  537. }