subghz_protocol_keeloq.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. #include "subghz_protocol_keeloq.h"
  2. #include <furi.h>
  3. #include <m-string.h>
  4. #include <m-array.h>
  5. /*
  6. * Keeloq
  7. * https://ru.wikipedia.org/wiki/KeeLoq
  8. * https://phreakerclub.com/forum/showthread.php?t=1094
  9. *
  10. */
  11. #define KEELOQ_NLF 0x3A5C742E
  12. #define bit(x,n) (((x)>>(n))&1)
  13. #define g5(x,a,b,c,d,e) (bit(x,a)+bit(x,b)*2+bit(x,c)*4+bit(x,d)*8+bit(x,e)*16)
  14. /*
  15. * KeeLoq learning types
  16. * https://phreakerclub.com/forum/showthread.php?t=67
  17. */
  18. #define KEELOQ_LEARNING_UNKNOWN 0u
  19. #define KEELOQ_LEARNING_SIMPLE 1u
  20. #define KEELOQ_LEARNING_NORMAL 2u
  21. #define KEELOQ_LEARNING_SECURE 3u
  22. typedef struct {
  23. string_t name;
  24. uint64_t key;
  25. uint16_t type;
  26. } KeeLoqManufactureCode;
  27. ARRAY_DEF(KeeLoqManufactureCodeArray, KeeLoqManufactureCode, M_POD_OPLIST)
  28. #define M_OPL_KeeLoqManufactureCodeArray_t() ARRAY_OPLIST(KeeLoqManufactureCodeArray, M_POD_OPLIST)
  29. struct SubGhzProtocolKeeloq {
  30. SubGhzProtocolCommon common;
  31. KeeLoqManufactureCodeArray_t manufacture_codes;
  32. const char* manufacture_name;
  33. };
  34. /** Simple Learning Encrypt
  35. * @param data - 0xBSSSCCCC, B(4bit) key, S(10bit) serial&0x3FF, C(16bit) counter
  36. * @param key - manufacture (64bit)
  37. * @return keelog encrypt data
  38. */
  39. inline uint32_t subghz_protocol_keeloq_encrypt(const uint32_t data, const uint64_t key) {
  40. uint32_t x = data, r;
  41. for (r = 0; r < 528; r++)
  42. x = (x>>1)^((bit(x,0)^bit(x,16)^(uint32_t)bit(key,r&63)^bit(KEELOQ_NLF,g5(x,1,9,20,26,31)))<<31);
  43. return x;
  44. }
  45. /** Simple Learning Decrypt
  46. * @param data - keelog encrypt data
  47. * @param key - manufacture (64bit)
  48. * @return 0xBSSSCCCC, B(4bit) key, S(10bit) serial&0x3FF, C(16bit) counter
  49. */
  50. inline uint32_t subghz_protocol_keeloq_decrypt(const uint32_t data, const uint64_t key) {
  51. uint32_t x = data, r;
  52. for (r = 0; r < 528; r++)
  53. x = (x<<1)^bit(x,31)^bit(x,15)^(uint32_t)bit(key,(15-r)&63)^bit(KEELOQ_NLF,g5(x,0,8,19,25,30));
  54. return x;
  55. }
  56. /** Normal Learning
  57. * @param data - serial number (28bit)
  58. * @param key - manufacture (64bit)
  59. * @return manufacture for this serial number (64bit)
  60. */
  61. inline uint64_t subghz_protocol_keeloq_normal_learning(uint32_t data, const uint64_t key){
  62. uint32_t k1,k2;
  63. data&=0x0FFFFFFF;
  64. data|=0x20000000;
  65. k1=subghz_protocol_keeloq_decrypt(data, key);
  66. data&=0x0FFFFFFF;
  67. data|=0x60000000;
  68. k2=subghz_protocol_keeloq_decrypt(data, key);
  69. return ((uint64_t)k2<<32)| k1; // key - shifrovanoya
  70. }
  71. SubGhzProtocolKeeloq* subghz_protocol_keeloq_alloc() {
  72. SubGhzProtocolKeeloq* instance = furi_alloc(sizeof(SubGhzProtocolKeeloq));
  73. instance->common.name = "KeeLoq";
  74. instance->common.code_min_count_bit_for_found = 64;
  75. instance->common.te_shot = 400;
  76. instance->common.te_long = 800;
  77. instance->common.te_delta = 140;
  78. instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_keeloq_to_str;
  79. KeeLoqManufactureCodeArray_init(instance->manufacture_codes);
  80. return instance;
  81. }
  82. void subghz_protocol_keeloq_free(SubGhzProtocolKeeloq* instance) {
  83. furi_assert(instance);
  84. for
  85. M_EACH(manufacture_code, instance->manufacture_codes, KeeLoqManufactureCodeArray_t) {
  86. string_clear(manufacture_code->name);
  87. manufacture_code->key = 0;
  88. }
  89. KeeLoqManufactureCodeArray_clear(instance->manufacture_codes);
  90. free(instance);
  91. }
  92. void subghz_protocol_keeloq_add_manafacture_key(SubGhzProtocolKeeloq* instance, const char* name, uint64_t key, uint16_t type) {
  93. KeeLoqManufactureCode* manufacture_code = KeeLoqManufactureCodeArray_push_raw(instance->manufacture_codes);
  94. string_init_set_str(manufacture_code->name, name);
  95. manufacture_code->key = key;
  96. manufacture_code->type = type;
  97. }
  98. /** Checking the accepted code against the database manafacture key
  99. *
  100. * @param instance SubGhzProtocolKeeloq instance
  101. * @param fix fix part of the parcel
  102. * @param hop hop encrypted part of the parcel
  103. * @return true on successful search
  104. */
  105. uint8_t subghz_protocol_keeloq_check_remote_controller_selector(SubGhzProtocolKeeloq* instance, uint32_t fix , uint32_t hop) {
  106. uint16_t end_serial = (uint16_t)(fix&0x3FF);
  107. uint8_t btn = (uint8_t)(fix>>28);
  108. uint32_t decrypt = 0;
  109. uint64_t man_normal_learning;
  110. for
  111. M_EACH(manufacture_code, instance->manufacture_codes, KeeLoqManufactureCodeArray_t) {
  112. switch (manufacture_code->type){
  113. case KEELOQ_LEARNING_SIMPLE:
  114. //Simple Learning
  115. decrypt = subghz_protocol_keeloq_decrypt(hop, manufacture_code->key);
  116. if((decrypt>>28 == btn) && ((((uint16_t)(decrypt>>16)) & 0x3FF) == end_serial)){
  117. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  118. instance->common.cnt = decrypt & 0x0000FFFF;
  119. return 1;
  120. }
  121. break;
  122. case KEELOQ_LEARNING_NORMAL:
  123. // Normal_Learning
  124. // https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
  125. man_normal_learning = subghz_protocol_keeloq_normal_learning(fix, manufacture_code->key);
  126. decrypt=subghz_protocol_keeloq_decrypt(hop, man_normal_learning);
  127. if( (decrypt>>28 ==btn)&& ((((uint16_t)(decrypt>>16))&0x3FF)==end_serial)){
  128. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  129. instance->common.cnt = decrypt & 0x0000FFFF;
  130. return 1;
  131. }
  132. break;
  133. case KEELOQ_LEARNING_UNKNOWN:
  134. // Simple Learning
  135. decrypt=subghz_protocol_keeloq_decrypt(hop, manufacture_code->key);
  136. if( (decrypt>>28 ==btn) && ((((uint16_t)(decrypt>>16))&0x3FF)==end_serial)){
  137. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  138. instance->common.cnt = decrypt & 0x0000FFFF;
  139. return 1;
  140. }
  141. // Check for mirrored man
  142. uint64_t man_rev=0;
  143. uint64_t man_rev_byte=0;
  144. for(uint8_t i=0; i<64; i+=8){
  145. man_rev_byte=(uint8_t)(manufacture_code->key >> i);
  146. man_rev = man_rev | man_rev_byte << (56-i);
  147. }
  148. decrypt=subghz_protocol_keeloq_decrypt(hop, man_rev);
  149. if( (decrypt>>28 ==btn) && ((((uint16_t)(decrypt>>16))&0x3FF)==end_serial)){
  150. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  151. instance->common.cnt= decrypt&0x0000FFFF;
  152. return 1;
  153. }
  154. //###########################
  155. // Normal_Learning
  156. // https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
  157. man_normal_learning = subghz_protocol_keeloq_normal_learning(fix, manufacture_code->key);
  158. decrypt=subghz_protocol_keeloq_decrypt(hop, man_normal_learning);
  159. if( (decrypt>>28 ==btn)&& ((((uint16_t)(decrypt>>16))&0x3FF)==end_serial)){
  160. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  161. instance->common.cnt= decrypt&0x0000FFFF;
  162. return 1;
  163. }
  164. // Check for mirrored man
  165. man_rev=0;
  166. man_rev_byte=0;
  167. for(uint8_t i=0; i<64; i+=8){
  168. man_rev_byte = (uint8_t)(manufacture_code->key >> i);
  169. man_rev = man_rev | man_rev_byte << (56-i);
  170. }
  171. man_normal_learning = subghz_protocol_keeloq_normal_learning(fix, man_rev);
  172. decrypt=subghz_protocol_keeloq_decrypt(hop, man_normal_learning);
  173. if( (decrypt>>28 ==btn) && ((((uint16_t)(decrypt>>16))&0x3FF)==end_serial)){
  174. instance->manufacture_name = string_get_cstr(manufacture_code->name);
  175. instance->common.cnt= decrypt&0x0000FFFF;
  176. return 1;
  177. }
  178. break;
  179. }
  180. }
  181. instance->manufacture_name = "Unknown";
  182. instance->common.cnt=0;
  183. return 0;
  184. }
  185. /** Analysis of received data
  186. *
  187. * @param instance SubGhzProtocolKeeloq instance
  188. */
  189. void subghz_protocol_keeloq_check_remote_controller(SubGhzProtocolKeeloq* instance) {
  190. uint64_t key = subghz_protocol_common_reverse_key(instance->common.code_found, instance->common.code_count_bit);
  191. uint32_t key_fix = key >> 32;
  192. uint32_t key_hop = key & 0x00000000ffffffff;
  193. // Check key AN-Motors
  194. if((key_hop >> 24) == ((key_hop>>16)&0x00ff) && (key_fix>>28) ==((key_hop>>12)&0x0f) && (key_hop & 0xFFF ) == 0x404){
  195. instance->manufacture_name = "AN-Motors";
  196. instance->common.cnt = key_hop>>16;
  197. } else if((key_hop & 0xFFF) == (0x000) && (key_fix>>28) ==((key_hop>>12)&0x0f) ){
  198. instance->manufacture_name = "HCS101";
  199. instance->common.cnt = key_hop>>16;
  200. } else {
  201. subghz_protocol_keeloq_check_remote_controller_selector(instance, key_fix, key_hop);
  202. }
  203. instance ->common.serial= key_fix&0x0FFFFFFF;
  204. instance->common.btn = key_fix >> 28;
  205. if (instance->common.callback) instance->common.callback((SubGhzProtocolCommon*)instance, instance->common.context);
  206. }
  207. /** Send bit
  208. *
  209. * @param instance - SubGhzProtocolKeeloq instance
  210. * @param bit - bit
  211. */
  212. void subghz_protocol_keeloq_send_bit(SubGhzProtocolKeeloq* instance, uint8_t bit) {
  213. if (bit) {
  214. // send bit 1
  215. SUBGHZ_TX_PIN_HIGTH();
  216. delay_us(instance->common.te_shot);
  217. SUBGHZ_TX_PIN_LOW();
  218. delay_us(instance->common.te_long);
  219. } else {
  220. // send bit 0
  221. SUBGHZ_TX_PIN_HIGTH();
  222. delay_us(instance->common.te_long);
  223. SUBGHZ_TX_PIN_LOW();
  224. delay_us(instance->common.te_shot);
  225. }
  226. }
  227. void subghz_protocol_keeloq_send_key(SubGhzProtocolKeeloq* instance, uint64_t key, uint8_t bit, uint8_t repeat) {
  228. while (repeat--) {
  229. // Send header
  230. for (uint8_t i = 11; i > 0; i--) {
  231. SUBGHZ_TX_PIN_HIGTH();
  232. delay_us(instance->common.te_shot);
  233. SUBGHZ_TX_PIN_LOW();
  234. delay_us(instance->common.te_shot);
  235. }
  236. delay_us(instance->common.te_shot * 9); //+1 up Send header
  237. for (uint8_t i = bit; i > 0; i--) {
  238. subghz_protocol_keeloq_send_bit(instance, bit_read(key, i - 1));
  239. }
  240. // +send 2 status bit
  241. subghz_protocol_keeloq_send_bit(instance, 0);
  242. subghz_protocol_keeloq_send_bit(instance, 0);
  243. // send end
  244. subghz_protocol_keeloq_send_bit(instance, 0);
  245. delay_us(instance->common.te_shot * 2); //+2 interval END SEND
  246. }
  247. }
  248. void subghz_protocol_keeloq_reset(SubGhzProtocolKeeloq* instance) {
  249. instance->common.parser_step = 0;
  250. }
  251. void subghz_protocol_keeloq_parse(SubGhzProtocolKeeloq* instance, bool level, uint32_t duration) {
  252. switch (instance->common.parser_step) {
  253. case 0:
  254. if ((level) && DURATION_DIFF(duration, instance->common.te_shot)< instance->common.te_delta) {
  255. instance->common.parser_step = 1;
  256. instance->common.header_count++;
  257. } else {
  258. instance->common.parser_step = 0;
  259. }
  260. break;
  261. case 1:
  262. if ((!level) && (DURATION_DIFF(duration, instance->common.te_shot ) < instance->common.te_delta)) {
  263. instance->common.parser_step = 0;
  264. break;
  265. }
  266. if ((instance->common.header_count > 2) && ( DURATION_DIFF(duration, instance->common.te_shot * 10)< instance->common.te_delta * 10)) {
  267. // Found header
  268. instance->common.parser_step = 2;
  269. instance->common.code_found = 0;
  270. instance->common.code_count_bit = 0;
  271. } else {
  272. instance->common.parser_step = 0;
  273. instance->common.header_count = 0;
  274. }
  275. break;
  276. case 2:
  277. if (level) {
  278. instance->common.te_last = duration;
  279. instance->common.parser_step = 3;
  280. }
  281. break;
  282. case 3:
  283. if (!level) {
  284. if (duration >= (instance->common.te_shot * 2 + instance->common.te_delta)) {
  285. // Found end TX
  286. instance->common.parser_step = 0;
  287. if (instance->common.code_count_bit >= instance->common.code_min_count_bit_for_found) {
  288. if(instance->common.code_last_found != instance->common.code_found ){
  289. subghz_protocol_keeloq_check_remote_controller(instance);
  290. }
  291. instance->common.code_last_found = instance->common.code_found;
  292. instance->common.code_found = 0;
  293. instance->common.code_count_bit = 0;
  294. instance->common.header_count = 0;
  295. }
  296. break;
  297. } else if ((DURATION_DIFF(instance->common.te_last, instance->common.te_shot) < instance->common.te_delta)
  298. && (DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
  299. if (instance->common.code_count_bit < instance->common.code_min_count_bit_for_found) {
  300. subghz_protocol_common_add_bit(&instance->common, 1);
  301. }
  302. instance->common.parser_step = 2;
  303. } else if ((DURATION_DIFF(instance->common.te_last, instance->common.te_long) < instance->common.te_delta)
  304. && (DURATION_DIFF(duration, instance->common.te_shot) < instance->common.te_delta)) {
  305. if (instance->common.code_count_bit < instance->common.code_min_count_bit_for_found) {
  306. subghz_protocol_common_add_bit(&instance->common, 0);
  307. }
  308. instance->common.parser_step = 2;
  309. } else {
  310. instance->common.parser_step = 0;
  311. instance->common.header_count = 0;
  312. }
  313. } else {
  314. instance->common.parser_step = 0;
  315. instance->common.header_count = 0;
  316. }
  317. break;
  318. }
  319. }
  320. void subghz_protocol_keeloq_to_str(SubGhzProtocolKeeloq* instance, string_t output) {
  321. uint32_t code_found_hi = instance->common.code_found >> 32;
  322. uint32_t code_found_lo = instance->common.code_found & 0x00000000ffffffff;
  323. uint64_t code_found_reverse = subghz_protocol_common_reverse_key(instance->common.code_found, instance->common.code_count_bit);
  324. uint32_t code_found_reverse_hi = code_found_reverse>>32;
  325. uint32_t code_found_reverse_lo = code_found_reverse&0x00000000ffffffff;
  326. string_cat_printf(
  327. output,
  328. "Protocol %s, %d Bit\r\n"
  329. "KEY:0x%lX%lX\r\n"
  330. "FIX:%08lX MF:%s \r\n"
  331. "HOP:%08lX \r\n"
  332. "SN:%07lX CNT:%04X B:%02lX\r\n",
  333. instance->common.name,
  334. instance->common.code_count_bit,
  335. code_found_hi,
  336. code_found_lo,
  337. code_found_reverse_hi,
  338. instance->manufacture_name,
  339. code_found_reverse_lo,
  340. instance->common.serial,
  341. instance->common.cnt,
  342. instance->common.btn
  343. );
  344. }