api-hal-power.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277
  1. #include <api-hal-power.h>
  2. #include <api-hal-clock.h>
  3. #include <api-hal-bt.h>
  4. #include <stm32wbxx_ll_rcc.h>
  5. #include <stm32wbxx_ll_pwr.h>
  6. #include <stm32wbxx_ll_hsem.h>
  7. #include <stm32wbxx_ll_cortex.h>
  8. #include <stm32wbxx_ll_gpio.h>
  9. #include <main.h>
  10. #include <hw_conf.h>
  11. #include <bq27220.h>
  12. #include <bq25896.h>
  13. typedef struct {
  14. volatile uint32_t insomnia;
  15. volatile uint32_t deep_insomnia;
  16. } ApiHalPower;
  17. static volatile ApiHalPower api_hal_power = {
  18. .insomnia = 0,
  19. .deep_insomnia = 1,
  20. };
  21. const ParamCEDV cedv = {
  22. .cedv_conf.gauge_conf = {
  23. .CCT = 1,
  24. .CSYNC = 0,
  25. .EDV_CMP = 0,
  26. .SC = 1,
  27. .FIXED_EDV0 = 1,
  28. .FCC_LIM = 1,
  29. .FC_FOR_VDQ = 1,
  30. .IGNORE_SD = 1,
  31. .SME0 = 0,
  32. },
  33. .full_charge_cap = 2100,
  34. .design_cap = 2100,
  35. .EDV0 = 3300,
  36. .EDV1 = 3321,
  37. .EDV2 = 3355,
  38. .EMF = 3679,
  39. .C0 = 430,
  40. .C1 = 0,
  41. .R1 = 408,
  42. .R0 = 334,
  43. .T0 = 4626,
  44. .TC = 11,
  45. .DOD0 = 4044,
  46. .DOD10 = 3905,
  47. .DOD20 = 3807,
  48. .DOD30 = 3718,
  49. .DOD40 = 3642,
  50. .DOD50 = 3585,
  51. .DOD60 = 3546,
  52. .DOD70 = 3514,
  53. .DOD80 = 3477,
  54. .DOD90 = 3411,
  55. .DOD100 = 3299,
  56. };
  57. void HAL_RCC_CSSCallback(void) {
  58. // TODO: notify user about issue with HSE
  59. api_hal_power_reset();
  60. }
  61. void api_hal_power_init() {
  62. LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1);
  63. LL_PWR_SMPS_SetMode(LL_PWR_SMPS_STEP_DOWN);
  64. bq27220_init(&cedv);
  65. bq25896_init();
  66. }
  67. uint16_t api_hal_power_insomnia_level() {
  68. return api_hal_power.insomnia;
  69. }
  70. void api_hal_power_insomnia_enter() {
  71. api_hal_power.insomnia++;
  72. }
  73. void api_hal_power_insomnia_exit() {
  74. api_hal_power.insomnia--;
  75. }
  76. bool api_hal_power_sleep_available() {
  77. return api_hal_power.insomnia == 0;
  78. }
  79. bool api_hal_power_deep_sleep_available() {
  80. return api_hal_bt_is_alive() && api_hal_power.deep_insomnia == 0;
  81. }
  82. void api_hal_power_light_sleep() {
  83. __WFI();
  84. }
  85. void api_hal_power_deep_sleep() {
  86. while( LL_HSEM_1StepLock(HSEM, CFG_HW_RCC_SEMID));
  87. if (!LL_HSEM_1StepLock(HSEM, CFG_HW_ENTRY_STOP_MODE_SEMID)) {
  88. if(LL_PWR_IsActiveFlag_C2DS()) {
  89. // Release ENTRY_STOP_MODE semaphore
  90. LL_HSEM_ReleaseLock(HSEM, CFG_HW_ENTRY_STOP_MODE_SEMID, 0);
  91. // The switch on HSI before entering Stop Mode is required
  92. api_hal_clock_switch_to_hsi();
  93. }
  94. } else {
  95. /**
  96. * The switch on HSI before entering Stop Mode is required
  97. */
  98. api_hal_clock_switch_to_hsi();
  99. }
  100. /* Release RCC semaphore */
  101. LL_HSEM_ReleaseLock(HSEM, CFG_HW_RCC_SEMID, 0);
  102. // Prepare deep sleep
  103. LL_PWR_SetPowerMode(LL_PWR_MODE_STOP1);
  104. LL_LPM_EnableDeepSleep();
  105. #if defined ( __CC_ARM)
  106. // Force store operations
  107. __force_stores();
  108. #endif
  109. __WFI();
  110. /* Release ENTRY_STOP_MODE semaphore */
  111. LL_HSEM_ReleaseLock(HSEM, CFG_HW_ENTRY_STOP_MODE_SEMID, 0);
  112. while(LL_HSEM_1StepLock(HSEM, CFG_HW_RCC_SEMID));
  113. if(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) {
  114. api_hal_clock_switch_to_pll();
  115. }
  116. LL_HSEM_ReleaseLock(HSEM, CFG_HW_RCC_SEMID, 0);
  117. }
  118. void api_hal_power_sleep() {
  119. if(api_hal_power_deep_sleep_available()) {
  120. api_hal_power_deep_sleep();
  121. } else {
  122. api_hal_power_light_sleep();
  123. }
  124. }
  125. uint8_t api_hal_power_get_pct() {
  126. return bq27220_get_state_of_charge();
  127. }
  128. uint8_t api_hal_power_get_bat_health_pct() {
  129. return bq27220_get_state_of_health();
  130. }
  131. bool api_hal_power_is_charging() {
  132. return bq25896_is_charging();
  133. }
  134. void api_hal_power_off() {
  135. bq25896_poweroff();
  136. }
  137. void api_hal_power_reset() {
  138. NVIC_SystemReset();
  139. }
  140. void api_hal_power_enable_otg() {
  141. bq25896_enable_otg();
  142. }
  143. void api_hal_power_disable_otg() {
  144. bq25896_disable_otg();
  145. }
  146. uint32_t api_hal_power_get_battery_remaining_capacity() {
  147. return bq27220_get_remaining_capacity();
  148. }
  149. uint32_t api_hal_power_get_battery_full_capacity() {
  150. return bq27220_get_full_charge_capacity();
  151. }
  152. float api_hal_power_get_battery_voltage(ApiHalPowerIC ic) {
  153. if (ic == ApiHalPowerICCharger) {
  154. return (float)bq25896_get_vbat_voltage() / 1000.0f;
  155. } else if (ic == ApiHalPowerICFuelGauge) {
  156. return (float)bq27220_get_voltage() / 1000.0f;
  157. } else {
  158. return 0.0f;
  159. }
  160. }
  161. float api_hal_power_get_battery_current(ApiHalPowerIC ic) {
  162. if (ic == ApiHalPowerICCharger) {
  163. return (float)bq25896_get_vbat_current() / 1000.0f;
  164. } else if (ic == ApiHalPowerICFuelGauge) {
  165. return (float)bq27220_get_current() / 1000.0f;
  166. } else {
  167. return 0.0f;
  168. }
  169. }
  170. float api_hal_power_get_battery_temperature(ApiHalPowerIC ic) {
  171. if (ic == ApiHalPowerICCharger) {
  172. // Linear approximation, +/- 5 C
  173. return (71.0f - (float)bq25896_get_ntc_mpct()/1000) / 0.6f;
  174. } else if (ic == ApiHalPowerICFuelGauge) {
  175. return ((float)bq27220_get_temperature() - 2731.0f) / 10.0f;
  176. } else {
  177. return 0.0f;
  178. }
  179. }
  180. float api_hal_power_get_usb_voltage(){
  181. return (float)bq25896_get_vbus_voltage() / 1000.0f;
  182. }
  183. void api_hal_power_dump_state() {
  184. BatteryStatus battery_status;
  185. OperationStatus operation_status;
  186. if (bq27220_get_battery_status(&battery_status) == BQ27220_ERROR
  187. || bq27220_get_operation_status(&operation_status) == BQ27220_ERROR) {
  188. printf("Failed to get bq27220 status. Communication error.\r\n");
  189. } else {
  190. printf(
  191. "bq27220: CALMD: %d, SEC0: %d, SEC1: %d, EDV2: %d, VDQ: %d, INITCOMP: %d, SMTH: %d, BTPINT: %d, CFGUPDATE: %d\r\n",
  192. operation_status.CALMD, operation_status.SEC0, operation_status.SEC1,
  193. operation_status.EDV2, operation_status.VDQ, operation_status.INITCOMP,
  194. operation_status.SMTH, operation_status.BTPINT, operation_status.CFGUPDATE
  195. );
  196. // Battery status register, part 1
  197. printf(
  198. "bq27220: CHGINH: %d, FC: %d, OTD: %d, OTC: %d, SLEEP: %d, OCVFAIL: %d, OCVCOMP: %d, FD: %d\r\n",
  199. battery_status.CHGINH, battery_status.FC, battery_status.OTD,
  200. battery_status.OTC, battery_status.SLEEP, battery_status.OCVFAIL,
  201. battery_status.OCVCOMP, battery_status.FD
  202. );
  203. // Battery status register, part 2
  204. printf(
  205. "bq27220: DSG: %d, SYSDWN: %d, TDA: %d, BATTPRES: %d, AUTH_GD: %d, OCVGD: %d, TCA: %d, RSVD: %d\r\n",
  206. battery_status.DSG, battery_status.SYSDWN, battery_status.TDA,
  207. battery_status.BATTPRES, battery_status.AUTH_GD, battery_status.OCVGD,
  208. battery_status.TCA, battery_status.RSVD
  209. );
  210. // Voltage and current info
  211. printf(
  212. "bq27220: Full capacity: %dmAh, Design capacity: %dmAh, Remaining capacity: %dmAh, State of Charge: %d%%, State of health: %d%%\r\n",
  213. bq27220_get_full_charge_capacity(), bq27220_get_design_capacity(), bq27220_get_remaining_capacity(),
  214. bq27220_get_state_of_charge(), bq27220_get_state_of_health()
  215. );
  216. printf(
  217. "bq27220: Voltage: %dmV, Current: %dmA, Temperature: %dC\r\n",
  218. bq27220_get_voltage(), bq27220_get_current(), (int)api_hal_power_get_battery_temperature(ApiHalPowerICFuelGauge)
  219. );
  220. }
  221. printf(
  222. "bq25896: VBUS: %d, VSYS: %d, VBAT: %d, Current: %d, NTC: %ldm%%\r\n",
  223. bq25896_get_vbus_voltage(), bq25896_get_vsys_voltage(),
  224. bq25896_get_vbat_voltage(), bq25896_get_vbat_current(),
  225. bq25896_get_ntc_mpct()
  226. );
  227. }
  228. void api_hal_power_enable_external_3_3v(){
  229. LL_GPIO_SetOutputPin(PERIPH_POWER_GPIO_Port, PERIPH_POWER_Pin);
  230. }
  231. void api_hal_power_disable_external_3_3v(){
  232. LL_GPIO_ResetOutputPin(PERIPH_POWER_GPIO_Port, PERIPH_POWER_Pin);
  233. }