uhf_module.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383
  1. #include "uhf_module.h"
  2. #include "uhf_module_cmd.h"
  3. #define DELAY_MS 100
  4. #define WAIT_TICK 8000 // max wait time in between each byte
  5. volatile uint16_t tick = 0;
  6. // void rx_callback(UartIrqEvent event, uint8_t data, void* ctx) {
  7. // UNUSED(event);
  8. // Buffer* buffer = ctx;
  9. // if(buffer->closed) return; // buffer closed
  10. // buffer_append_single(buffer, data); // append data
  11. // if(data == FRAME_END) buffer_close(buffer); // end of frame
  12. // tick = WAIT_TICK; // reset tick
  13. // }
  14. static M100ResponseType setup_and_send_rx(M100Module* module, uint8_t* cmd, size_t cmd_length) {
  15. uhf_uart_send(module->uart, cmd, cmd_length);
  16. buffer_close(module->uart->buffer);
  17. // Validation Checks
  18. uint8_t* data = buffer_get_data(module->uart->buffer);
  19. size_t length = buffer_get_size(module->uart->buffer);
  20. // check if size > 0
  21. if(!length) return M100EmptyResponse;
  22. // check if data is valid
  23. if(data[0] != FRAME_START || data[length - 1] != FRAME_END) return M100ValidationFail;
  24. // check if checksum is correct
  25. if(checksum(data + 1, length - 3) != data[length - 2]) return M100ChecksumFail;
  26. return M100SuccessResponse;
  27. }
  28. M100ModuleInfo* m100_module_info_alloc() {
  29. M100ModuleInfo* module_info = (M100ModuleInfo*)malloc(sizeof(M100ModuleInfo));
  30. return module_info;
  31. }
  32. void m100_module_info_free(M100ModuleInfo* module_info) {
  33. if(module_info->hw_version != NULL) free(module_info->hw_version);
  34. if(module_info->sw_version != NULL) free(module_info->sw_version);
  35. if(module_info->manufacturer != NULL) free(module_info->manufacturer);
  36. free(module_info);
  37. }
  38. M100Module* m100_module_alloc() {
  39. M100Module* module = (M100Module*)malloc(sizeof(M100Module));
  40. module->transmitting_power = DEFAULT_TRANSMITTING_POWER;
  41. module->region = DEFAULT_WORKING_REGION;
  42. module->info = m100_module_info_alloc();
  43. module->uart = uhf_uart_alloc();
  44. return module;
  45. }
  46. void m100_module_free(M100Module* module) {
  47. m100_module_info_free(module->info);
  48. uhf_uart_free(module->uart);
  49. free(module);
  50. }
  51. uint8_t checksum(const uint8_t* data, size_t length) {
  52. // CheckSum8 Modulo 256
  53. // Sum of Bytes % 256
  54. uint64_t sum_val = 0x00;
  55. for(size_t i = 0; i < length; i++) {
  56. sum_val += data[i];
  57. }
  58. return (uint8_t)(sum_val % 0x100);
  59. }
  60. uint16_t crc16_genibus(const uint8_t* data, size_t length) {
  61. uint16_t crc = 0xFFFF; // Initial value
  62. uint16_t polynomial = 0x1021; // CRC-16/GENIBUS polynomial
  63. for(size_t i = 0; i < length; i++) {
  64. crc ^= (data[i] << 8); // Move byte into MSB of 16bit CRC
  65. for(int j = 0; j < 8; j++) {
  66. if(crc & 0x8000) {
  67. crc = (crc << 1) ^ polynomial;
  68. } else {
  69. crc <<= 1;
  70. }
  71. }
  72. }
  73. return crc ^ 0xFFFF; // Post-inversion
  74. }
  75. char* _m100_info_helper(M100Module* module, char** info) {
  76. if(!buffer_get_size(module->uart->buffer)) return NULL;
  77. uint8_t* data = buffer_get_data(module->uart->buffer);
  78. uint16_t payload_len = data[3];
  79. payload_len = (payload_len << 8) + data[4];
  80. FuriString* temp_str = furi_string_alloc();
  81. for(int i = 0; i < payload_len; i++) {
  82. furi_string_cat_printf(temp_str, "%c", data[6 + i]);
  83. }
  84. if(*info == NULL) {
  85. *info = (char*)malloc(sizeof(char) * payload_len);
  86. } else {
  87. for(size_t i = 0; i < strlen(*info); i++) {
  88. (*info)[i] = 0;
  89. }
  90. }
  91. memcpy(*info, furi_string_get_cstr(temp_str), payload_len);
  92. furi_string_free(temp_str);
  93. return *info;
  94. }
  95. char* m100_get_hardware_version(M100Module* module) {
  96. setup_and_send_rx(module, (uint8_t*)&CMD_HW_VERSION.cmd[0], CMD_HW_VERSION.length);
  97. return _m100_info_helper(module, &module->info->hw_version);
  98. }
  99. char* m100_get_software_version(M100Module* module) {
  100. setup_and_send_rx(module, (uint8_t*)&CMD_SW_VERSION.cmd[0], CMD_SW_VERSION.length);
  101. return _m100_info_helper(module, &module->info->sw_version);
  102. }
  103. char* m100_get_manufacturers(M100Module* module) {
  104. setup_and_send_rx(module, (uint8_t*)&CMD_MANUFACTURERS.cmd[0], CMD_MANUFACTURERS.length);
  105. return _m100_info_helper(module, &module->info->manufacturer);
  106. }
  107. M100ResponseType m100_single_poll(M100Module* module, UHFTag* uhf_tag) {
  108. M100ResponseType rp_type =
  109. setup_and_send_rx(module, (uint8_t*)&CMD_SINGLE_POLLING.cmd[0], CMD_SINGLE_POLLING.length);
  110. if(rp_type != M100SuccessResponse) return rp_type;
  111. uint8_t* data = buffer_get_data(module->uart->buffer);
  112. size_t length = buffer_get_size(module->uart->buffer);
  113. uint16_t pc = data[6];
  114. uint16_t crc = 0;
  115. // mask out epc length from protocol control
  116. size_t epc_len = pc;
  117. epc_len >>= 3;
  118. epc_len *= 2;
  119. // get protocol control
  120. pc <<= 8;
  121. pc += data[7];
  122. // get cyclic redundency check
  123. crc = data[8 + epc_len];
  124. crc <<= 8;
  125. crc += data[8 + epc_len + 1];
  126. // validate checksum
  127. if(checksum(data + 1, length - 3) != data[length - 2]) return M100ValidationFail;
  128. // validate crc
  129. if(crc16_genibus(data + 6, epc_len + 2) != crc) return M100ValidationFail;
  130. uhf_tag_set_epc_pc(uhf_tag, pc);
  131. uhf_tag_set_epc_crc(uhf_tag, crc);
  132. uhf_tag_set_epc(uhf_tag, data + 8, epc_len);
  133. return M100SuccessResponse;
  134. }
  135. M100ResponseType m100_set_select(M100Module* module, UHFTag* uhf_tag) {
  136. // Set select
  137. uint8_t cmd[MAX_BUFFER_SIZE];
  138. size_t cmd_length = CMD_SET_SELECT_PARAMETER.length;
  139. size_t mask_length_bytes = uhf_tag->epc->size;
  140. size_t mask_length_bits = mask_length_bytes * 8;
  141. // payload len == sel param len + ptr len + mask len + epc len
  142. size_t payload_len = 7 + mask_length_bytes;
  143. memcpy(cmd, CMD_SET_SELECT_PARAMETER.cmd, cmd_length);
  144. // set new length
  145. cmd_length = 12 + mask_length_bytes + 2;
  146. // set payload length
  147. cmd[3] = (payload_len >> 8) & 0xFF;
  148. cmd[4] = payload_len & 0xFF;
  149. // set select param
  150. cmd[5] = 0x01; // 0x00=rfu, 0x01=epc, 0x10=tid, 0x11=user
  151. // set ptr
  152. cmd[9] = 0x20; // epc data begins after 0x20
  153. // set mask length
  154. cmd[10] = mask_length_bits;
  155. // truncate
  156. cmd[11] = false;
  157. // set mask
  158. memcpy((void*)&cmd[12], uhf_tag->epc->data, mask_length_bytes);
  159. // set checksum
  160. cmd[cmd_length - 2] = checksum(cmd + 1, 11 + mask_length_bytes);
  161. // end frame
  162. cmd[cmd_length - 1] = FRAME_END;
  163. setup_and_send_rx(module, cmd, 12 + mask_length_bytes + 3);
  164. uint8_t* data = buffer_get_data(module->uart->buffer);
  165. if(checksum(data + 1, 5) != data[6]) return M100ValidationFail; // error in rx
  166. if(data[5] != 0x00) return M100ValidationFail; // error if not 0
  167. return M100SuccessResponse;
  168. }
  169. UHFTag* m100_get_select_param(M100Module* module) {
  170. buffer_reset(module->uart->buffer);
  171. // furi_hal_uart_set_irq_cb(FuriHalUartIdLPUART1, rx_callback, module->uart->buffer);
  172. // furi_hal_uart_tx(
  173. // FuriHalUartIdUSART1,
  174. // (uint8_t*)&CMD_GET_SELECT_PARAMETER.cmd,
  175. // CMD_GET_SELECT_PARAMETER.length);
  176. // furi_delay_ms(DELAY_MS);
  177. // UHFTag* uhf_tag = uhf_tag_alloc();
  178. // uint8_t* data = buffer_get_data(module->uart->buffer);
  179. // size_t mask_length =
  180. // uhf_tag_set_epc(uhf_tag, data + 12, )
  181. // TODO : implement
  182. return NULL;
  183. }
  184. M100ResponseType m100_read_label_data_storage(
  185. M100Module* module,
  186. UHFTag* uhf_tag,
  187. BankType bank,
  188. uint32_t access_pwd,
  189. uint16_t word_count) {
  190. /*
  191. Will probably remove UHFTag as param and get it from get selected tag
  192. */
  193. if(bank == EPCBank) return M100SuccessResponse;
  194. uint8_t cmd[MAX_BUFFER_SIZE];
  195. size_t cmd_length = CMD_READ_LABEL_DATA_STORAGE_AREA.length;
  196. memcpy(cmd, CMD_READ_LABEL_DATA_STORAGE_AREA.cmd, cmd_length);
  197. // set access password
  198. cmd[5] = (access_pwd >> 24) & 0xFF;
  199. cmd[6] = (access_pwd >> 16) & 0xFF;
  200. cmd[7] = (access_pwd >> 8) & 0xFF;
  201. cmd[8] = access_pwd & 0xFF;
  202. // set mem bank
  203. cmd[9] = (uint8_t)bank;
  204. // set word counter
  205. cmd[12] = (word_count >> 8) & 0xFF;
  206. cmd[13] = word_count & 0xFF;
  207. // calc checksum
  208. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  209. M100ResponseType rp_type = setup_and_send_rx(module, cmd, cmd_length);
  210. if(rp_type != M100SuccessResponse) return rp_type;
  211. uint8_t* data = buffer_get_data(module->uart->buffer);
  212. uint8_t rtn_command = data[2];
  213. uint16_t payload_len = data[3];
  214. payload_len = (payload_len << 8) + data[4];
  215. if(rtn_command == 0xFF) {
  216. if(payload_len == 0x01) return M100NoTagResponse;
  217. return M100MemoryOverrun;
  218. }
  219. size_t ptr_offset = 5 /*<-ptr offset*/ + uhf_tag_get_epc_size(uhf_tag) + 3 /*<-pc + ul*/;
  220. size_t bank_data_length = payload_len - (ptr_offset - 5 /*dont include the offset*/);
  221. if(bank == TIDBank) {
  222. uhf_tag_set_tid(uhf_tag, data + ptr_offset, bank_data_length);
  223. } else if(bank == UserBank) {
  224. uhf_tag_set_user(uhf_tag, data + ptr_offset, bank_data_length);
  225. }
  226. return M100SuccessResponse;
  227. }
  228. M100ResponseType m100_write_label_data_storage(
  229. M100Module* module,
  230. UHFTag* saved_tag,
  231. UHFTag* selected_tag,
  232. BankType bank,
  233. uint16_t source_address,
  234. uint32_t access_pwd) {
  235. uint8_t cmd[MAX_BUFFER_SIZE];
  236. size_t cmd_length = CMD_WRITE_LABEL_DATA_STORE.length;
  237. memcpy(cmd, CMD_WRITE_LABEL_DATA_STORE.cmd, cmd_length);
  238. uint16_t payload_len = 9;
  239. uint16_t data_length = 0;
  240. if(bank == ReservedBank) {
  241. // access pwd len + kill pwd len
  242. payload_len += 4;
  243. data_length = 4;
  244. } else if(bank == EPCBank) {
  245. // epc len + pc len
  246. payload_len += 4 + uhf_tag_get_epc_size(saved_tag);
  247. data_length = 4 + uhf_tag_get_epc_size(saved_tag);
  248. // set data
  249. uint8_t tmp_arr[4];
  250. tmp_arr[0] = (uint8_t)((uhf_tag_get_epc_crc(selected_tag) >> 8) & 0xFF);
  251. tmp_arr[1] = (uint8_t)(uhf_tag_get_epc_crc(selected_tag) & 0xFF);
  252. tmp_arr[2] = (uint8_t)((uhf_tag_get_epc_pc(saved_tag) >> 8) & 0xFF);
  253. tmp_arr[3] = (uint8_t)(uhf_tag_get_epc_pc(saved_tag) & 0xFF);
  254. memcpy(cmd + 14, tmp_arr, 4);
  255. memcpy(cmd + 18, uhf_tag_get_epc(saved_tag), uhf_tag_get_epc_size(saved_tag));
  256. } else if(bank == UserBank) {
  257. payload_len += uhf_tag_get_user_size(saved_tag);
  258. data_length = uhf_tag_get_user_size(saved_tag);
  259. // set data
  260. memcpy(cmd + 14, uhf_tag_get_user(saved_tag), uhf_tag_get_user_size(saved_tag));
  261. }
  262. // set payload length
  263. cmd[3] = (payload_len >> 8) & 0xFF;
  264. cmd[4] = payload_len & 0xFF;
  265. // set access password
  266. cmd[5] = (access_pwd >> 24) & 0xFF;
  267. cmd[6] = (access_pwd >> 16) & 0xFF;
  268. cmd[7] = (access_pwd >> 8) & 0xFF;
  269. cmd[8] = access_pwd & 0xFF;
  270. // set membank
  271. cmd[9] = (uint8_t)bank;
  272. // set source address
  273. cmd[10] = (source_address >> 8) & 0xFF;
  274. cmd[11] = source_address & 0xFF;
  275. // set data length
  276. size_t data_length_words = data_length / 2;
  277. cmd[12] = (data_length_words >> 8) & 0xFF;
  278. cmd[13] = data_length_words & 0xFF;
  279. // update cmd len
  280. cmd_length = 7 + payload_len;
  281. // calculate checksum
  282. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  283. cmd[cmd_length - 1] = FRAME_END;
  284. // send cmd
  285. // furi_hal_uart_set_irq_cb(FuriHalUartIdUSART1, rx_callback, module->uart->buffer);
  286. // furi_hal_uart_tx(FuriHalUartIdUSART1, cmd, cmd_length);
  287. // unsigned int delay = DELAY_MS / 2;
  288. // unsigned int timeout = 15;
  289. // while(!buffer_get_size(module->uart->buffer)) {
  290. // furi_delay_ms(delay);
  291. // if(!timeout--) break;
  292. // }
  293. setup_and_send_rx(module, cmd, cmd_length);
  294. uint8_t* buff_data = buffer_get_data(module->uart->buffer);
  295. size_t buff_length = buffer_get_size(module->uart->buffer);
  296. if(buff_data[2] == 0xFF && buff_length == 8)
  297. return M100NoTagResponse;
  298. else if(buff_data[2] == 0xFF)
  299. return M100ValidationFail;
  300. return M100SuccessResponse;
  301. }
  302. void m100_set_baudrate(M100Module* module, uint32_t baudrate) {
  303. size_t length = CMD_SET_COMMUNICATION_BAUD_RATE.length;
  304. uint8_t cmd[length];
  305. memcpy(cmd, CMD_SET_COMMUNICATION_BAUD_RATE.cmd, length);
  306. uint16_t br_mod = baudrate / 100; // module format
  307. cmd[6] = 0xFF & br_mod; // pow LSB
  308. cmd[5] = 0xFF & (br_mod >> 8); // pow MSB
  309. cmd[length - 2] = checksum(cmd + 1, length - 3);
  310. // setup_and_send_rx(module, cmd, length);
  311. uhf_uart_send_wait(module->uart, cmd, length);
  312. uhf_uart_set_baudrate(module->uart, baudrate);
  313. module->uart->baudrate = baudrate;
  314. }
  315. bool m100_set_working_region(M100Module* module, WorkingRegion region) {
  316. size_t length = CMD_SET_WORK_AREA.length;
  317. uint8_t cmd[length];
  318. memcpy(cmd, CMD_SET_WORK_AREA.cmd, length);
  319. cmd[5] = (uint8_t)region;
  320. cmd[length - 2] = checksum(cmd + 1, length - 3);
  321. setup_and_send_rx(module, cmd, length);
  322. module->region = region;
  323. return true;
  324. }
  325. bool m100_set_transmitting_power(M100Module* module, uint16_t power) {
  326. size_t length = CMD_SET_TRANSMITTING_POWER.length;
  327. uint8_t cmd[length];
  328. memcpy(cmd, CMD_SET_TRANSMITTING_POWER.cmd, length);
  329. cmd[5] = (power >> 8) & 0xFF;
  330. cmd[6] = power & 0xFF;
  331. cmd[length - 2] = checksum(cmd + 1, length - 3);
  332. setup_and_send_rx(module, cmd, length);
  333. module->transmitting_power = power;
  334. return true;
  335. }
  336. bool m100_set_freq_hopping(M100Module* module, bool hopping) {
  337. UNUSED(module);
  338. UNUSED(hopping);
  339. return true;
  340. }
  341. bool m100_set_power(M100Module* module, uint8_t* power) {
  342. UNUSED(module);
  343. UNUSED(power);
  344. return true;
  345. }
  346. uint32_t m100_get_baudrate(M100Module* module) {
  347. return module->uart->baudrate;
  348. }