irda.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334
  1. #include "flipper.h"
  2. #include "flipper_v2.h"
  3. #include "irda_nec.h"
  4. #include "irda_samsung.h"
  5. #include "irda_protocols.h"
  6. typedef enum {
  7. EventTypeTick,
  8. EventTypeKey,
  9. EventTypeRX,
  10. } EventType;
  11. typedef struct {
  12. union {
  13. InputEvent input;
  14. bool rx_edge;
  15. } value;
  16. EventType type;
  17. } AppEvent;
  18. typedef struct {
  19. uint8_t mode_id;
  20. uint16_t carrier_freq;
  21. uint8_t carrier_duty_cycle_id;
  22. uint8_t nec_packet_id;
  23. uint8_t samsung_packet_id;
  24. } State;
  25. typedef void (*ModeInput)(AppEvent*, State*);
  26. typedef void (*ModeRender)(Canvas*, State*);
  27. void input_carrier(AppEvent* event, State* state);
  28. void render_carrier(Canvas* canvas, State* state);
  29. void input_nec(AppEvent* event, State* state);
  30. void render_nec(Canvas* canvas, State* state);
  31. void render_carrier(Canvas* canvas, State* state);
  32. void input_samsung(AppEvent* event, State* state);
  33. void render_samsung(Canvas* canvas, State* state);
  34. typedef struct {
  35. ModeRender render;
  36. ModeInput input;
  37. } Mode;
  38. typedef struct {
  39. uint8_t addr;
  40. uint8_t data;
  41. } NecPacket;
  42. typedef struct {
  43. uint16_t addr;
  44. uint16_t data;
  45. } SamsungPacket;
  46. const Mode modes[] = {
  47. {.render = render_carrier, .input = input_carrier},
  48. {.render = render_nec, .input = input_nec},
  49. {.render = render_samsung, .input = input_samsung},
  50. };
  51. const NecPacket nec_packets[] = {
  52. {.addr = 0xFF, .data = 0x11},
  53. {.addr = 0xF7, .data = 0x59},
  54. {.addr = 0xFF, .data = 0x01},
  55. {.addr = 0xFF, .data = 0x10},
  56. {.addr = 0xFF, .data = 0x15},
  57. {.addr = 0xFF, .data = 0x25},
  58. {.addr = 0xFF, .data = 0xF0},
  59. };
  60. const SamsungPacket samsung_packets[] = {
  61. {.addr = 0xE0E, .data = 0xF30C},
  62. {.addr = 0xE0E, .data = 0xF40D},
  63. {.addr = 0xE0E, .data = 0xF50E},
  64. };
  65. const float duty_cycles[] = {0.1, 0.25, 0.333, 0.5, 1.0};
  66. void render_carrier(Canvas* canvas, State* state) {
  67. canvas_set_font(canvas, FontSecondary);
  68. canvas_draw_str(canvas, 2, 25, "carrier mode >");
  69. canvas_draw_str(canvas, 2, 37, "? /\\ freq | \\/ duty cycle");
  70. {
  71. char buf[24];
  72. sprintf(buf, "frequency: %u Hz", state->carrier_freq);
  73. canvas_draw_str(canvas, 2, 50, buf);
  74. sprintf(
  75. buf, "duty cycle: %d/1000", (int)(duty_cycles[state->carrier_duty_cycle_id] * 1000));
  76. canvas_draw_str(canvas, 2, 62, buf);
  77. }
  78. }
  79. void render_nec(Canvas* canvas, State* state) {
  80. canvas_set_font(canvas, FontSecondary);
  81. canvas_draw_str(canvas, 2, 25, "< nec mode >");
  82. canvas_draw_str(canvas, 2, 37, "? /\\ \\/ packet");
  83. {
  84. char buf[24];
  85. sprintf(
  86. buf,
  87. "packet: %02X %02X",
  88. nec_packets[state->nec_packet_id].addr,
  89. nec_packets[state->nec_packet_id].data);
  90. canvas_draw_str(canvas, 2, 50, buf);
  91. }
  92. }
  93. void render_samsung(Canvas* canvas, State* state) {
  94. canvas_set_font(canvas, FontSecondary);
  95. canvas_draw_str(canvas, 2, 25, "< samsung32 mode");
  96. canvas_draw_str(canvas, 2, 37, "? /\\ \\/ packet");
  97. {
  98. char buf[24];
  99. sprintf(
  100. buf,
  101. "packet: %02X %02X",
  102. samsung_packets[state->samsung_packet_id].addr,
  103. samsung_packets[state->samsung_packet_id].data);
  104. canvas_draw_str(canvas, 2, 50, buf);
  105. }
  106. }
  107. void input_carrier(AppEvent* event, State* state) {
  108. if(event->value.input.input == InputOk) {
  109. if(event->value.input.state) {
  110. irda_pwm_set(duty_cycles[state->carrier_duty_cycle_id], state->carrier_freq);
  111. } else {
  112. irda_pwm_stop();
  113. }
  114. }
  115. if(event->value.input.state && event->value.input.input == InputUp) {
  116. if(state->carrier_freq < 45000) {
  117. state->carrier_freq += 1000;
  118. } else {
  119. state->carrier_freq = 33000;
  120. }
  121. }
  122. if(event->value.input.state && event->value.input.input == InputDown) {
  123. uint8_t duty_cycles_count = sizeof(duty_cycles) / sizeof(duty_cycles[0]);
  124. if(state->carrier_duty_cycle_id < (duty_cycles_count - 1)) {
  125. state->carrier_duty_cycle_id++;
  126. } else {
  127. state->carrier_duty_cycle_id = 0;
  128. }
  129. }
  130. }
  131. void input_nec(AppEvent* event, State* state) {
  132. uint8_t packets_count = sizeof(nec_packets) / sizeof(nec_packets[0]);
  133. if(event->value.input.input == InputOk) {
  134. if(event->value.input.state) {
  135. vTaskSuspendAll();
  136. ir_nec_send(
  137. nec_packets[state->nec_packet_id].addr, nec_packets[state->nec_packet_id].data);
  138. xTaskResumeAll();
  139. }
  140. }
  141. if(event->value.input.state && event->value.input.input == InputUp) {
  142. if(state->nec_packet_id < (packets_count - 1)) {
  143. state->nec_packet_id++;
  144. } else {
  145. state->nec_packet_id = 0;
  146. }
  147. }
  148. if(event->value.input.state && event->value.input.input == InputDown) {
  149. if(state->nec_packet_id > 0) {
  150. state->nec_packet_id--;
  151. } else {
  152. state->nec_packet_id = packets_count - 1;
  153. }
  154. }
  155. }
  156. void input_samsung(AppEvent* event, State* state) {
  157. uint8_t packets_count = sizeof(samsung_packets) / sizeof(samsung_packets[0]);
  158. if(event->value.input.input == InputOk) {
  159. if(event->value.input.state) {
  160. vTaskSuspendAll();
  161. ir_samsung_send(
  162. samsung_packets[state->samsung_packet_id].addr,
  163. samsung_packets[state->samsung_packet_id].data);
  164. xTaskResumeAll();
  165. }
  166. }
  167. if(event->value.input.state && event->value.input.input == InputUp) {
  168. if(state->samsung_packet_id < (packets_count - 1)) {
  169. state->samsung_packet_id++;
  170. } else {
  171. state->samsung_packet_id = 0;
  172. }
  173. }
  174. if(event->value.input.state && event->value.input.input == InputDown) {
  175. if(state->samsung_packet_id > 0) {
  176. state->samsung_packet_id--;
  177. } else {
  178. state->samsung_packet_id = packets_count - 1;
  179. }
  180. }
  181. }
  182. static void render_callback(Canvas* canvas, void* ctx) {
  183. State* state = (State*)acquire_mutex((ValueMutex*)ctx, 25);
  184. canvas_clear(canvas);
  185. canvas_set_color(canvas, ColorBlack);
  186. canvas_set_font(canvas, FontPrimary);
  187. canvas_draw_str(canvas, 2, 12, "irda test");
  188. modes[state->mode_id].render(canvas, state);
  189. release_mutex((ValueMutex*)ctx, state);
  190. }
  191. static void input_callback(InputEvent* input_event, void* ctx) {
  192. osMessageQueueId_t event_queue = (QueueHandle_t)ctx;
  193. AppEvent event;
  194. event.type = EventTypeKey;
  195. event.value.input = *input_event;
  196. osMessageQueuePut(event_queue, &event, 0, 0);
  197. }
  198. osMessageQueueId_t irda_event_queue;
  199. void irda(void* p) {
  200. osMessageQueueId_t event_queue = osMessageQueueNew(32, sizeof(AppEvent), NULL);
  201. irda_event_queue = event_queue;
  202. State _state;
  203. uint8_t mode_count = sizeof(modes) / sizeof(modes[0]);
  204. uint8_t duty_cycles_count = sizeof(duty_cycles) / sizeof(duty_cycles[0]);
  205. _state.carrier_duty_cycle_id = duty_cycles_count - 2;
  206. _state.carrier_freq = 36000;
  207. _state.mode_id = 0;
  208. _state.nec_packet_id = 0;
  209. _state.samsung_packet_id = 0;
  210. ValueMutex state_mutex;
  211. if(!init_mutex(&state_mutex, &_state, sizeof(State))) {
  212. printf("cannot create mutex\n");
  213. furiac_exit(NULL);
  214. }
  215. Widget* widget = widget_alloc();
  216. widget_draw_callback_set(widget, render_callback, &state_mutex);
  217. widget_input_callback_set(widget, input_callback, event_queue);
  218. // Open GUI and register widget
  219. Gui* gui = (Gui*)furi_open("gui");
  220. if(gui == NULL) {
  221. printf("gui is not available\n");
  222. furiac_exit(NULL);
  223. }
  224. gui_add_widget(gui, widget, GuiLayerFullscreen);
  225. // Red LED
  226. // TODO open record
  227. const GpioPin* led_record = &led_gpio[0];
  228. // configure pin
  229. gpio_init(led_record, GpioModeOutputOpenDrain);
  230. // setup irda rx timer
  231. tim_irda_rx_init();
  232. AppEvent event;
  233. while(1) {
  234. osStatus_t event_status = osMessageQueueGet(event_queue, &event, NULL, osWaitForever);
  235. State* state = (State*)acquire_mutex_block(&state_mutex);
  236. if(event_status == osOK) {
  237. if(event.type == EventTypeKey) {
  238. // press events
  239. if(event.value.input.state && event.value.input.input == InputBack) {
  240. printf("[irda] bye!\n");
  241. // TODO remove all widgets create by app
  242. widget_enabled_set(widget, false);
  243. furiac_exit(NULL);
  244. }
  245. if(event.value.input.state && event.value.input.input == InputLeft) {
  246. if(state->mode_id > 0) {
  247. state->mode_id--;
  248. }
  249. }
  250. if(event.value.input.state && event.value.input.input == InputRight) {
  251. if(state->mode_id < (mode_count - 1)) {
  252. state->mode_id++;
  253. }
  254. }
  255. modes[state->mode_id].input(&event, state);
  256. } else if(event.type == EventTypeRX) {
  257. gpio_write(led_record, event.value.rx_edge);
  258. }
  259. } else {
  260. // event timeout
  261. }
  262. release_mutex(&state_mutex, state);
  263. widget_update(widget);
  264. }
  265. }
  266. void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef* htim) {
  267. if(htim->Instance == TIM2) {
  268. if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1) {
  269. // falling event
  270. AppEvent event;
  271. event.type = EventTypeRX;
  272. event.value.rx_edge = false;
  273. osMessageQueuePut(irda_event_queue, &event, 0, 0);
  274. } else if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2) {
  275. // rising event
  276. //uint32_t period_in_us = HAL_TIM_ReadCapturedValue();
  277. AppEvent event;
  278. event.type = EventTypeRX;
  279. event.value.rx_edge = true;
  280. osMessageQueuePut(irda_event_queue, &event, 0, 0);
  281. }
  282. }
  283. }