BMP280.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188
  1. #include "BMP280.h"
  2. const SensorType BMP280 = {
  3. .typename = "BMP280",
  4. .interface = &I2C,
  5. .pollingInterval = 500,
  6. .allocator = unitemp_BMP280_alloc,
  7. .mem_releaser = unitemp_BMP280_free,
  8. .initializer = unitemp_BMP280_init,
  9. .deinitializer = unitemp_BMP280_deinit,
  10. .updater = unitemp_BMP280_update};
  11. //Интервал обновления калибровочных значений
  12. #define BMP280_CAL_UPDATE_INTERVAL 60000
  13. #define TEMP_CAL_START_ADDR 0x88
  14. //#define PRESS_CAL_START_ADDR 0x8E
  15. #define BMP280_ID 0x58
  16. #define BMP280_REG_STATUS 0xF3
  17. #define BMP280_REG_CTRL_MEAS 0xF4
  18. #define BMP280_REG_CONFIG 0xF5
  19. //Преддескретизация температуры
  20. #define BMP280_TEMP_OVERSAMPLING_SKIP 0b00000000
  21. #define BMP280_TEMP_OVERSAMPLING_1 0b00100000
  22. #define BMP280_TEMP_OVERSAMPLING_2 0b01000000
  23. #define BMP280_TEMP_OVERSAMPLING_4 0b01100000
  24. #define BMP280_TEMP_OVERSAMPLING_8 0b10000000
  25. #define BMP280_TEMP_OVERSAMPLING_16 0b10100000
  26. //Режимы работы датчика
  27. #define BMP280_MODE_SLEEP 0b00000000 //Спит и мало кушает
  28. #define BMP280_MODE_FORCED 0b00000001 //Обновляет значения 1 раз, после чего уходит в сон
  29. #define BMP280_MODE_NORMAL 0b00000011 //Регулярно обновляет значения
  30. //Период обновления в нормальном режиме
  31. #define BMP280_STANDBY_TIME_0_5 0b00000000
  32. #define BMP280_STANDBY_TIME_62_5 0b00100000
  33. #define BMP280_STANDBY_TIME_125 0b01000000
  34. #define BMP280_STANDBY_TIME_250 0b01100000
  35. #define BMP280_STANDBY_TIME_500 0b10000000
  36. #define BMP280_STANDBY_TIME_1000 0b10100000
  37. #define BMP280_STANDBY_TIME_2000 0b11000000
  38. #define BMP280_STANDBY_TIME_4000 0b11100000
  39. //Коэффициент фильтрации значений
  40. #define BMP280_FILTER_COEFF_1 0b00000000
  41. #define BMP280_FILTER_COEFF_2 0b00000100
  42. #define BMP280_FILTER_COEFF_4 0b00001000
  43. #define BMP280_FILTER_COEFF_8 0b00001100
  44. #define BMP280_FILTER_COEFF_16 0b00010000
  45. //Разрешить работу по SPI
  46. #define BMP280_SPI_3W_ENABLE 0b00000001
  47. #define BMP280_SPI_3W_DISABLE 0b00000000
  48. static double bmp280_compensate_T_double(I2CSensor* i2c_sensor, int32_t adc_T) {
  49. BMP280_instance* bmp280_instance = (BMP280_instance*)i2c_sensor->sensorInstance;
  50. double var1, var2, T;
  51. var1 = (((double)adc_T) / (double)16384.0 -
  52. ((double)bmp280_instance->temp_cal.dig_T1) / (double)1024.0) *
  53. ((double)bmp280_instance->temp_cal.dig_T2);
  54. var2 = ((((double)adc_T) / (double)131072.0 -
  55. ((double)bmp280_instance->temp_cal.dig_T1) / (double)8192.0) *
  56. (((double)adc_T) / (double)131072.0 -
  57. ((double)bmp280_instance->temp_cal.dig_T1) / (double)8192.0)) *
  58. ((double)bmp280_instance->temp_cal.dig_T3);
  59. T = (var1 + var2) / (double)5120.0;
  60. return T;
  61. }
  62. static bool bmp280_readCalValues(I2CSensor* i2c_sensor) {
  63. BMP280_instance* bmp280_instance = (BMP280_instance*)i2c_sensor->sensorInstance;
  64. if(!unitemp_i2c_readRegArray(
  65. i2c_sensor, TEMP_CAL_START_ADDR, 6, (uint8_t*)&bmp280_instance->temp_cal))
  66. return false;
  67. FURI_LOG_D(
  68. APP_NAME,
  69. "Sensor BMP280 (0x%02X) calibration values: T1: %d, T2: %d, T3: %d",
  70. i2c_sensor->currentI2CAdr,
  71. bmp280_instance->temp_cal.dig_T1,
  72. bmp280_instance->temp_cal.dig_T2,
  73. bmp280_instance->temp_cal.dig_T3);
  74. // if(!unitemp_i2c_readRegArray(i2c_sensor, PRESS_CAL_START_ADDR, 18, (uint8_t*)&bmp280_instance->press_cal))
  75. // return false;
  76. // FURI_LOG_D(
  77. // APP_NAME,
  78. // "Sensor BMP280 (0x%02X): T1-3: %d, %d, %d; P1-9: %d, %d, %d, %d, %d, %d, %d, %d, %d",
  79. // i2c_sensor->currentI2CAdr,
  80. // bmp280_instance->temp_cal.dig_T1,
  81. // bmp280_instance->temp_cal.dig_T2,
  82. // bmp280_instance->temp_cal.dig_T3,
  83. // bmp280_instance->press_cal.dig_P1,
  84. // bmp280_instance->press_cal.dig_P2,
  85. // bmp280_instance->press_cal.dig_P3,
  86. // bmp280_instance->press_cal.dig_P4,
  87. // bmp280_instance->press_cal.dig_P5,
  88. // bmp280_instance->press_cal.dig_P6,
  89. // bmp280_instance->press_cal.dig_P7,
  90. // bmp280_instance->press_cal.dig_P8,
  91. // bmp280_instance->press_cal.dig_P9);
  92. bmp280_instance->last_cal_update_time = furi_get_tick();
  93. return true;
  94. }
  95. static bool bmp280_isMeasuring(Sensor* sensor) {
  96. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  97. return (bool)((unitemp_i2c_readReg(i2c_sensor, BMP280_REG_STATUS) & 0x08) >> 3);
  98. }
  99. bool unitemp_BMP280_alloc(Sensor* sensor, char* args) {
  100. UNUSED(args);
  101. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  102. BMP280_instance* bmp280_instance = malloc(sizeof(BMP280_instance));
  103. if(bmp280_instance == NULL) {
  104. FURI_LOG_E(APP_NAME, "Failed to allocation sensor %s instance", sensor->name);
  105. return false;
  106. }
  107. i2c_sensor->sensorInstance = bmp280_instance;
  108. i2c_sensor->minI2CAdr = 0x76;
  109. i2c_sensor->maxI2CAdr = 0x77;
  110. return true;
  111. }
  112. bool unitemp_BMP280_init(Sensor* sensor) {
  113. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  114. //Перезагрузка
  115. unitemp_i2c_writeReg(i2c_sensor, 0xE0, 0xB6);
  116. //Чтение ID датчика
  117. uint8_t id = unitemp_i2c_readReg(i2c_sensor, 0xD0);
  118. if(id != BMP280_ID) {
  119. FURI_LOG_E(
  120. APP_NAME,
  121. "Sensor %s returned wrong ID 0x%02X, expected 0x%02X",
  122. sensor->name,
  123. id,
  124. BMP280_ID);
  125. return false;
  126. }
  127. //Чтение калибровочных значений
  128. if(!bmp280_readCalValues(i2c_sensor)) {
  129. FURI_LOG_E(APP_NAME, "Failed to read calibration values sensor %s", sensor->name);
  130. return false;
  131. }
  132. //Настройка режимов работы
  133. unitemp_i2c_writeReg(
  134. i2c_sensor, BMP280_REG_CTRL_MEAS, BMP280_TEMP_OVERSAMPLING_2 | BMP280_MODE_NORMAL);
  135. //Настройка периода опроса и фильтрации значений
  136. unitemp_i2c_writeReg(
  137. i2c_sensor,
  138. BMP280_REG_CONFIG,
  139. BMP280_STANDBY_TIME_500 | BMP280_FILTER_COEFF_16 | BMP280_SPI_3W_DISABLE);
  140. return true;
  141. }
  142. bool unitemp_BMP280_deinit(Sensor* sensor) {
  143. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  144. //Перевод в сон
  145. unitemp_i2c_writeReg(i2c_sensor, BMP280_REG_CTRL_MEAS, BMP280_MODE_SLEEP);
  146. return true;
  147. }
  148. UnitempStatus unitemp_BMP280_update(Sensor* sensor) {
  149. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  150. BMP280_instance* instance = i2c_sensor->sensorInstance;
  151. uint32_t t = furi_get_tick();
  152. if(furi_get_tick() - instance->last_cal_update_time > BMP280_CAL_UPDATE_INTERVAL) {
  153. bmp280_readCalValues(i2c_sensor);
  154. }
  155. while(bmp280_isMeasuring(sensor)) {
  156. if(furi_get_tick() - t > 10) {
  157. return UT_TIMEOUT;
  158. }
  159. }
  160. uint8_t buff[3];
  161. if(!unitemp_i2c_readRegArray(i2c_sensor, 0xFA, 3, buff)) return UT_TIMEOUT;
  162. int32_t adc_T = ((int32_t)buff[0] << 12) | ((int32_t)buff[1] << 4) | ((int32_t)buff[2] >> 4);
  163. sensor->temp = bmp280_compensate_T_double(i2c_sensor, adc_T);
  164. return UT_OK;
  165. }
  166. bool unitemp_BMP280_free(Sensor* sensor) {
  167. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  168. free(i2c_sensor->sensorInstance);
  169. return true;
  170. }