mag_helpers.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595
  1. #include "mag_helpers.h"
  2. #define TAG "MagHelpers"
  3. #define GPIO_PIN_A &gpio_ext_pa6
  4. #define GPIO_PIN_B &gpio_ext_pa7
  5. #define GPIO_PIN_ENABLE &gpio_ext_pa4
  6. #define RFID_PIN_OUT &gpio_rfid_carrier_out
  7. #define ZERO_PREFIX 25 // n zeros prefix
  8. #define ZERO_BETWEEN 53 // n zeros between tracks
  9. #define ZERO_SUFFIX 25 // n zeros suffix
  10. // bits per char on a given track
  11. const uint8_t bitlen[] = {7, 5, 5};
  12. // char offset by track
  13. const int sublen[] = {32, 48, 48};
  14. uint8_t bit_dir = 0;
  15. void bitbang_raw(bool value, MagSetting* setting)
  16. {
  17. switch(setting->tx) {
  18. case MagTxStateRFID:
  19. furi_hal_gpio_write(RFID_PIN_OUT, value);
  20. break;
  21. case MagTxStateGPIOA6A7:
  22. furi_hal_gpio_write(GPIO_PIN_A, value);
  23. furi_hal_gpio_write(GPIO_PIN_B, !value);
  24. break;
  25. default:
  26. break;
  27. }
  28. }
  29. void play_bit_rfid(uint8_t send_bit, MagSetting* setting) {
  30. // internal TX over RFID coil
  31. bit_dir ^= 1;
  32. furi_hal_gpio_write(RFID_PIN_OUT, bit_dir);
  33. furi_delay_us(setting->us_clock);
  34. if(send_bit) {
  35. bit_dir ^= 1;
  36. furi_hal_gpio_write(RFID_PIN_OUT, bit_dir);
  37. }
  38. furi_delay_us(setting->us_clock);
  39. furi_delay_us(setting->us_interpacket);
  40. }
  41. void play_bit_gpio(uint8_t send_bit, MagSetting* setting) {
  42. // external TX over motor driver wired to PIN_A and PIN_B
  43. bit_dir ^= 1;
  44. furi_hal_gpio_write(GPIO_PIN_A, bit_dir);
  45. furi_hal_gpio_write(GPIO_PIN_B, !bit_dir);
  46. furi_delay_us(setting->us_clock);
  47. if(send_bit) {
  48. bit_dir ^= 1;
  49. furi_hal_gpio_write(GPIO_PIN_A, bit_dir);
  50. furi_hal_gpio_write(GPIO_PIN_B, !bit_dir);
  51. }
  52. furi_delay_us(setting->us_clock);
  53. furi_delay_us(setting->us_interpacket);
  54. }
  55. bool play_bit(uint8_t send_bit, MagSetting* setting) {
  56. // Initialize configured TX method
  57. switch(setting->tx) {
  58. case MagTxStateRFID:
  59. play_bit_rfid(send_bit, setting);
  60. break;
  61. case MagTxStateGPIOA6A7:
  62. play_bit_gpio(send_bit, setting);
  63. break;
  64. default:
  65. return false;
  66. }
  67. return true;
  68. }
  69. void tx_init_rfid() {
  70. // initialize RFID system for TX
  71. furi_hal_power_enable_otg();
  72. furi_hal_ibutton_start_drive();
  73. furi_hal_ibutton_pin_low();
  74. // Initializing at GpioSpeedLow seems sufficient for our needs; no improvements seen by increasing speed setting
  75. // this doesn't seem to make a difference, leaving it in
  76. furi_hal_gpio_init(&gpio_rfid_data_in, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  77. furi_hal_gpio_write(&gpio_rfid_data_in, false);
  78. // false->ground RFID antenna; true->don't ground
  79. // skotopes (RFID dev) say normally you'd want RFID_PULL in high for signal forming, while modulating RFID_OUT
  80. // dunaevai135 had it low in their old code. Leaving low, as it doesn't seem to make a difference on my janky antenna
  81. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  82. furi_hal_gpio_write(&gpio_nfc_irq_rfid_pull, false);
  83. furi_hal_gpio_init(RFID_PIN_OUT, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  84. // confirm this delay is needed / sufficient? legacy from hackathon...
  85. furi_delay_ms(300);
  86. }
  87. void tx_reset_rfid() {
  88. // reset RFID system
  89. furi_hal_gpio_write(RFID_PIN_OUT, 0);
  90. furi_hal_rfid_pins_reset();
  91. furi_hal_power_disable_otg();
  92. }
  93. void tx_init_gpio() {
  94. furi_hal_power_enable_otg();
  95. // gpio_item_configure_all_pins(GpioModeOutputPushPull);
  96. furi_hal_gpio_init(GPIO_PIN_A, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  97. furi_hal_gpio_init(GPIO_PIN_B, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  98. furi_hal_gpio_init(GPIO_PIN_ENABLE, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  99. furi_hal_gpio_write(GPIO_PIN_ENABLE, 1);
  100. furi_delay_ms(500);
  101. }
  102. void tx_reset_gpio() {
  103. furi_hal_gpio_write(GPIO_PIN_A, 0);
  104. furi_hal_gpio_write(GPIO_PIN_B, 0);
  105. furi_hal_gpio_write(GPIO_PIN_ENABLE, 0);
  106. // set back to analog output mode?
  107. //gpio_item_configure_all_pins(GpioModeAnalog);
  108. furi_hal_power_disable_otg();
  109. }
  110. bool tx_init(MagSetting* setting) {
  111. // Initialize configured TX method
  112. switch(setting->tx) {
  113. case MagTxStateRFID:
  114. tx_init_rfid();
  115. break;
  116. case MagTxStateGPIOA6A7:
  117. tx_init_gpio();
  118. break;
  119. default:
  120. return false;
  121. }
  122. return true;
  123. }
  124. bool tx_reset(MagSetting* setting) {
  125. // Reset configured TX method
  126. switch(setting->tx) {
  127. case MagTxStateRFID:
  128. tx_reset_rfid();
  129. break;
  130. case MagTxStateGPIOA6A7:
  131. tx_reset_gpio();
  132. break;
  133. default:
  134. return false;
  135. }
  136. return true;
  137. }
  138. void track_to_bits(uint8_t* bit_array, const char* track_data, uint8_t track_index) {
  139. // convert individual track to bits
  140. int tmp, crc, lrc = 0;
  141. int i = 0;
  142. // Please forgive the mess. This was a bug battlezone. Will clean up over the weekend
  143. // So many stupid things done here, many learnings lol
  144. //FURI_LOG_D(TAG, "%d", strlen(track_data));
  145. //FURI_LOG_D(TAG, "%d", strlen(track_data) * bitlen[track_index]);
  146. // convert track data to bits
  147. for(uint8_t j = 0; track_data[j] != '\0'; j++) {
  148. crc = 1;
  149. tmp = track_data[j] - sublen[track_index];
  150. for(uint8_t k = 0; k < bitlen[track_index] - 1; k++) {
  151. crc ^= tmp & 1;
  152. lrc ^= (tmp & 1) << k;
  153. bit_array[i] = tmp & 1;
  154. //FURI_LOG_D(
  155. // TAG, "i, j, k: %d %d %d char %s bit %d", i, j, k, &track_data[j], bit_array[i]);
  156. i++;
  157. tmp >>= 1;
  158. }
  159. bit_array[i] = crc;
  160. //FURI_LOG_D(TAG, "i, j: %d %d char %s bit %d", i, j, &track_data[j], bit_array[i]);
  161. i++;
  162. }
  163. FURI_LOG_D(TAG, "LRC");
  164. // finish calculating final "byte" (LRC)
  165. tmp = lrc;
  166. crc = 1;
  167. for(uint8_t j = 0; j < bitlen[track_index] - 1; j++) {
  168. crc ^= tmp & 1;
  169. bit_array[i] = tmp & 1;
  170. //FURI_LOG_D(TAG, "i, j: %d %d bit %d", i, j, bit_array[i]);
  171. i++;
  172. tmp >>= 1;
  173. }
  174. bit_array[i] = crc;
  175. //FURI_LOG_D(TAG, "i: %d bit %d", i, bit_array[i]);
  176. i++;
  177. // My makeshift end sentinel. All other values 0/1
  178. bit_array[i] = 2;
  179. //FURI_LOG_D(TAG, "i: %d bit %d", i, bit_array[i]);
  180. i++;
  181. // Log the output (messy but works)
  182. //char output[500] = {0x0};
  183. /*FuriString* tmp_str;
  184. tmp_str = furi_string_alloc();
  185. for(uint8_t j = 0; bit_array[j] != 2; j++) {
  186. furi_string_cat_printf(tmp_str, "%d", (bit_array[j] & 1));
  187. //strcat(output, furi_string_get_cstr(tmp_str));
  188. }
  189. FURI_LOG_D(TAG, "Track %d: %s", (track_index + 1), track_data);
  190. FURI_LOG_D(TAG, "Track %d: %s", (track_index + 1), furi_string_get_cstr(tmp_str));*/
  191. //furi_string_free(tmp_str);
  192. }
  193. void mag_spoof_bitwise(Mag* mag) {
  194. MagSetting* setting = mag->setting;
  195. FuriString* ft1 = mag->mag_dev->dev_data.track[0].str;
  196. FuriString* ft2 = mag->mag_dev->dev_data.track[1].str;
  197. char* data1; char* data2;
  198. data1 = malloc(furi_string_size(ft1)+1);
  199. data2 = malloc(furi_string_size(ft2)+1);
  200. strncpy(data1, furi_string_get_cstr(ft1), furi_string_size(ft1));
  201. strncpy(data2, furi_string_get_cstr(ft2), furi_string_size(ft2));
  202. if(furi_log_get_level() >= FuriLogLevelDebug) {
  203. debug_msr_string(data1, BITS_TRACK1, OFFSET_TRACK1);
  204. debug_msr_string(data2, BITS_TRACK2, OFFSET_TRACK2);
  205. }
  206. uint8_t bits_t1_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  207. uint8_t bits_t1_manchester[128] = {0x00}; // twice the above
  208. uint16_t bits_t1_count = msr_encode(data1, (uint8_t*) bits_t1_manchester, (uint8_t*) bits_t1_raw, BITS_TRACK1, OFFSET_TRACK1);
  209. uint8_t bits_t2_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  210. uint8_t bits_t2_manchester[128] = {0x00}; // twice the above
  211. uint16_t bits_t2_count = msr_encode(data2, (uint8_t*) bits_t2_manchester, (uint8_t*) bits_t2_raw, BITS_TRACK2, OFFSET_TRACK2);
  212. if(furi_log_get_level() >= FuriLogLevelDebug) {
  213. printf("Manchester bitcount: T1: %d, T2: %d\r\n", bits_t1_count, bits_t2_count);
  214. printf("T1 raw: ");
  215. for (int i = 0; i < bits_t1_count / 16; i++) printf("%02x ", bits_t1_raw[i]);
  216. printf("\r\n");
  217. printf("T1 manchester: ");
  218. for (int i = 0; i < bits_t1_count / 8; i++) printf("%02x ", bits_t1_manchester[i]);
  219. printf("\r\n");
  220. printf("T2 raw: ");
  221. for (int i = 0; i < bits_t2_count / 16; i++) printf("%02x ", bits_t2_raw[i]);
  222. printf("\r\n");
  223. printf("T2 manchester: ");
  224. for (int i = 0; i < bits_t2_count / 8; i++) printf("%02x ", bits_t2_manchester[i]);
  225. printf("\r\n");
  226. printf("Bitwise emulation done\r\n\r\n");
  227. }
  228. if(!tx_init(setting)) return;
  229. FURI_CRITICAL_ENTER();
  230. bool bit = false;
  231. if((setting->track == MagTrackStateAll))
  232. for(uint16_t i = 0; i < ZERO_PREFIX; i++)
  233. {
  234. bit ^= 0xFF;
  235. bitbang_raw(bit, setting);
  236. furi_delay_us(setting->us_clock*2);
  237. }
  238. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateOne))
  239. for(uint16_t i = 0; i < bits_t1_count; i++)
  240. {
  241. uint8_t byte = i / 8;
  242. uint8_t bitmask = 1 << (7-(i % 8));
  243. /* this comment is mostly for zw's convenience:
  244. *
  245. * bits are stored in their arrays like on a card (LSB first). This is not how usually bits are stored in a
  246. * byte, with the MSB first. the var bitmask creates the pattern to iterate through each bit, LSB first, like so
  247. * 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x80... masking bits one by one from the current byte
  248. *
  249. * i've chosen this LSB approach since bits and bytes are hard enough to visualize with the 5/8 and 7/8 encoding
  250. * MSR uses. It's a biiit more complicated to process, but visualizing it with printf or a debugger is
  251. * infinitely easier
  252. *
  253. * Encoding the following pairs of 5 bits as 5/8: A1234 B1234 C1234 D1234
  254. * using this LSB format looks like: A1234B12 34C1234D 12340000
  255. * using the MSB format, looks like: 21B4321A D4321C43 00004321
  256. * this means reading each byte backwards when printing/debugging, and the jumping 16 bits ahead, reading 8 more
  257. * bits backward, jumping 16 more bits ahead.
  258. *
  259. * I find this much more convenient for debugging, with the tiny incovenience of reading the bits in reverse
  260. * order. THus, the reason for the bitmask above
  261. */
  262. bit = !!(bits_t1_manchester[byte] & bitmask);
  263. // TODO: reimplement timing delays. Replace fixed furi_hal_cortex_delay_us to wait instead to a specific value
  264. // for DWT->CYCCNT. Note timer is aliased to 64us as per
  265. // #define FURI_HAL_CORTEX_INSTRUCTIONS_PER_MICROSECOND (SystemCoreClock / 1000000) | furi_hal_cortex.c
  266. bitbang_raw(bit, setting);
  267. furi_delay_us(setting->us_clock);
  268. // if (i % 2 == 1) furi_delay_us(setting->us_interpacket);
  269. }
  270. if((setting->track == MagTrackStateAll))
  271. for(uint16_t i = 0; i < ZERO_BETWEEN; i++)
  272. {
  273. bit ^= 0xFF;
  274. bitbang_raw(bit, setting);
  275. furi_delay_us(setting->us_clock*2);
  276. }
  277. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateTwo))
  278. for(uint16_t i = 0; i < bits_t2_count; i++)
  279. {
  280. uint16_t j = bits_t2_count - i - 1;
  281. uint8_t byte = j / 8;
  282. uint8_t bitmask = 1 << (7-(j % 8));
  283. bool bit = !!(bits_t2_manchester[byte] & bitmask);
  284. bitbang_raw(bit, setting);
  285. furi_delay_us(setting->us_clock);
  286. // if (i % 2 == 1) furi_delay_us(setting->us_interpacket);
  287. }
  288. if((setting->track == MagTrackStateAll))
  289. for(uint16_t i = 0; i < ZERO_SUFFIX; i++)
  290. {
  291. bit ^= 0xFF;
  292. bitbang_raw(bit, setting);
  293. furi_delay_us(setting->us_clock*2);
  294. }
  295. FURI_CRITICAL_EXIT();
  296. free(data1);
  297. free(data2);
  298. tx_reset(setting);
  299. }
  300. void mag_spoof(Mag* mag) {
  301. MagSetting* setting = mag->setting;
  302. // precompute tracks (WIP; ignores reverse and 3rd track)
  303. // likely will be reworked to antirez's bitmap method anyway...
  304. const char* data1 = furi_string_get_cstr(mag->mag_dev->dev_data.track[0].str);
  305. const char* data2 = furi_string_get_cstr(mag->mag_dev->dev_data.track[1].str);
  306. uint8_t bit_array1[2 * (strlen(data1) * bitlen[0]) + 1];
  307. uint8_t bit_array2[2 * (strlen(data2) * bitlen[1]) + 1];
  308. track_to_bits(bit_array1, data1, 0);
  309. track_to_bits(bit_array2, data2, 1);
  310. bool spoofed = false;
  311. do {
  312. // Initialize configured TX method
  313. if(!tx_init(setting)) break;
  314. // Critical timing section (need to eliminate ifs? does this impact timing?)
  315. FURI_CRITICAL_ENTER();
  316. // Prefix of zeros
  317. for(uint16_t i = 0; i < ZERO_PREFIX; i++) {
  318. if(!play_bit(0, setting)) break;
  319. }
  320. // Track 1
  321. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateOne)) {
  322. for(uint16_t i = 0; bit_array1[i] != 2; i++) {
  323. if(!play_bit((bit_array1[i] & 1), setting)) break;
  324. }
  325. }
  326. // Zeros between tracks
  327. if(setting->track == MagTrackStateAll) {
  328. for(uint16_t i = 0; i < ZERO_BETWEEN; i++) {
  329. if(!play_bit(0, setting)) break;
  330. }
  331. }
  332. // Track 2 (TODO: Reverse track)
  333. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateTwo)) {
  334. for(uint16_t i = 0; bit_array2[i] != 2; i++) {
  335. if(!play_bit((bit_array2[i] & 1), setting)) break;
  336. }
  337. }
  338. // Suffix of zeros
  339. for(uint16_t i = 0; i < ZERO_SUFFIX; i++) {
  340. if(!play_bit(0, setting)) break;
  341. }
  342. FURI_CRITICAL_EXIT();
  343. // Reset configured TX method
  344. if(!tx_reset(setting)) break;
  345. spoofed = true;
  346. } while(0);
  347. UNUSED(spoofed);
  348. /*if(!spoofed) {
  349. // error handling?
  350. // cleanup?
  351. }*/
  352. }
  353. //// @antirez's code from protoview for bitmapping. May want to refactor to use this...
  354. /* Set the 'bitpos' bit to value 'val', in the specified bitmap
  355. * 'b' of len 'blen'.
  356. * Out of range bits will silently be discarded. */
  357. void set_bit(uint8_t* b, uint32_t blen, uint32_t bitpos, bool val) {
  358. uint32_t byte = bitpos / 8;
  359. uint32_t bit = bitpos & 7;
  360. if(byte >= blen) return;
  361. if(val)
  362. b[byte] |= 1 << bit;
  363. else
  364. b[byte] &= ~(1 << bit);
  365. }
  366. /* Get the bit 'bitpos' of the bitmap 'b' of 'blen' bytes.
  367. * Out of range bits return false (not bit set). */
  368. bool get_bit(uint8_t* b, uint32_t blen, uint32_t bitpos) {
  369. uint32_t byte = bitpos / 8;
  370. uint32_t bit = bitpos & 7;
  371. if(byte >= blen) return 0;
  372. return (b[byte] & (1 << bit)) != 0;
  373. }
  374. /*uint32_t convert_signal_to_bits(uint8_t *b, uint32_t blen, RawSamplesBuffer *s, uint32_t idx, uint32_t count, uint32_t rate) {
  375. if (rate == 0) return 0; // We can't perform the conversion.
  376. uint32_t bitpos = 0;
  377. for (uint32_t j = 0; j < count; j++) {
  378. uint32_t dur;
  379. bool level;
  380. raw_samples_get(s, j+idx, &level, &dur);
  381. uint32_t numbits = dur / rate; // full bits that surely fit.
  382. uint32_t rest = dur % rate; // How much we are left with.
  383. if (rest > rate/2) numbits++; // There is another one.
  384. while(numbits--) set_bit(b,blen,bitpos++,s[j].level);
  385. }
  386. return bitpos;
  387. }*/
  388. uint16_t add_bit(bool value, uint8_t* out, uint16_t count)
  389. {
  390. uint8_t bit = count % 8;
  391. uint8_t byte = count / 8;
  392. if (value)
  393. {
  394. out[byte] |= 0x01;
  395. }
  396. if (bit < 7) out[byte] <<= 1;
  397. return count+1;
  398. }
  399. uint16_t add_bit_manchester(bool value, uint8_t* out, uint16_t count)
  400. {
  401. static bool toggle = 0;
  402. toggle ^= 0x01;
  403. count = add_bit(toggle, out, count);
  404. if (value) toggle ^= 0x01;
  405. count = add_bit(toggle, out, count);
  406. return count;
  407. }
  408. uint16_t msr_encode(char* data, uint8_t* out_manchester, uint8_t* out_raw, uint8_t track_bits, uint8_t track_ascii_offset)
  409. {
  410. /*
  411. * track_bits - the number of raw (data) bits on the track. on ISO cards, that's 7 for track 5, or 4 for 2/3 - this is samy's bitlen
  412. * - this count includes the parity bit
  413. * track_ascii_offset - how much the ascii values are offset. track 1 makes space (ascii 32) become data 0x00,
  414. * - tracks 2/3 make ascii "0" become data 0x00 - this is samy's sublen
  415. *
  416. */
  417. uint16_t raw_bits_count = 0;
  418. uint16_t output_count = 0;
  419. int tmp, crc, lrc = 0;
  420. for (int i = 0; i < PREFIX_NUM_ZEROES; i++)
  421. {
  422. output_count = add_bit_manchester(0, out_manchester, output_count);
  423. raw_bits_count = add_bit(0, out_raw, raw_bits_count);
  424. }
  425. for (int i = 0; *(data+i) != 0; i++)
  426. {
  427. crc = 1;
  428. tmp = *(data+i) - track_ascii_offset;
  429. for (int j = 0; j < track_bits-1; j++)
  430. {
  431. crc ^= tmp & 1;
  432. lrc ^= (tmp & 1) << j;
  433. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  434. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  435. tmp >>= 1;
  436. }
  437. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  438. output_count = add_bit_manchester(crc, out_manchester, output_count);
  439. }
  440. // LRC byte
  441. tmp = lrc;
  442. crc = 1;
  443. for (int j = 0; j < track_bits-1; j++)
  444. {
  445. crc ^= tmp & 0x01;
  446. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  447. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  448. tmp >>= 1;
  449. }
  450. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  451. output_count = add_bit_manchester(crc, out_manchester, output_count);
  452. return output_count;
  453. }
  454. void debug_msr_string(char* data, uint8_t track_bits, uint8_t track_ascii_offset)
  455. {
  456. uint8_t bits_raw[64] = {0}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  457. uint8_t bits_manchester[128] = {0}; // twice the above
  458. int numbits = 0;
  459. printf("Encoding [%s] with %d bits\r\n", data, track_bits);
  460. numbits = msr_encode(data, (uint8_t*)bits_manchester, (uint8_t*)bits_raw, track_bits, track_ascii_offset);
  461. printf("Got %d bits\r\n", numbits);
  462. printf("Raw byte stream: ");
  463. for(int i = 0; i < numbits / 8 / 2; i++)
  464. {
  465. printf("%02x", bits_raw[i]);
  466. if (i%4==3) printf(" ");
  467. }
  468. printf("\r\n");
  469. printf("Bits ");
  470. int space_counter = 0;
  471. for(int i = 0; i < numbits / 2; i++)
  472. {
  473. if (i < PREFIX_NUM_ZEROES)
  474. {
  475. printf("X");
  476. continue;
  477. }
  478. else if (i == PREFIX_NUM_ZEROES)
  479. {
  480. printf (" ");
  481. space_counter = 0;
  482. }
  483. printf("%01x", (bits_raw[i/8] & (1 << (7-(i%8)))) != 0);
  484. if ((space_counter) % track_bits == track_bits-1) printf(" ");
  485. space_counter++;
  486. }
  487. printf("\r\n");
  488. printf("Manchester encoded, byte stream: ");
  489. for(int i = 0; i < numbits / 8; i++)
  490. {
  491. printf("%02x", bits_manchester[i]);
  492. if (i%4==3) printf(" ");
  493. }
  494. printf("\r\n\r\n");
  495. }