irda.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377
  1. #include <furi.h>
  2. #include <gui/gui.h>
  3. #include <input/input.h>
  4. #include "irda_nec.h"
  5. #include "irda_samsung.h"
  6. #include "irda_protocols.h"
  7. #include "irda-decoder/irda-decoder.h"
  8. typedef enum {
  9. EventTypeTick,
  10. EventTypeKey,
  11. EventTypeRX,
  12. } EventType;
  13. typedef struct {
  14. bool edge;
  15. uint32_t lasted;
  16. } RXValue;
  17. typedef struct {
  18. union {
  19. InputEvent input;
  20. RXValue rx;
  21. } value;
  22. EventType type;
  23. } AppEvent;
  24. typedef struct {
  25. IrDAProtocolType protocol;
  26. uint32_t address;
  27. uint32_t command;
  28. } IrDAPacket;
  29. #define IRDA_PACKET_COUNT 8
  30. typedef struct {
  31. uint8_t mode_id;
  32. uint16_t carrier_freq;
  33. uint8_t carrier_duty_cycle_id;
  34. uint8_t packet_id;
  35. IrDAPacket packets[IRDA_PACKET_COUNT];
  36. } State;
  37. typedef void (*ModeInput)(AppEvent*, State*);
  38. typedef void (*ModeRender)(Canvas*, State*);
  39. void input_carrier(AppEvent* event, State* state);
  40. void render_carrier(Canvas* canvas, State* state);
  41. void input_packet(AppEvent* event, State* state);
  42. void render_packet(Canvas* canvas, State* state);
  43. typedef struct {
  44. ModeRender render;
  45. ModeInput input;
  46. } Mode;
  47. const Mode modes[] = {
  48. {.render = render_carrier, .input = input_carrier},
  49. {.render = render_packet, .input = input_packet},
  50. };
  51. const float duty_cycles[] = {0.1, 0.25, 0.333, 0.5, 1.0};
  52. void render_carrier(Canvas* canvas, State* state) {
  53. canvas_set_font(canvas, FontSecondary);
  54. canvas_draw_str(canvas, 2, 25, "carrier mode >");
  55. canvas_draw_str(canvas, 2, 37, "? /\\ freq | \\/ duty cycle");
  56. {
  57. char buf[24];
  58. sprintf(buf, "frequency: %u Hz", state->carrier_freq);
  59. canvas_draw_str(canvas, 2, 50, buf);
  60. sprintf(
  61. buf, "duty cycle: %d/1000", (int)(duty_cycles[state->carrier_duty_cycle_id] * 1000));
  62. canvas_draw_str(canvas, 2, 62, buf);
  63. }
  64. }
  65. void input_carrier(AppEvent* event, State* state) {
  66. if(event->value.input.input == InputOk) {
  67. if(event->value.input.state) {
  68. irda_pwm_set(duty_cycles[state->carrier_duty_cycle_id], state->carrier_freq);
  69. } else {
  70. irda_pwm_stop();
  71. }
  72. }
  73. if(event->value.input.state && event->value.input.input == InputUp) {
  74. if(state->carrier_freq < 45000) {
  75. state->carrier_freq += 1000;
  76. } else {
  77. state->carrier_freq = 33000;
  78. }
  79. }
  80. if(event->value.input.state && event->value.input.input == InputDown) {
  81. uint8_t duty_cycles_count = sizeof(duty_cycles) / sizeof(duty_cycles[0]);
  82. if(state->carrier_duty_cycle_id < (duty_cycles_count - 1)) {
  83. state->carrier_duty_cycle_id++;
  84. } else {
  85. state->carrier_duty_cycle_id = 0;
  86. }
  87. }
  88. }
  89. void render_packet(Canvas* canvas, State* state) {
  90. canvas_set_font(canvas, FontSecondary);
  91. canvas_draw_str(canvas, 2, 25, "< packet mode");
  92. canvas_draw_str(canvas, 2, 37, "? /\\ \\/ packet");
  93. {
  94. const char* protocol;
  95. switch(state->packets[state->packet_id].protocol) {
  96. case IRDA_NEC:
  97. protocol = "NEC";
  98. break;
  99. case IRDA_SAMSUNG:
  100. protocol = "SAMS";
  101. break;
  102. case IRDA_UNKNOWN:
  103. default:
  104. protocol = "UNK";
  105. break;
  106. }
  107. char buf[24];
  108. sprintf(
  109. buf,
  110. "P[%d]: %s 0x%lX 0x%lX",
  111. state->packet_id,
  112. protocol,
  113. state->packets[state->packet_id].address,
  114. state->packets[state->packet_id].command);
  115. canvas_draw_str(canvas, 2, 50, buf);
  116. }
  117. }
  118. void input_packet(AppEvent* event, State* state) {
  119. if(event->value.input.input == InputOk) {
  120. if(event->value.input.state) {
  121. vTaskSuspendAll();
  122. switch(state->packets[state->packet_id].protocol) {
  123. case IRDA_NEC:
  124. ir_nec_send(
  125. state->packets[state->packet_id].address,
  126. state->packets[state->packet_id].command);
  127. break;
  128. case IRDA_SAMSUNG:
  129. ir_samsung_send(
  130. state->packets[state->packet_id].address,
  131. state->packets[state->packet_id].command);
  132. break;
  133. default:
  134. break;
  135. }
  136. xTaskResumeAll();
  137. }
  138. }
  139. if(event->value.input.state && event->value.input.input == InputDown) {
  140. if(state->packet_id < (IRDA_PACKET_COUNT - 1)) {
  141. state->packet_id++;
  142. };
  143. }
  144. if(event->value.input.state && event->value.input.input == InputUp) {
  145. if(state->packet_id > 0) {
  146. state->packet_id--;
  147. };
  148. }
  149. }
  150. static void render_callback(Canvas* canvas, void* ctx) {
  151. State* state = (State*)acquire_mutex((ValueMutex*)ctx, 25);
  152. if(state != NULL) {
  153. canvas_clear(canvas);
  154. canvas_set_color(canvas, ColorBlack);
  155. canvas_set_font(canvas, FontPrimary);
  156. canvas_draw_str(canvas, 2, 12, "irda test");
  157. modes[state->mode_id].render(canvas, state);
  158. release_mutex((ValueMutex*)ctx, state);
  159. }
  160. }
  161. static void input_callback(InputEvent* input_event, void* ctx) {
  162. osMessageQueueId_t event_queue = ctx;
  163. AppEvent event;
  164. event.type = EventTypeKey;
  165. event.value.input = *input_event;
  166. osMessageQueuePut(event_queue, &event, 0, 0);
  167. }
  168. void irda_timer_capture_callback(void* htim, void* comp_ctx) {
  169. TIM_HandleTypeDef* _htim = (TIM_HandleTypeDef*)htim;
  170. osMessageQueueId_t event_queue = (osMessageQueueId_t)comp_ctx;
  171. if(_htim->Instance == TIM2) {
  172. AppEvent event;
  173. event.type = EventTypeRX;
  174. uint32_t channel;
  175. if(_htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1) {
  176. // falling event
  177. event.value.rx.edge = false;
  178. channel = TIM_CHANNEL_1;
  179. } else if(_htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2) {
  180. // rising event
  181. event.value.rx.edge = true;
  182. channel = TIM_CHANNEL_2;
  183. } else {
  184. // not our event
  185. return;
  186. }
  187. event.value.rx.lasted = HAL_TIM_ReadCapturedValue(_htim, channel);
  188. __HAL_TIM_SET_COUNTER(_htim, 0);
  189. osMessageQueuePut(event_queue, &event, 0, 0);
  190. }
  191. }
  192. void init_packet(
  193. State* state,
  194. uint8_t index,
  195. IrDAProtocolType protocol,
  196. uint32_t address,
  197. uint32_t command) {
  198. if(index >= IRDA_PACKET_COUNT) return;
  199. state->packets[index].protocol = protocol;
  200. state->packets[index].address = address;
  201. state->packets[index].command = command;
  202. }
  203. void irda(void* p) {
  204. osMessageQueueId_t event_queue = osMessageQueueNew(32, sizeof(AppEvent), NULL);
  205. State _state;
  206. uint8_t mode_count = sizeof(modes) / sizeof(modes[0]);
  207. uint8_t duty_cycles_count = sizeof(duty_cycles) / sizeof(duty_cycles[0]);
  208. _state.carrier_duty_cycle_id = duty_cycles_count - 2;
  209. _state.carrier_freq = 36000;
  210. _state.mode_id = 0;
  211. _state.packet_id = 0;
  212. for(uint8_t i = 0; i < IRDA_PACKET_COUNT; i++) {
  213. init_packet(&_state, i, IRDA_UNKNOWN, 0, 0);
  214. }
  215. init_packet(&_state, 0, IRDA_NEC, 0xFF00, 0x11);
  216. init_packet(&_state, 1, IRDA_NEC, 0xF708, 0x59);
  217. init_packet(&_state, 2, IRDA_NEC, 0xFF00, 0x10);
  218. init_packet(&_state, 3, IRDA_NEC, 0xFF00, 0x15);
  219. init_packet(&_state, 4, IRDA_NEC, 0xFF00, 0x25);
  220. init_packet(&_state, 5, IRDA_SAMSUNG, 0xE0E, 0xF30C);
  221. init_packet(&_state, 6, IRDA_SAMSUNG, 0xE0E, 0xF40D);
  222. init_packet(&_state, 7, IRDA_SAMSUNG, 0xE0E, 0xF50E);
  223. ValueMutex state_mutex;
  224. if(!init_mutex(&state_mutex, &_state, sizeof(State))) {
  225. printf("cannot create mutex\r\n");
  226. furiac_exit(NULL);
  227. }
  228. ViewPort* view_port = view_port_alloc();
  229. view_port_draw_callback_set(view_port, render_callback, &state_mutex);
  230. view_port_input_callback_set(view_port, input_callback, event_queue);
  231. // Open GUI and register view_port
  232. Gui* gui = furi_record_open("gui");
  233. gui_add_view_port(gui, view_port, GuiLayerFullscreen);
  234. // Red LED
  235. // TODO open record
  236. const GpioPin* red_led_record = &led_gpio[0];
  237. const GpioPin* green_led_record = &led_gpio[1];
  238. // configure pin
  239. gpio_init(red_led_record, GpioModeOutputOpenDrain);
  240. gpio_init(green_led_record, GpioModeOutputOpenDrain);
  241. // setup irda rx timer
  242. tim_irda_rx_init();
  243. // add timer capture interrupt
  244. api_interrupt_add(irda_timer_capture_callback, InterruptTypeTimerCapture, event_queue);
  245. IrDADecoder* decoder = alloc_decoder();
  246. AppEvent event;
  247. while(1) {
  248. osStatus_t event_status = osMessageQueueGet(event_queue, &event, NULL, 500);
  249. State* state = (State*)acquire_mutex_block(&state_mutex);
  250. if(event_status == osOK) {
  251. if(event.type == EventTypeKey) {
  252. // press events
  253. if(event.value.input.state && event.value.input.input == InputBack) {
  254. // remove all view_ports create by app
  255. view_port_enabled_set(view_port, false);
  256. gui_remove_view_port(gui, view_port);
  257. // free decoder
  258. free_decoder(decoder);
  259. // exit
  260. furiac_exit(NULL);
  261. }
  262. if(event.value.input.state && event.value.input.input == InputLeft) {
  263. if(state->mode_id > 0) {
  264. state->mode_id--;
  265. }
  266. }
  267. if(event.value.input.state && event.value.input.input == InputRight) {
  268. if(state->mode_id < (mode_count - 1)) {
  269. state->mode_id++;
  270. }
  271. }
  272. modes[state->mode_id].input(&event, state);
  273. } else if(event.type == EventTypeRX) {
  274. IrDADecoderOutputData out;
  275. const uint8_t out_data_length = 4;
  276. uint8_t out_data[out_data_length];
  277. out.data_length = out_data_length;
  278. out.data = out_data;
  279. gpio_write(red_led_record, event.value.rx.edge);
  280. bool decoded =
  281. process_decoder(decoder, event.value.rx.edge, &event.value.rx.lasted, 1, &out);
  282. if(decoded) {
  283. // save only if we in packet mode
  284. if(state->mode_id == 1) {
  285. if(out.protocol == IRDA_NEC) {
  286. printf("P=NEC ");
  287. printf("A=0x%02X%02X ", out_data[1], out_data[0]);
  288. printf("C=0x%02X ", out_data[2]);
  289. if(out.flags & IRDA_REPEAT) {
  290. printf("R");
  291. }
  292. printf("\r\n");
  293. state->packets[state->packet_id].protocol = IRDA_NEC;
  294. state->packets[state->packet_id].address = out_data[1] << 8 |
  295. out_data[0];
  296. state->packets[state->packet_id].command = out_data[2];
  297. } else {
  298. printf("Unknown protocol\r\n");
  299. }
  300. }
  301. // blink anyway
  302. gpio_write(green_led_record, false);
  303. delay(10);
  304. gpio_write(green_led_record, true);
  305. }
  306. }
  307. } else {
  308. // event timeout
  309. }
  310. release_mutex(&state_mutex, state);
  311. view_port_update(view_port);
  312. }
  313. }