esp_loader.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477
  1. /* Copyright 2020 Espressif Systems (Shanghai) PTE LTD
  2. *
  3. * Licensed under the Apache License, Version 2.0 (the "License");
  4. * you may not use this file except in compliance with the License.
  5. * You may obtain a copy of the License at
  6. *
  7. * http://www.apache.org/licenses/LICENSE-2.0
  8. *
  9. * Unless required by applicable law or agreed to in writing, software
  10. * distributed under the License is distributed on an "AS IS" BASIS,
  11. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. * See the License for the specific language governing permissions and
  13. * limitations under the License.
  14. */
  15. #include "serial_comm_prv.h"
  16. #include "serial_comm.h"
  17. #include "serial_io.h"
  18. #include "esp_loader.h"
  19. #include "md5_hash.h"
  20. #include <string.h>
  21. #include <assert.h>
  22. #ifndef MAX
  23. #define MAX(a, b) ((a) > (b)) ? (a) : (b)
  24. #endif
  25. #ifndef MIN
  26. #define MIN(a, b) ((a) < (b)) ? (a) : (b)
  27. #endif
  28. static const uint32_t DEFAULT_TIMEOUT = 1000;
  29. static const uint32_t DEFAULT_FLASH_TIMEOUT = 3000; // timeout for most flash operations
  30. static const uint32_t ERASE_REGION_TIMEOUT_PER_MB = 3000; // timeout (per megabyte) for erasing a region
  31. static const uint8_t PADDING_PATTERN = 0xFF;
  32. #define MEGABYTE 1024 * 1024
  33. size_t size_id_to_flash_size[] = {
  34. MEGABYTE / 4, // 256KB,
  35. MEGABYTE / 2, // 512KB,
  36. 1 * MEGABYTE, // 1MB,
  37. 2 * MEGABYTE, // 2MB,
  38. 4 * MEGABYTE, // 4MB,
  39. 8 * MEGABYTE, // 8MB,
  40. 16 * MEGABYTE // 16MB
  41. };
  42. typedef enum {
  43. SPI_FLASH_READ_ID = 0x9F
  44. } spi_flash_cmd_t;
  45. typedef struct {
  46. uint32_t cmd;
  47. uint32_t usr;
  48. uint32_t usr1;
  49. uint32_t usr2;
  50. uint32_t w0;
  51. uint32_t mosi_dlen;
  52. uint32_t miso_dlen;
  53. } target_registers_t;
  54. typedef struct {
  55. uint32_t reg_1;
  56. uint32_t reg_2;
  57. } date_registers_t;
  58. static const uint32_t UART_DATE_REG_ADDR = 0x60000078; // used to differentiate ESP8266 vs ESP32*
  59. static const uint32_t UART_DATE_REG2_ADDR = 0x3f400074; // used to differentiate ESP32-S2 vs other models
  60. #define ESP8266_SPI_REG_BASE 0x60000200
  61. #define ESP32S2_SPI_REG_BASE 0x3f402000
  62. #define ESP32_SPI_REG_BASE 0x60002000
  63. static const target_registers_t registers[ESP_MAX_CHIP] = {
  64. // ESP8266
  65. {
  66. .cmd = ESP8266_SPI_REG_BASE + 0x00,
  67. .usr = ESP8266_SPI_REG_BASE + 0x1c,
  68. .usr1 = ESP8266_SPI_REG_BASE + 0x20,
  69. .usr2 = ESP8266_SPI_REG_BASE + 0x24,
  70. .w0 = ESP8266_SPI_REG_BASE + 0x40,
  71. .mosi_dlen = 0,
  72. .miso_dlen = 0,
  73. },
  74. // ESP32
  75. {
  76. .cmd = ESP32_SPI_REG_BASE + 0x00,
  77. .usr = ESP32_SPI_REG_BASE + 0x1c,
  78. .usr1 = ESP32_SPI_REG_BASE + 0x20,
  79. .usr2 = ESP32_SPI_REG_BASE + 0x24,
  80. .w0 = ESP32_SPI_REG_BASE + 0x80,
  81. .mosi_dlen = ESP32_SPI_REG_BASE + 0x28,
  82. .miso_dlen = ESP32_SPI_REG_BASE + 0x2c,
  83. },
  84. // ESP32S2
  85. {
  86. .cmd = ESP32S2_SPI_REG_BASE + 0x00,
  87. .usr = ESP32S2_SPI_REG_BASE + 0x18,
  88. .usr1 = ESP32S2_SPI_REG_BASE + 0x1c,
  89. .usr2 = ESP32S2_SPI_REG_BASE + 0x20,
  90. .w0 = ESP32S2_SPI_REG_BASE + 0x58,
  91. .mosi_dlen = ESP32S2_SPI_REG_BASE + 0x24,
  92. .miso_dlen = ESP32S2_SPI_REG_BASE + 0x28,
  93. }
  94. };
  95. static uint32_t s_flash_write_size = 0;
  96. static target_chip_t s_target = ESP_UNKNOWN_CHIP;
  97. static const target_registers_t *s_reg = &registers[ESP32S2_CHIP];
  98. static const date_registers_t s_date_regs[ESP_MAX_CHIP] = {
  99. // ESP8266
  100. {
  101. .reg_1 = 0x00062000,
  102. .reg_2 = 0,
  103. },
  104. // ESP32
  105. {
  106. .reg_1 = 0x15122500,
  107. .reg_2 = 0,
  108. },
  109. // ESP32S2
  110. {
  111. .reg_1 = 0x00000500,
  112. .reg_2 = 0x19031400,
  113. }
  114. };
  115. #if MD5_ENABLED
  116. static const uint32_t MD5_TIMEOUT_PER_MB = 800;
  117. static struct MD5Context s_md5_context;
  118. static uint32_t s_start_address;
  119. static uint32_t s_image_size;
  120. static inline void init_md5(uint32_t address, uint32_t size)
  121. {
  122. s_start_address = address;
  123. s_image_size = size;
  124. MD5Init(&s_md5_context);
  125. }
  126. static inline void md5_update(const uint8_t *data, uint32_t size)
  127. {
  128. MD5Update(&s_md5_context, data, size);
  129. }
  130. static inline void md5_final(uint8_t digets[16])
  131. {
  132. MD5Final(digets, &s_md5_context);
  133. }
  134. #else
  135. static inline void init_md5(uint32_t address, uint32_t size) { }
  136. static inline void md5_update(const uint8_t *data, uint32_t size) { }
  137. static inline void md5_final(uint8_t digets[16]) { }
  138. #endif
  139. static uint32_t timeout_per_mb(uint32_t size_bytes, uint32_t time_per_mb)
  140. {
  141. uint32_t timeout = ERASE_REGION_TIMEOUT_PER_MB * (size_bytes / 1e6);
  142. return MAX(timeout, DEFAULT_FLASH_TIMEOUT);
  143. }
  144. static esp_loader_error_t detect_chip(target_chip_t *target)
  145. {
  146. uint32_t reg_1, reg_2;
  147. RETURN_ON_ERROR( esp_loader_read_register(UART_DATE_REG_ADDR, &reg_1) );
  148. RETURN_ON_ERROR( esp_loader_read_register(UART_DATE_REG2_ADDR, &reg_2) );
  149. for (int chip = 0; chip < ESP_MAX_CHIP; chip++) {
  150. const date_registers_t *r = &s_date_regs[chip];
  151. if (r->reg_1 == reg_1 && (r->reg_2 == 0 || r->reg_2 == reg_2)) {
  152. *target = (target_chip_t)chip;
  153. return ESP_LOADER_SUCCESS;
  154. }
  155. }
  156. return ESP_LOADER_ERROR_INVALID_TARGET;
  157. }
  158. esp_loader_error_t esp_loader_connect(esp_loader_connect_args_t *connect_args)
  159. {
  160. esp_loader_error_t err;
  161. int32_t trials = connect_args->trials;
  162. loader_port_enter_bootloader();
  163. do {
  164. loader_port_start_timer(connect_args->sync_timeout);
  165. err = loader_sync_cmd();
  166. if (err == ESP_LOADER_ERROR_TIMEOUT) {
  167. if (--trials == 0) {
  168. return ESP_LOADER_ERROR_TIMEOUT;
  169. }
  170. loader_port_delay_ms(100);
  171. } else if (err != ESP_LOADER_SUCCESS) {
  172. return err;
  173. }
  174. } while (err != ESP_LOADER_SUCCESS);
  175. RETURN_ON_ERROR( detect_chip(&s_target) );
  176. s_reg = &registers[s_target];
  177. if (s_target == ESP8266_CHIP) {
  178. err = loader_flash_begin_cmd(0, 0, 0, 0, s_target);
  179. } else {
  180. loader_port_start_timer(DEFAULT_TIMEOUT);
  181. err = loader_spi_attach_cmd(connect_args->spi_pin_config.val);
  182. }
  183. return err;
  184. }
  185. target_chip_t esp_loader_get_target(void)
  186. {
  187. return s_target;
  188. }
  189. static esp_loader_error_t spi_set_data_lengths(size_t mosi_bits, size_t miso_bits)
  190. {
  191. if (mosi_bits > 0) {
  192. RETURN_ON_ERROR( esp_loader_write_register(s_reg->mosi_dlen, mosi_bits - 1) );
  193. }
  194. if (miso_bits > 0) {
  195. RETURN_ON_ERROR( esp_loader_write_register(s_reg->miso_dlen, miso_bits - 1) );
  196. }
  197. return ESP_LOADER_SUCCESS;
  198. }
  199. static esp_loader_error_t spi_set_data_lengths_8266(size_t mosi_bits, size_t miso_bits)
  200. {
  201. uint32_t mosi_bitlen_shift = 17;
  202. uint32_t miso_bitlen_shift = 8;
  203. uint32_t mosi_mask = (mosi_bits == 0) ? 0 : mosi_bits - 1;
  204. uint32_t miso_mask = (miso_bits == 0) ? 0 : miso_bits - 1;
  205. uint32_t usr_reg = (miso_mask << miso_bitlen_shift) | (mosi_mask << mosi_bitlen_shift);
  206. return esp_loader_write_register(s_reg->usr1, usr_reg);
  207. }
  208. static esp_loader_error_t spi_flash_command(spi_flash_cmd_t cmd, void *data_tx, size_t tx_size, void *data_rx, size_t rx_size)
  209. {
  210. assert(rx_size <= 32); // Reading more than 32 bits back from a SPI flash operation is unsupported
  211. assert(tx_size <= 64); // Writing more than 64 bytes of data with one SPI command is unsupported
  212. uint32_t SPI_USR_CMD = (1 << 31);
  213. uint32_t SPI_USR_MISO = (1 << 28);
  214. uint32_t SPI_USR_MOSI = (1 << 27);
  215. uint32_t SPI_CMD_USR = (1 << 18);
  216. uint32_t CMD_LEN_SHIFT = 28;
  217. // Save SPI configuration
  218. uint32_t old_spi_usr;
  219. uint32_t old_spi_usr2;
  220. RETURN_ON_ERROR( esp_loader_read_register(s_reg->usr, &old_spi_usr) );
  221. RETURN_ON_ERROR( esp_loader_read_register(s_reg->usr2, &old_spi_usr2) );
  222. if (s_target == ESP8266_CHIP) {
  223. RETURN_ON_ERROR( spi_set_data_lengths_8266(tx_size, rx_size) );
  224. } else {
  225. RETURN_ON_ERROR( spi_set_data_lengths(tx_size, rx_size) );
  226. }
  227. uint32_t usr_reg_2 = (7 << CMD_LEN_SHIFT) | cmd;
  228. uint32_t usr_reg = SPI_USR_CMD;
  229. if (rx_size > 0) {
  230. usr_reg |= SPI_USR_MISO;
  231. }
  232. if (tx_size > 0) {
  233. usr_reg |= SPI_USR_MOSI;
  234. }
  235. RETURN_ON_ERROR( esp_loader_write_register(s_reg->usr, usr_reg) );
  236. RETURN_ON_ERROR( esp_loader_write_register(s_reg->usr2, usr_reg_2 ) );
  237. if (tx_size == 0) {
  238. // clear data register before we read it
  239. RETURN_ON_ERROR( esp_loader_write_register(s_reg->w0, 0) );
  240. } else {
  241. uint32_t *data = (uint32_t *)data_tx;
  242. uint32_t words_to_write = MIN((tx_size + 31) / 8 * 4, 1);
  243. uint32_t data_reg_addr = s_reg->w0;
  244. while (words_to_write--) {
  245. uint32_t word = *data++;
  246. RETURN_ON_ERROR( esp_loader_write_register(data_reg_addr, word) );
  247. data_reg_addr += 4;
  248. }
  249. }
  250. RETURN_ON_ERROR( esp_loader_write_register(s_reg->cmd, SPI_CMD_USR) );
  251. uint32_t trials = 10;
  252. while (trials--) {
  253. uint32_t cmd_reg;
  254. RETURN_ON_ERROR( esp_loader_read_register(s_reg->cmd, &cmd_reg) );
  255. if ((cmd_reg & SPI_CMD_USR) == 0) {
  256. break;
  257. }
  258. }
  259. if (trials == 0) {
  260. return ESP_LOADER_ERROR_TIMEOUT;
  261. }
  262. RETURN_ON_ERROR( esp_loader_read_register(s_reg->w0, data_rx) );
  263. // Restore SPI configuration
  264. RETURN_ON_ERROR( esp_loader_write_register(s_reg->usr, old_spi_usr) );
  265. RETURN_ON_ERROR( esp_loader_write_register(s_reg->usr2, old_spi_usr2) );
  266. return ESP_LOADER_SUCCESS;
  267. }
  268. static esp_loader_error_t detect_flash_size(size_t *flash_size)
  269. {
  270. uint32_t flash_id = 0;
  271. RETURN_ON_ERROR( spi_flash_command(SPI_FLASH_READ_ID, NULL, 0, &flash_id, 24) );
  272. uint32_t size_id = flash_id >> 16;
  273. if (size_id < 0x12 || size_id > 0x18) {
  274. return ESP_LOADER_ERROR_UNSUPPORTED_CHIP;
  275. }
  276. *flash_size = size_id_to_flash_size[size_id - 0x12];
  277. return ESP_LOADER_SUCCESS;
  278. }
  279. esp_loader_error_t esp_loader_flash_start(uint32_t offset, uint32_t image_size, uint32_t block_size)
  280. {
  281. uint32_t blocks_to_write = (image_size + block_size - 1) / block_size;
  282. uint32_t erase_size = block_size * blocks_to_write;
  283. s_flash_write_size = block_size;
  284. size_t flash_size = 0;
  285. if (detect_flash_size(&flash_size) == ESP_LOADER_SUCCESS) {
  286. if (image_size > flash_size) {
  287. return ESP_LOADER_ERROR_IMAGE_SIZE;
  288. }
  289. loader_port_start_timer(DEFAULT_TIMEOUT);
  290. RETURN_ON_ERROR( loader_spi_parameters(flash_size) );
  291. } else {
  292. loader_port_debug_print("Flash size detection failed, falling back to default");
  293. }
  294. init_md5(offset, image_size);
  295. loader_port_start_timer(timeout_per_mb(erase_size, ERASE_REGION_TIMEOUT_PER_MB));
  296. return loader_flash_begin_cmd(offset, erase_size, block_size, blocks_to_write, s_target);
  297. }
  298. esp_loader_error_t esp_loader_flash_write(void *payload, uint32_t size)
  299. {
  300. uint32_t padding_bytes = s_flash_write_size - size;
  301. uint8_t *data = (uint8_t *)payload;
  302. uint32_t padding_index = size;
  303. while (padding_bytes--) {
  304. data[padding_index++] = PADDING_PATTERN;
  305. }
  306. md5_update(payload, (size + 3) & ~3);
  307. loader_port_start_timer(DEFAULT_TIMEOUT);
  308. return loader_flash_data_cmd(data, s_flash_write_size);
  309. }
  310. esp_loader_error_t esp_loader_flash_finish(bool reboot)
  311. {
  312. loader_port_start_timer(DEFAULT_TIMEOUT);
  313. return loader_flash_end_cmd(!reboot);
  314. }
  315. esp_loader_error_t esp_loader_read_register(uint32_t address, uint32_t *reg_value)
  316. {
  317. loader_port_start_timer(DEFAULT_TIMEOUT);
  318. return loader_read_reg_cmd(address, reg_value);
  319. }
  320. esp_loader_error_t esp_loader_write_register(uint32_t address, uint32_t reg_value)
  321. {
  322. loader_port_start_timer(DEFAULT_TIMEOUT);
  323. return loader_write_reg_cmd(address, reg_value, 0xFFFFFFFF, 0);
  324. }
  325. esp_loader_error_t esp_loader_change_baudrate(uint32_t baudrate)
  326. {
  327. if (s_target == ESP8266_CHIP) {
  328. return ESP_LOADER_ERROR_UNSUPPORTED_FUNC;
  329. }
  330. loader_port_start_timer(DEFAULT_TIMEOUT);
  331. return loader_change_baudrate_cmd(baudrate);
  332. }
  333. #if MD5_ENABLED
  334. static void hexify(const uint8_t raw_md5[16], uint8_t hex_md5_out[32])
  335. {
  336. uint8_t high_nibble, low_nibble;
  337. static const uint8_t dec_to_hex[] = {
  338. '0', '1', '2', '3', '4', '5', '6', '7',
  339. '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
  340. };
  341. for (int i = 0; i < 16; i++) {
  342. high_nibble = (raw_md5[i] / 16);
  343. low_nibble = (raw_md5[i] - (high_nibble * 16));
  344. *hex_md5_out++ = dec_to_hex[high_nibble];
  345. *hex_md5_out++ = dec_to_hex[low_nibble];
  346. }
  347. }
  348. esp_loader_error_t esp_loader_flash_verify(void)
  349. {
  350. if (s_target == ESP8266_CHIP) {
  351. return ESP_LOADER_ERROR_UNSUPPORTED_FUNC;
  352. }
  353. uint8_t raw_md5[16];
  354. uint8_t hex_md5[MD5_SIZE + 1];
  355. uint8_t received_md5[MD5_SIZE + 1];
  356. md5_final(raw_md5);
  357. hexify(raw_md5, hex_md5);
  358. loader_port_start_timer(timeout_per_mb(s_image_size, MD5_TIMEOUT_PER_MB));
  359. RETURN_ON_ERROR( loader_md5_cmd(s_start_address, s_image_size, received_md5) );
  360. bool md5_match = memcmp(hex_md5, received_md5, MD5_SIZE) == 0;
  361. if (!md5_match) {
  362. hex_md5[MD5_SIZE] = '\n';
  363. received_md5[MD5_SIZE] = '\n';
  364. loader_port_debug_print("Error: MD5 checksum does not match:\n");
  365. loader_port_debug_print("Expected:\n");
  366. loader_port_debug_print((char *)received_md5);
  367. loader_port_debug_print("Actual:\n");
  368. loader_port_debug_print((char *)hex_md5);
  369. return ESP_LOADER_ERROR_INVALID_MD5;
  370. }
  371. return ESP_LOADER_SUCCESS;
  372. }
  373. #endif
  374. void esp_loader_reset_target(void)
  375. {
  376. loader_port_reset_target();
  377. }