doitrand.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356
  1. #include "doitrand.h"
  2. #include "../blocks/const.h"
  3. #include "../blocks/decoder.h"
  4. #include "../blocks/encoder.h"
  5. #include "../blocks/generic.h"
  6. #include "../blocks/math.h"
  7. #define TAG "SubGhzProtocolDoitrand"
  8. #define DIP_PATTERN "%c%c%c%c%c%c%c%c%c%c"
  9. #define CNT_TO_DIP(dip) \
  10. (dip & 0x0001 ? '1' : '0'), (dip & 0x0100 ? '1' : '0'), (dip & 0x0080 ? '1' : '0'), \
  11. (dip & 0x0040 ? '1' : '0'), (dip & 0x0020 ? '1' : '0'), (dip & 0x1000 ? '1' : '0'), \
  12. (dip & 0x0800 ? '1' : '0'), (dip & 0x0400 ? '1' : '0'), (dip & 0x0200 ? '1' : '0'), \
  13. (dip & 0x0002 ? '1' : '0')
  14. static const SubGhzBlockConst subghz_protocol_doitrand_const = {
  15. .te_short = 400,
  16. .te_long = 1100,
  17. .te_delta = 150,
  18. .min_count_bit_for_found = 37,
  19. };
  20. struct SubGhzProtocolDecoderDoitrand {
  21. SubGhzProtocolDecoderBase base;
  22. SubGhzBlockDecoder decoder;
  23. SubGhzBlockGeneric generic;
  24. };
  25. struct SubGhzProtocolEncoderDoitrand {
  26. SubGhzProtocolEncoderBase base;
  27. SubGhzProtocolBlockEncoder encoder;
  28. SubGhzBlockGeneric generic;
  29. };
  30. typedef enum {
  31. DoitrandDecoderStepReset = 0,
  32. DoitrandDecoderStepFoundStartBit,
  33. DoitrandDecoderStepSaveDuration,
  34. DoitrandDecoderStepCheckDuration,
  35. } DoitrandDecoderStep;
  36. const SubGhzProtocolDecoder subghz_protocol_doitrand_decoder = {
  37. .alloc = subghz_protocol_decoder_doitrand_alloc,
  38. .free = subghz_protocol_decoder_doitrand_free,
  39. .feed = subghz_protocol_decoder_doitrand_feed,
  40. .reset = subghz_protocol_decoder_doitrand_reset,
  41. .get_hash_data = subghz_protocol_decoder_doitrand_get_hash_data,
  42. .serialize = subghz_protocol_decoder_doitrand_serialize,
  43. .deserialize = subghz_protocol_decoder_doitrand_deserialize,
  44. .get_string = subghz_protocol_decoder_doitrand_get_string,
  45. };
  46. const SubGhzProtocolEncoder subghz_protocol_doitrand_encoder = {
  47. .alloc = subghz_protocol_encoder_doitrand_alloc,
  48. .free = subghz_protocol_encoder_doitrand_free,
  49. .deserialize = subghz_protocol_encoder_doitrand_deserialize,
  50. .stop = subghz_protocol_encoder_doitrand_stop,
  51. .yield = subghz_protocol_encoder_doitrand_yield,
  52. };
  53. const SubGhzProtocol subghz_protocol_doitrand = {
  54. .name = SUBGHZ_PROTOCOL_DOITRAND_NAME,
  55. .type = SubGhzProtocolTypeStatic,
  56. .flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable |
  57. SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
  58. .decoder = &subghz_protocol_doitrand_decoder,
  59. .encoder = &subghz_protocol_doitrand_encoder,
  60. };
  61. void* subghz_protocol_encoder_doitrand_alloc(SubGhzEnvironment* environment) {
  62. UNUSED(environment);
  63. SubGhzProtocolEncoderDoitrand* instance = malloc(sizeof(SubGhzProtocolEncoderDoitrand));
  64. instance->base.protocol = &subghz_protocol_doitrand;
  65. instance->generic.protocol_name = instance->base.protocol->name;
  66. instance->encoder.repeat = 10;
  67. instance->encoder.size_upload = 128;
  68. instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
  69. instance->encoder.is_running = false;
  70. return instance;
  71. }
  72. void subghz_protocol_encoder_doitrand_free(void* context) {
  73. furi_assert(context);
  74. SubGhzProtocolEncoderDoitrand* instance = context;
  75. free(instance->encoder.upload);
  76. free(instance);
  77. }
  78. /**
  79. * Generating an upload from data.
  80. * @param instance Pointer to a SubGhzProtocolEncoderDoitrand instance
  81. * @return true On success
  82. */
  83. static bool subghz_protocol_encoder_doitrand_get_upload(SubGhzProtocolEncoderDoitrand* instance) {
  84. furi_assert(instance);
  85. size_t index = 0;
  86. size_t size_upload = (instance->generic.data_count_bit * 2) + 2;
  87. if(size_upload > instance->encoder.size_upload) {
  88. FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
  89. return false;
  90. } else {
  91. instance->encoder.size_upload = size_upload;
  92. }
  93. //Send header
  94. instance->encoder.upload[index++] =
  95. level_duration_make(false, (uint32_t)subghz_protocol_doitrand_const.te_short * 62);
  96. //Send start bit
  97. instance->encoder.upload[index++] =
  98. level_duration_make(true, (uint32_t)subghz_protocol_doitrand_const.te_short * 2 - 100);
  99. //Send key data
  100. for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
  101. if(bit_read(instance->generic.data, i - 1)) {
  102. //send bit 1
  103. instance->encoder.upload[index++] =
  104. level_duration_make(false, (uint32_t)subghz_protocol_doitrand_const.te_long);
  105. instance->encoder.upload[index++] =
  106. level_duration_make(true, (uint32_t)subghz_protocol_doitrand_const.te_short);
  107. } else {
  108. //send bit 0
  109. instance->encoder.upload[index++] =
  110. level_duration_make(false, (uint32_t)subghz_protocol_doitrand_const.te_short);
  111. instance->encoder.upload[index++] =
  112. level_duration_make(true, (uint32_t)subghz_protocol_doitrand_const.te_long);
  113. }
  114. }
  115. return true;
  116. }
  117. bool subghz_protocol_encoder_doitrand_deserialize(void* context, FlipperFormat* flipper_format) {
  118. furi_assert(context);
  119. SubGhzProtocolEncoderDoitrand* instance = context;
  120. bool res = false;
  121. do {
  122. if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
  123. FURI_LOG_E(TAG, "Deserialize error");
  124. break;
  125. }
  126. if(instance->generic.data_count_bit !=
  127. subghz_protocol_doitrand_const.min_count_bit_for_found) {
  128. FURI_LOG_E(TAG, "Wrong number of bits in key");
  129. break;
  130. }
  131. //optional parameter parameter
  132. flipper_format_read_uint32(
  133. flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
  134. if(!subghz_protocol_encoder_doitrand_get_upload(instance)) break;
  135. instance->encoder.is_running = true;
  136. res = true;
  137. } while(false);
  138. return res;
  139. }
  140. void subghz_protocol_encoder_doitrand_stop(void* context) {
  141. SubGhzProtocolEncoderDoitrand* instance = context;
  142. instance->encoder.is_running = false;
  143. }
  144. LevelDuration subghz_protocol_encoder_doitrand_yield(void* context) {
  145. SubGhzProtocolEncoderDoitrand* instance = context;
  146. if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
  147. instance->encoder.is_running = false;
  148. return level_duration_reset();
  149. }
  150. LevelDuration ret = instance->encoder.upload[instance->encoder.front];
  151. if(++instance->encoder.front == instance->encoder.size_upload) {
  152. instance->encoder.repeat--;
  153. instance->encoder.front = 0;
  154. }
  155. return ret;
  156. }
  157. void* subghz_protocol_decoder_doitrand_alloc(SubGhzEnvironment* environment) {
  158. UNUSED(environment);
  159. SubGhzProtocolDecoderDoitrand* instance = malloc(sizeof(SubGhzProtocolDecoderDoitrand));
  160. instance->base.protocol = &subghz_protocol_doitrand;
  161. instance->generic.protocol_name = instance->base.protocol->name;
  162. return instance;
  163. }
  164. void subghz_protocol_decoder_doitrand_free(void* context) {
  165. furi_assert(context);
  166. SubGhzProtocolDecoderDoitrand* instance = context;
  167. free(instance);
  168. }
  169. void subghz_protocol_decoder_doitrand_reset(void* context) {
  170. furi_assert(context);
  171. SubGhzProtocolDecoderDoitrand* instance = context;
  172. instance->decoder.parser_step = DoitrandDecoderStepReset;
  173. }
  174. void subghz_protocol_decoder_doitrand_feed(void* context, bool level, uint32_t duration) {
  175. furi_assert(context);
  176. SubGhzProtocolDecoderDoitrand* instance = context;
  177. switch(instance->decoder.parser_step) {
  178. case DoitrandDecoderStepReset:
  179. if((!level) && (DURATION_DIFF(duration, subghz_protocol_doitrand_const.te_short * 62) <
  180. subghz_protocol_doitrand_const.te_delta * 30)) {
  181. //Found Preambula
  182. instance->decoder.parser_step = DoitrandDecoderStepFoundStartBit;
  183. }
  184. break;
  185. case DoitrandDecoderStepFoundStartBit:
  186. if(level && ((DURATION_DIFF(duration, (subghz_protocol_doitrand_const.te_short * 2)) <
  187. subghz_protocol_doitrand_const.te_delta * 3))) {
  188. //Found start bit
  189. instance->decoder.parser_step = DoitrandDecoderStepSaveDuration;
  190. instance->decoder.decode_data = 0;
  191. instance->decoder.decode_count_bit = 0;
  192. } else {
  193. instance->decoder.parser_step = DoitrandDecoderStepReset;
  194. }
  195. break;
  196. case DoitrandDecoderStepSaveDuration:
  197. if(!level) {
  198. if(duration >= ((uint32_t)subghz_protocol_doitrand_const.te_short * 10 +
  199. subghz_protocol_doitrand_const.te_delta)) {
  200. instance->decoder.parser_step = DoitrandDecoderStepFoundStartBit;
  201. if(instance->decoder.decode_count_bit ==
  202. subghz_protocol_doitrand_const.min_count_bit_for_found) {
  203. instance->generic.data = instance->decoder.decode_data;
  204. instance->generic.data_count_bit = instance->decoder.decode_count_bit;
  205. if(instance->base.callback)
  206. instance->base.callback(&instance->base, instance->base.context);
  207. }
  208. instance->decoder.decode_data = 0;
  209. instance->decoder.decode_count_bit = 0;
  210. break;
  211. } else {
  212. instance->decoder.te_last = duration;
  213. instance->decoder.parser_step = DoitrandDecoderStepCheckDuration;
  214. }
  215. }
  216. break;
  217. case DoitrandDecoderStepCheckDuration:
  218. if(level) {
  219. if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_doitrand_const.te_short) <
  220. subghz_protocol_doitrand_const.te_delta) &&
  221. (DURATION_DIFF(duration, subghz_protocol_doitrand_const.te_long) <
  222. subghz_protocol_doitrand_const.te_delta * 3)) {
  223. subghz_protocol_blocks_add_bit(&instance->decoder, 0);
  224. instance->decoder.parser_step = DoitrandDecoderStepSaveDuration;
  225. } else if(
  226. (DURATION_DIFF(instance->decoder.te_last, subghz_protocol_doitrand_const.te_long) <
  227. subghz_protocol_doitrand_const.te_delta * 3) &&
  228. (DURATION_DIFF(duration, subghz_protocol_doitrand_const.te_short) <
  229. subghz_protocol_doitrand_const.te_delta)) {
  230. subghz_protocol_blocks_add_bit(&instance->decoder, 1);
  231. instance->decoder.parser_step = DoitrandDecoderStepSaveDuration;
  232. } else {
  233. instance->decoder.parser_step = DoitrandDecoderStepReset;
  234. }
  235. } else {
  236. instance->decoder.parser_step = DoitrandDecoderStepReset;
  237. }
  238. break;
  239. }
  240. }
  241. /**
  242. * Analysis of received data
  243. * @param instance Pointer to a SubGhzBlockGeneric* instance
  244. */
  245. static void subghz_protocol_doitrand_check_remote_controller(SubGhzBlockGeneric* instance) {
  246. /*
  247. * 67892345 0 k 1
  248. * 0000082F5F => 00000000000000000 10 000010111101011111
  249. * 0002082F5F => 00000000000100000 10 000010111101011111
  250. * 0200082F5F => 00010000000000000 10 000010111101011111
  251. * 0400082F5F => 00100000000000000 10 000010111101011111
  252. * 0800082F5F => 01000000000000000 10 000010111101011111
  253. * 1000082F5F => 10000000000000000 10 000010111101011111
  254. * 0020082F5F => 00000001000000000 10 000010111101011111
  255. * 0040082F5F => 00000010000000000 10 000010111101011111
  256. * 0080082F5F => 00000100000000000 10 000010111101011111
  257. * 0100082F5F => 00001000000000000 10 000010111101011111
  258. * 000008AF5F => 00000000000000000 10 001010111101011111
  259. * 1FE208AF5F => 11111111000100000 10 001010111101011111
  260. *
  261. * 0...9 - DIP
  262. * k- KEY
  263. */
  264. instance->cnt = (instance->data >> 24) | ((instance->data >> 15) & 0x1);
  265. instance->btn = ((instance->data >> 18) & 0x3);
  266. }
  267. uint8_t subghz_protocol_decoder_doitrand_get_hash_data(void* context) {
  268. furi_assert(context);
  269. SubGhzProtocolDecoderDoitrand* instance = context;
  270. return subghz_protocol_blocks_get_hash_data(
  271. &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
  272. }
  273. bool subghz_protocol_decoder_doitrand_serialize(
  274. void* context,
  275. FlipperFormat* flipper_format,
  276. SubGhzPresetDefinition* preset) {
  277. furi_assert(context);
  278. SubGhzProtocolDecoderDoitrand* instance = context;
  279. return subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
  280. }
  281. bool subghz_protocol_decoder_doitrand_deserialize(void* context, FlipperFormat* flipper_format) {
  282. furi_assert(context);
  283. SubGhzProtocolDecoderDoitrand* instance = context;
  284. bool ret = false;
  285. do {
  286. if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
  287. break;
  288. }
  289. if(instance->generic.data_count_bit !=
  290. subghz_protocol_doitrand_const.min_count_bit_for_found) {
  291. FURI_LOG_E(TAG, "Wrong number of bits in key");
  292. break;
  293. }
  294. ret = true;
  295. } while(false);
  296. return ret;
  297. }
  298. void subghz_protocol_decoder_doitrand_get_string(void* context, FuriString* output) {
  299. furi_assert(context);
  300. SubGhzProtocolDecoderDoitrand* instance = context;
  301. subghz_protocol_doitrand_check_remote_controller(&instance->generic);
  302. furi_string_cat_printf(
  303. output,
  304. "%s %dbit\r\n"
  305. "Key:%02lX%08lX\r\n"
  306. "Btn:%X\r\n"
  307. "DIP:" DIP_PATTERN "\r\n",
  308. instance->generic.protocol_name,
  309. instance->generic.data_count_bit,
  310. (uint32_t)(instance->generic.data >> 32) & 0xFFFFFFFF,
  311. (uint32_t)(instance->generic.data & 0xFFFFFFFF),
  312. instance->generic.btn,
  313. CNT_TO_DIP(instance->generic.cnt));
  314. }