sam_api.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137
  1. #include "sam_api.h"
  2. #include <toolbox/path.h>
  3. #include <toolbox/version.h>
  4. #include <bit_lib/bit_lib.h>
  5. //#define ASN1_DEBUG true
  6. #define TAG "SAMAPI"
  7. #define ASN1_PREFIX 6
  8. #define SEADER_ICLASS_SR_SIO_BASE_BLOCK 10
  9. #define SEADER_SERIAL_FILE_NAME "sam_serial"
  10. const uint8_t picopass_iclass_key[] = {0xaf, 0xa7, 0x85, 0xa7, 0xda, 0xb3, 0x33, 0x78};
  11. static char display[SEADER_UART_RX_BUF_SIZE * 2 + 1] = {0};
  12. #ifdef ASN1_DEBUG
  13. char asn1_log[SEADER_UART_RX_BUF_SIZE] = {0};
  14. #endif
  15. uint8_t updateBlock2[] = {RFAL_PICOPASS_CMD_UPDATE, 0x02};
  16. uint8_t ev2_request[] =
  17. {0x00, 0xa4, 0x04, 0x00, 0x0a, 0xa0, 0x00, 0x00, 0x04, 0x40, 0x00, 0x01, 0x01, 0x00, 0x01, 0x00};
  18. uint8_t FILE_NOT_FOUND[] = {0x6a, 0x82};
  19. void* calloc(size_t count, size_t size) {
  20. return malloc(count * size);
  21. }
  22. // Forward declarations
  23. void seader_send_nfc_rx(Seader* seader, uint8_t* buffer, size_t len);
  24. PicopassError seader_worker_fake_epurse_update(BitBuffer* tx_buffer, BitBuffer* rx_buffer) {
  25. const uint8_t* buffer = bit_buffer_get_data(tx_buffer);
  26. uint8_t fake_response[8];
  27. memset(fake_response, 0, sizeof(fake_response));
  28. memcpy(fake_response + 0, buffer + 6, 4);
  29. memcpy(fake_response + 4, buffer + 2, 4);
  30. bit_buffer_append_bytes(rx_buffer, fake_response, sizeof(fake_response));
  31. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  32. memset(display, 0, sizeof(display));
  33. for(uint8_t i = 0; i < bit_buffer_get_size_bytes(rx_buffer); i++) {
  34. snprintf(display + (i * 2), sizeof(display), "%02x", bit_buffer_get_data(rx_buffer)[i]);
  35. }
  36. FURI_LOG_I(TAG, "Fake update E-Purse response: %s", display);
  37. return PicopassErrorNone;
  38. }
  39. void seader_picopass_state_machine(Seader* seader, uint8_t* buffer, size_t len) {
  40. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  41. bit_buffer_append_bytes(tx_buffer, buffer, len);
  42. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  43. uint8_t config[PICOPASS_BLOCK_LEN] = {0x12, 0xff, 0xff, 0xff, 0x7f, 0x1f, 0xff, 0x3c};
  44. uint8_t sr_aia[PICOPASS_BLOCK_LEN] = {0xFF, 0xff, 0xff, 0xff, 0xFF, 0xFf, 0xff, 0xFF};
  45. uint8_t epurse[PICOPASS_BLOCK_LEN] = {0xff, 0xff, 0xff, 0xff, 0xe3, 0xff, 0xff, 0xff};
  46. uint8_t pacs_sr_cfg[PICOPASS_BLOCK_LEN] = {0xA3, 0x03, 0x03, 0x03, 0x00, 0x03, 0xe0, 0x14};
  47. uint8_t zeroes[PICOPASS_BLOCK_LEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
  48. uint8_t tmac[4] = {};
  49. uint8_t cc_p[12] = {};
  50. uint8_t div_key[PICOPASS_BLOCK_LEN] = {};
  51. uint8_t offset; // for READ4
  52. do {
  53. switch(buffer[0]) {
  54. case RFAL_PICOPASS_CMD_READ_OR_IDENTIFY:
  55. if(buffer[1] == AIA_INDEX) {
  56. bit_buffer_append_bytes(rx_buffer, sr_aia, sizeof(sr_aia));
  57. } else if(buffer[1] == PACS_CFG_INDEX) {
  58. bit_buffer_append_bytes(rx_buffer, pacs_sr_cfg, sizeof(pacs_sr_cfg));
  59. } else { // What i've seen is 0c 12
  60. offset = buffer[1] - SEADER_ICLASS_SR_SIO_BASE_BLOCK;
  61. bit_buffer_append_bytes(
  62. rx_buffer,
  63. seader->credential->sio + (PICOPASS_BLOCK_LEN * offset),
  64. PICOPASS_BLOCK_LEN);
  65. }
  66. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  67. break;
  68. case RFAL_PICOPASS_CMD_UPDATE:
  69. seader_worker_fake_epurse_update(tx_buffer, rx_buffer);
  70. break;
  71. case RFAL_PICOPASS_CMD_READCHECK_KD:
  72. if(buffer[1] == EPURSE_INDEX) {
  73. bit_buffer_append_bytes(rx_buffer, epurse, sizeof(epurse));
  74. }
  75. break;
  76. case RFAL_PICOPASS_CMD_CHECK:
  77. loclass_iclass_calc_div_key(
  78. seader->credential->diversifier, picopass_iclass_key, div_key, false);
  79. memcpy(cc_p, epurse, PICOPASS_BLOCK_LEN);
  80. memcpy(cc_p + 8, buffer + 1, PICOPASS_MAC_LEN);
  81. loclass_opt_doTagMAC(cc_p, div_key, tmac);
  82. bit_buffer_append_bytes(rx_buffer, tmac, sizeof(tmac));
  83. break;
  84. case RFAL_PICOPASS_CMD_READ4:
  85. if(buffer[1] < SEADER_ICLASS_SR_SIO_BASE_BLOCK) {
  86. if(buffer[1] == PACS_CFG_INDEX) {
  87. bit_buffer_append_bytes(rx_buffer, pacs_sr_cfg, sizeof(pacs_sr_cfg));
  88. bit_buffer_append_bytes(rx_buffer, zeroes, sizeof(zeroes));
  89. bit_buffer_append_bytes(rx_buffer, zeroes, sizeof(zeroes));
  90. bit_buffer_append_bytes(rx_buffer, zeroes, sizeof(zeroes));
  91. }
  92. } else {
  93. offset = buffer[1] - SEADER_ICLASS_SR_SIO_BASE_BLOCK;
  94. bit_buffer_append_bytes(
  95. rx_buffer,
  96. seader->credential->sio + (PICOPASS_BLOCK_LEN * offset),
  97. PICOPASS_BLOCK_LEN * 4);
  98. }
  99. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  100. break;
  101. case RFAL_PICOPASS_CMD_PAGESEL:
  102. // this should be considered an attempt, but realisticly not working
  103. bit_buffer_append_bytes(rx_buffer, config, sizeof(config));
  104. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  105. break;
  106. }
  107. seader_send_nfc_rx(
  108. seader,
  109. (uint8_t*)bit_buffer_get_data(rx_buffer),
  110. bit_buffer_get_size_bytes(rx_buffer));
  111. } while(false);
  112. bit_buffer_free(tx_buffer);
  113. bit_buffer_free(rx_buffer);
  114. }
  115. uint8_t APDU_HEADER_LEN = 5;
  116. bool seader_send_apdu(
  117. Seader* seader,
  118. uint8_t CLA,
  119. uint8_t INS,
  120. uint8_t P1,
  121. uint8_t P2,
  122. uint8_t* payload,
  123. uint8_t payloadLen) {
  124. SeaderWorker* seader_worker = seader->worker;
  125. SeaderUartBridge* seader_uart = seader_worker->uart;
  126. if(seader_uart->T == 1) {
  127. APDU_HEADER_LEN = 7;
  128. }
  129. if(APDU_HEADER_LEN + payloadLen > SEADER_UART_RX_BUF_SIZE) {
  130. FURI_LOG_E(TAG, "Cannot send message, too long: %d", APDU_HEADER_LEN + payloadLen);
  131. return false;
  132. }
  133. uint8_t length = APDU_HEADER_LEN + payloadLen;
  134. uint8_t* apdu = malloc(length);
  135. if(!apdu) {
  136. FURI_LOG_E(TAG, "Failed to allocate memory for apdu in seader_send_apdu");
  137. return false;
  138. }
  139. apdu[0] = CLA;
  140. apdu[1] = INS;
  141. apdu[2] = P1;
  142. apdu[3] = P2;
  143. if(seader_uart->T == 1) {
  144. apdu[4] = 0x00;
  145. apdu[5] = 0x00;
  146. apdu[6] = payloadLen;
  147. } else {
  148. apdu[4] = payloadLen;
  149. }
  150. memcpy(apdu + APDU_HEADER_LEN, payload, payloadLen);
  151. memset(display, 0, sizeof(display));
  152. for(uint8_t i = 0; i < length; i++) {
  153. snprintf(display + (i * 2), sizeof(display), "%02x", apdu[i]);
  154. }
  155. FURI_LOG_D(TAG, "seader_send_apdu %s", display);
  156. if(seader_uart->T == 1) {
  157. seader_send_t1(seader_uart, apdu, length);
  158. } else {
  159. seader_ccid_XfrBlock(seader_uart, apdu, length);
  160. }
  161. free(apdu);
  162. return true;
  163. }
  164. #ifdef ASN1_DEBUG
  165. static int seader_print_struct_callback(const void* buffer, size_t size, void* app_key) {
  166. if(app_key) {
  167. char* str = (char*)app_key;
  168. size_t next = strlen(str);
  169. strncpy(str + next, buffer, size);
  170. } else {
  171. uint8_t next = strlen(asn1_log);
  172. strncpy(asn1_log + next, buffer, size);
  173. }
  174. return 0;
  175. }
  176. #else
  177. static int seader_print_struct_callback(const void* buffer, size_t size, void* app_key) {
  178. UNUSED(buffer);
  179. UNUSED(size);
  180. UNUSED(app_key);
  181. return 0;
  182. }
  183. #endif
  184. void seader_send_payload(
  185. Seader* seader,
  186. Payload_t* payload,
  187. uint8_t to,
  188. uint8_t from,
  189. uint8_t replyTo) {
  190. uint8_t rBuffer[SEADER_UART_RX_BUF_SIZE] = {0};
  191. asn_enc_rval_t er = der_encode_to_buffer(
  192. &asn_DEF_Payload, payload, rBuffer + ASN1_PREFIX, sizeof(rBuffer) - ASN1_PREFIX);
  193. #ifdef ASN1_DEBUG
  194. if(er.encoded > -1) {
  195. char payloadDebug[1024] = {0};
  196. memset(payloadDebug, 0, sizeof(payloadDebug));
  197. (&asn_DEF_Payload)
  198. ->op->print_struct(
  199. &asn_DEF_Payload, payload, 1, seader_print_struct_callback, payloadDebug);
  200. if(strlen(payloadDebug) > 0) {
  201. FURI_LOG_D(TAG, "Sending payload[%d %d %d]: %s", to, from, replyTo, payloadDebug);
  202. }
  203. } else {
  204. FURI_LOG_W(TAG, "Failed to print_struct payload");
  205. }
  206. #endif
  207. //0xa0, 0xda, 0x02, 0x63, 0x00, 0x00, 0x0a,
  208. //0x44, 0x0a, 0x44, 0x00, 0x00, 0x00, 0xa0, 0x02, 0x96, 0x00
  209. rBuffer[0] = to;
  210. rBuffer[1] = from;
  211. rBuffer[2] = replyTo;
  212. seader_send_apdu(seader, 0xA0, 0xDA, 0x02, 0x63, rBuffer, 6 + er.encoded);
  213. }
  214. void seader_send_response(
  215. Seader* seader,
  216. Response_t* response,
  217. uint8_t to,
  218. uint8_t from,
  219. uint8_t replyTo) {
  220. Payload_t* payload = 0;
  221. payload = calloc(1, sizeof *payload);
  222. assert(payload);
  223. payload->present = Payload_PR_response;
  224. payload->choice.response = *response;
  225. seader_send_payload(seader, payload, to, from, replyTo);
  226. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  227. }
  228. void seader_send_request_pacs(Seader* seader) {
  229. RequestPacs_t* requestPacs = 0;
  230. requestPacs = calloc(1, sizeof *requestPacs);
  231. assert(requestPacs);
  232. requestPacs->contentElementTag = ContentElementTag_implicitFormatPhysicalAccessBits;
  233. SamCommand_t* samCommand = 0;
  234. samCommand = calloc(1, sizeof *samCommand);
  235. assert(samCommand);
  236. samCommand->present = SamCommand_PR_requestPacs;
  237. seader->samCommand = samCommand->present;
  238. samCommand->choice.requestPacs = *requestPacs;
  239. Payload_t* payload = 0;
  240. payload = calloc(1, sizeof *payload);
  241. assert(payload);
  242. payload->present = Payload_PR_samCommand;
  243. payload->choice.samCommand = *samCommand;
  244. seader_send_payload(seader, payload, ExternalApplicationA, SAMInterface, ExternalApplicationA);
  245. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  246. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  247. ASN_STRUCT_FREE(asn_DEF_RequestPacs, requestPacs);
  248. }
  249. void seader_worker_send_serial_number(Seader* seader) {
  250. SamCommand_t* samCommand = 0;
  251. samCommand = calloc(1, sizeof *samCommand);
  252. assert(samCommand);
  253. samCommand->present = SamCommand_PR_serialNumber;
  254. seader->samCommand = samCommand->present;
  255. Payload_t* payload = 0;
  256. payload = calloc(1, sizeof *payload);
  257. assert(payload);
  258. payload->present = Payload_PR_samCommand;
  259. payload->choice.samCommand = *samCommand;
  260. seader_send_payload(seader, payload, ExternalApplicationA, SAMInterface, ExternalApplicationA);
  261. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  262. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  263. }
  264. void seader_worker_send_version(Seader* seader) {
  265. SamCommand_t* samCommand = 0;
  266. samCommand = calloc(1, sizeof *samCommand);
  267. assert(samCommand);
  268. samCommand->present = SamCommand_PR_version;
  269. seader->samCommand = samCommand->present;
  270. Payload_t* payload = 0;
  271. payload = calloc(1, sizeof *payload);
  272. assert(payload);
  273. payload->present = Payload_PR_samCommand;
  274. payload->choice.samCommand = *samCommand;
  275. seader_send_payload(seader, payload, ExternalApplicationA, SAMInterface, ExternalApplicationA);
  276. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  277. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  278. }
  279. void seader_send_card_detected(Seader* seader, CardDetails_t* cardDetails) {
  280. CardDetected_t* cardDetected = 0;
  281. cardDetected = calloc(1, sizeof *cardDetected);
  282. assert(cardDetected);
  283. cardDetected->detectedCardDetails = *cardDetails;
  284. SamCommand_t* samCommand = 0;
  285. samCommand = calloc(1, sizeof *samCommand);
  286. assert(samCommand);
  287. samCommand->present = SamCommand_PR_cardDetected;
  288. seader->samCommand = samCommand->present;
  289. samCommand->choice.cardDetected = *cardDetected;
  290. Payload_t* payload = 0;
  291. payload = calloc(1, sizeof *payload);
  292. assert(payload);
  293. payload->present = Payload_PR_samCommand;
  294. payload->choice.samCommand = *samCommand;
  295. seader_send_payload(seader, payload, ExternalApplicationA, SAMInterface, ExternalApplicationA);
  296. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  297. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  298. ASN_STRUCT_FREE(asn_DEF_CardDetected, cardDetected);
  299. }
  300. bool seader_unpack_pacs(Seader* seader, uint8_t* buf, size_t size) {
  301. SeaderCredential* seader_credential = seader->credential;
  302. PAC_t* pac = 0;
  303. pac = calloc(1, sizeof *pac);
  304. assert(pac);
  305. bool rtn = false;
  306. asn_dec_rval_t rval = asn_decode(0, ATS_DER, &asn_DEF_PAC, (void**)&pac, buf, size);
  307. if(rval.code == RC_OK) {
  308. char pacDebug[384] = {0};
  309. (&asn_DEF_PAC)
  310. ->op->print_struct(&asn_DEF_PAC, pac, 1, seader_print_struct_callback, pacDebug);
  311. if(strlen(pacDebug) > 0) {
  312. FURI_LOG_D(TAG, "Received pac: %s", pacDebug);
  313. }
  314. memset(display, 0, sizeof(display));
  315. if(seader_credential->sio[0] == 0x30) {
  316. for(uint8_t i = 0; i < seader_credential->sio_len; i++) {
  317. snprintf(display + (i * 2), sizeof(display), "%02x", seader_credential->sio[i]);
  318. }
  319. FURI_LOG_D(TAG, "SIO %s", display);
  320. }
  321. if(pac->size <= sizeof(seader_credential->credential)) {
  322. // TODO: make credential into a 12 byte array
  323. seader_credential->bit_length = pac->size * 8 - pac->bits_unused;
  324. memcpy(&seader_credential->credential, pac->buf, pac->size);
  325. seader_credential->credential = __builtin_bswap64(seader_credential->credential);
  326. seader_credential->credential = seader_credential->credential >>
  327. (64 - seader_credential->bit_length);
  328. FURI_LOG_D(
  329. TAG,
  330. "credential (%d) %016llx",
  331. seader_credential->bit_length,
  332. seader_credential->credential);
  333. rtn = true;
  334. } else {
  335. // PACS too big (probably bad data)
  336. view_dispatcher_send_custom_event(
  337. seader->view_dispatcher, SeaderCustomEventWorkerExit);
  338. }
  339. }
  340. ASN_STRUCT_FREE(asn_DEF_PAC, pac);
  341. return rtn;
  342. }
  343. // 800201298106683d052026b6820101
  344. //300F800201298106683D052026B6820101
  345. bool seader_parse_version(SeaderWorker* seader_worker, uint8_t* buf, size_t size) {
  346. bool rtn = false;
  347. if(size > 30) {
  348. // Too large to handle now
  349. FURI_LOG_W(TAG, "Version of %d is to long to parse", size);
  350. return false;
  351. }
  352. SamVersion_t* version = 0;
  353. version = calloc(1, sizeof *version);
  354. assert(version);
  355. // Add sequence prefix
  356. uint8_t seq[32] = {0x30};
  357. seq[1] = (uint8_t)size;
  358. memcpy(seq + 2, buf, size);
  359. asn_dec_rval_t rval =
  360. asn_decode(0, ATS_DER, &asn_DEF_SamVersion, (void**)&version, seq, size + 2);
  361. if(rval.code == RC_OK) {
  362. char versionDebug[128] = {0};
  363. (&asn_DEF_SamVersion)
  364. ->op->print_struct(
  365. &asn_DEF_SamVersion, version, 1, seader_print_struct_callback, versionDebug);
  366. if(strlen(versionDebug) > 0) {
  367. FURI_LOG_D(TAG, "Received version: %s", versionDebug);
  368. }
  369. if(version->version.size == 2) {
  370. memcpy(seader_worker->sam_version, version->version.buf, version->version.size);
  371. }
  372. rtn = true;
  373. }
  374. ASN_STRUCT_FREE(asn_DEF_SamVersion, version);
  375. return rtn;
  376. }
  377. bool seader_sam_save_serial(Seader* seader, uint8_t* buf, size_t size) {
  378. SeaderCredential* cred = seader->credential;
  379. const char* file_header = "SAM Serial Number";
  380. const uint32_t file_version = 1;
  381. bool use_load_path = true;
  382. bool saved = false;
  383. FlipperFormat* file = flipper_format_file_alloc(cred->storage);
  384. FuriString* temp_str;
  385. temp_str = furi_string_alloc();
  386. do {
  387. if(use_load_path && !furi_string_empty(cred->load_path)) {
  388. // Get directory name
  389. path_extract_dirname(furi_string_get_cstr(cred->load_path), temp_str);
  390. // Make path to file to save
  391. furi_string_cat_printf(temp_str, "/%s%s", SEADER_SERIAL_FILE_NAME, ".txt");
  392. } else {
  393. furi_string_printf(
  394. temp_str, "%s/%s%s", STORAGE_APP_DATA_PATH_PREFIX, SEADER_SERIAL_FILE_NAME, ".txt");
  395. }
  396. // Open file
  397. if(!flipper_format_file_open_always(file, furi_string_get_cstr(temp_str))) break;
  398. if(!flipper_format_write_header_cstr(file, file_header, file_version)) break;
  399. if(!flipper_format_write_hex(file, "Chip Serial Number", buf, size)) break;
  400. saved = true;
  401. } while(false);
  402. if(!saved) {
  403. dialog_message_show_storage_error(cred->dialogs, "Can not save\nserial file");
  404. }
  405. furi_string_free(temp_str);
  406. flipper_format_free(file);
  407. return saved;
  408. }
  409. bool seader_sam_save_serial_QR(Seader* seader, char* serial) {
  410. SeaderCredential* cred = seader->credential;
  411. const char* file_header = "QRCode";
  412. const uint32_t file_version = 0;
  413. bool saved = false;
  414. FlipperFormat* file = flipper_format_file_alloc(cred->storage);
  415. FuriString* temp_str;
  416. temp_str = furi_string_alloc();
  417. do {
  418. storage_simply_mkdir(cred->storage, EXT_PATH("qrcodes"));
  419. furi_string_printf(
  420. temp_str, "%s/%s%s", EXT_PATH("qrcodes"), "seader_sam_serial", ".qrcode");
  421. // Open file
  422. if(!flipper_format_file_open_always(file, furi_string_get_cstr(temp_str))) break;
  423. if(!flipper_format_write_header_cstr(file, file_header, file_version)) break;
  424. if(!flipper_format_write_string_cstr(file, "Message", serial)) break;
  425. saved = true;
  426. } while(false);
  427. if(!saved) {
  428. dialog_message_show_storage_error(cred->dialogs, "Can not save\nQR file");
  429. }
  430. furi_string_free(temp_str);
  431. flipper_format_free(file);
  432. return saved;
  433. }
  434. bool seader_parse_serial_number(Seader* seader, uint8_t* buf, size_t size) {
  435. memset(display, 0, sizeof(display));
  436. for(uint8_t i = 0; i < size; i++) {
  437. snprintf(display + (i * 2), sizeof(display), "%02x", buf[i]);
  438. }
  439. FURI_LOG_D(TAG, "Received serial: %s", display);
  440. seader_sam_save_serial_QR(seader, display);
  441. return seader_sam_save_serial(seader, buf, size);
  442. }
  443. bool seader_parse_sam_response(Seader* seader, SamResponse_t* samResponse) {
  444. SeaderWorker* seader_worker = seader->worker;
  445. switch(seader->samCommand) {
  446. case SamCommand_PR_requestPacs:
  447. FURI_LOG_I(TAG, "samResponse SamCommand_PR_requestPacs");
  448. seader_unpack_pacs(seader, samResponse->buf, samResponse->size);
  449. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventPollerSuccess);
  450. seader->samCommand = SamCommand_PR_NOTHING;
  451. break;
  452. case SamCommand_PR_version:
  453. FURI_LOG_I(TAG, "samResponse SamCommand_PR_version");
  454. seader_parse_version(seader_worker, samResponse->buf, samResponse->size);
  455. seader_worker_send_serial_number(seader);
  456. break;
  457. case SamCommand_PR_serialNumber:
  458. FURI_LOG_I(TAG, "samResponse SamCommand_PR_serialNumber");
  459. seader_parse_serial_number(seader, samResponse->buf, samResponse->size);
  460. seader->samCommand = SamCommand_PR_NOTHING;
  461. break;
  462. case SamCommand_PR_cardDetected:
  463. FURI_LOG_I(TAG, "samResponse SamCommand_PR_cardDetected");
  464. seader_send_request_pacs(seader);
  465. break;
  466. case SamCommand_PR_NOTHING:
  467. FURI_LOG_I(TAG, "samResponse SamCommand_PR_NOTHING");
  468. memset(display, 0, sizeof(display));
  469. for(uint8_t i = 0; i < samResponse->size; i++) {
  470. snprintf(display + (i * 2), sizeof(display), "%02x", samResponse->buf[i]);
  471. }
  472. FURI_LOG_I(TAG, "Unknown samResponse %d: %s", samResponse->size, display);
  473. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventWorkerExit);
  474. break;
  475. }
  476. return false;
  477. }
  478. bool seader_parse_response(Seader* seader, Response_t* response) {
  479. switch(response->present) {
  480. case Response_PR_samResponse:
  481. seader_parse_sam_response(seader, &response->choice.samResponse);
  482. break;
  483. default:
  484. FURI_LOG_D(TAG, "non-sam response");
  485. break;
  486. };
  487. return false;
  488. }
  489. void seader_send_nfc_rx(Seader* seader, uint8_t* buffer, size_t len) {
  490. OCTET_STRING_t rxData = {.buf = buffer, .size = len};
  491. uint8_t status[] = {0x00, 0x00};
  492. RfStatus_t rfStatus = {.buf = status, .size = 2};
  493. NFCRx_t* nfcRx = 0;
  494. nfcRx = calloc(1, sizeof *nfcRx);
  495. assert(nfcRx);
  496. nfcRx->rfStatus = rfStatus;
  497. nfcRx->data = &rxData;
  498. NFCResponse_t* nfcResponse = 0;
  499. nfcResponse = calloc(1, sizeof *nfcResponse);
  500. assert(nfcResponse);
  501. nfcResponse->present = NFCResponse_PR_nfcRx;
  502. nfcResponse->choice.nfcRx = *nfcRx;
  503. Response_t* response = 0;
  504. response = calloc(1, sizeof *response);
  505. assert(response);
  506. response->present = Response_PR_nfcResponse;
  507. response->choice.nfcResponse = *nfcResponse;
  508. seader_send_response(seader, response, NFCInterface, SAMInterface, 0x0);
  509. ASN_STRUCT_FREE(asn_DEF_NFCRx, nfcRx);
  510. ASN_STRUCT_FREE(asn_DEF_NFCResponse, nfcResponse);
  511. ASN_STRUCT_FREE(asn_DEF_Response, response);
  512. }
  513. void seader_capture_sio(BitBuffer* tx_buffer, BitBuffer* rx_buffer, SeaderCredential* credential) {
  514. const uint8_t* buffer = bit_buffer_get_data(tx_buffer);
  515. size_t len = bit_buffer_get_size_bytes(tx_buffer);
  516. const uint8_t* rxBuffer = bit_buffer_get_data(rx_buffer);
  517. if(credential->type == SeaderCredentialTypePicopass) {
  518. if(buffer[0] == RFAL_PICOPASS_CMD_READ_OR_IDENTIFY) {
  519. FURI_LOG_D(TAG, "Picopass Read1 block %02x", buffer[1]);
  520. }
  521. if(buffer[0] == RFAL_PICOPASS_CMD_READ4) {
  522. FURI_LOG_D(TAG, "Picopass Read4 block %02x", buffer[1]);
  523. }
  524. if(buffer[0] == RFAL_PICOPASS_CMD_READ4) {
  525. uint8_t block_num = buffer[1];
  526. if(credential->sio_len == 0 && rxBuffer[0] == 0x30) {
  527. credential->sio_start_block = block_num;
  528. }
  529. uint8_t offset = (block_num - credential->sio_start_block) * PICOPASS_BLOCK_LEN;
  530. memcpy(credential->sio + offset, rxBuffer, PICOPASS_BLOCK_LEN * 4);
  531. credential->sio_len += PICOPASS_BLOCK_LEN * 4;
  532. }
  533. } else if(credential->type == SeaderCredentialType14A) {
  534. // Desfire EV1 passes SIO in the clear
  535. uint8_t desfire_read[] = {
  536. 0x90, 0xbd, 0x00, 0x00, 0x07, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
  537. if(memcmp(buffer, desfire_read, len) == 0 && rxBuffer[0] == 0x30) {
  538. credential->sio_len =
  539. bit_buffer_get_size_bytes(rx_buffer) - 2; // -2 for the APDU response bytes
  540. memcpy(credential->sio, rxBuffer, credential->sio_len);
  541. }
  542. }
  543. }
  544. void seader_iso15693_transmit(
  545. Seader* seader,
  546. PicopassPoller* picopass_poller,
  547. uint8_t* buffer,
  548. size_t len) {
  549. SeaderWorker* seader_worker = seader->worker;
  550. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  551. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  552. PicopassError error = PicopassErrorNone;
  553. do {
  554. bit_buffer_append_bytes(tx_buffer, buffer, len);
  555. if(memcmp(buffer, updateBlock2, sizeof(updateBlock2)) == 0) {
  556. error = seader_worker_fake_epurse_update(tx_buffer, rx_buffer);
  557. } else {
  558. error = picopass_poller_send_frame(
  559. picopass_poller, tx_buffer, rx_buffer, SEADER_POLLER_MAX_FWT);
  560. }
  561. if(error == PicopassErrorIncorrectCrc) {
  562. error = PicopassErrorNone;
  563. }
  564. if(error != PicopassErrorNone) {
  565. seader_worker->stage = SeaderPollerEventTypeFail;
  566. break;
  567. }
  568. seader_capture_sio(tx_buffer, rx_buffer, seader->credential);
  569. seader_send_nfc_rx(
  570. seader,
  571. (uint8_t*)bit_buffer_get_data(rx_buffer),
  572. bit_buffer_get_size_bytes(rx_buffer));
  573. } while(false);
  574. bit_buffer_free(tx_buffer);
  575. bit_buffer_free(rx_buffer);
  576. }
  577. /* Assumes this is called in the context of the NFC API callback */
  578. void seader_iso14443a_transmit(
  579. Seader* seader,
  580. Iso14443_4aPoller* iso14443_4a_poller,
  581. uint8_t* buffer,
  582. size_t len,
  583. uint16_t timeout,
  584. uint8_t format[3]) {
  585. UNUSED(timeout);
  586. UNUSED(format);
  587. furi_assert(seader);
  588. furi_assert(buffer);
  589. furi_assert(iso14443_4a_poller);
  590. SeaderWorker* seader_worker = seader->worker;
  591. SeaderCredential* credential = seader->credential;
  592. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  593. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  594. do {
  595. if(credential->isDesfire && memcmp(buffer, ev2_request, len) == 0) {
  596. FURI_LOG_I(TAG, "Intercept Desfire EV2 response and return File Not Found");
  597. bit_buffer_append_bytes(rx_buffer, FILE_NOT_FOUND, sizeof(FILE_NOT_FOUND));
  598. } else {
  599. bit_buffer_append_bytes(tx_buffer, buffer, len);
  600. Iso14443_4aError error =
  601. iso14443_4a_poller_send_block(iso14443_4a_poller, tx_buffer, rx_buffer);
  602. if(error != Iso14443_4aErrorNone) {
  603. FURI_LOG_W(TAG, "iso14443_4a_poller_send_block error %d", error);
  604. seader_worker->stage = SeaderPollerEventTypeFail;
  605. break;
  606. }
  607. }
  608. seader_capture_sio(tx_buffer, rx_buffer, credential);
  609. seader_send_nfc_rx(
  610. seader,
  611. (uint8_t*)bit_buffer_get_data(rx_buffer),
  612. bit_buffer_get_size_bytes(rx_buffer));
  613. } while(false);
  614. bit_buffer_free(tx_buffer);
  615. bit_buffer_free(rx_buffer);
  616. }
  617. /* Assumes this is called in the context of the NFC API callback */
  618. #define MF_CLASSIC_FWT_FC (60000)
  619. void seader_mfc_transmit(
  620. Seader* seader,
  621. MfClassicPoller* mfc_poller,
  622. uint8_t* buffer,
  623. size_t len,
  624. uint16_t timeout,
  625. uint8_t format[3]) {
  626. UNUSED(timeout);
  627. furi_assert(seader);
  628. furi_assert(buffer);
  629. furi_assert(mfc_poller);
  630. SeaderWorker* seader_worker = seader->worker;
  631. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  632. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  633. do {
  634. if(format[0] == 0x00 && format[1] == 0xC0 && format[2] == 0x00) {
  635. bit_buffer_append_bytes(tx_buffer, buffer, len);
  636. MfClassicError error =
  637. mf_classic_poller_send_frame(mfc_poller, tx_buffer, rx_buffer, MF_CLASSIC_FWT_FC);
  638. if(error != MfClassicErrorNone) {
  639. FURI_LOG_W(TAG, "mf_classic_poller_send_frame error %d", error);
  640. seader_worker->stage = SeaderPollerEventTypeFail;
  641. break;
  642. }
  643. } else if(
  644. (format[0] == 0x00 && format[1] == 0x00 && format[2] == 0x40) ||
  645. (format[0] == 0x00 && format[1] == 0x00 && format[2] == 0x24) ||
  646. (format[0] == 0x00 && format[1] == 0x00 && format[2] == 0x44)) {
  647. memset(display, 0, sizeof(display));
  648. for(uint8_t i = 0; i < len; i++) {
  649. snprintf(display + (i * 2), sizeof(display), "%02x", buffer[i]);
  650. }
  651. FURI_LOG_D(TAG, "NFC Send with parity %d: %s", len, display);
  652. // Only handles message up to 8 data bytes
  653. uint8_t tx_parity = 0;
  654. uint8_t len_without_parity = len - 1;
  655. // Don't forget to swap the bits of buffer[8]
  656. for(size_t i = 0; i < len; i++) {
  657. bit_lib_reverse_bits(buffer + i, 0, 8);
  658. }
  659. // Pull out parity bits
  660. for(size_t i = 0; i < len_without_parity; i++) {
  661. bool val = bit_lib_get_bit(buffer + i + 1, i);
  662. bit_lib_set_bit(&tx_parity, i, val);
  663. }
  664. for(size_t i = 0; i < len_without_parity; i++) {
  665. buffer[i] = (buffer[i] << i) | (buffer[i + 1] >> (8 - i));
  666. }
  667. bit_buffer_append_bytes(tx_buffer, buffer, len_without_parity);
  668. for(size_t i = 0; i < len_without_parity; i++) {
  669. bit_lib_reverse_bits(buffer + i, 0, 8);
  670. bit_buffer_set_byte_with_parity(
  671. tx_buffer, i, buffer[i], bit_lib_get_bit(&tx_parity, i));
  672. }
  673. memset(display, 0, sizeof(display));
  674. for(uint8_t i = 0; i < bit_buffer_get_size_bytes(tx_buffer); i++) {
  675. snprintf(
  676. display + (i * 2), sizeof(display), "%02x", bit_buffer_get_byte(tx_buffer, i));
  677. }
  678. FURI_LOG_D(
  679. TAG,
  680. "NFC Send without parity %d: %s [%02x]",
  681. bit_buffer_get_size_bytes(tx_buffer),
  682. display,
  683. tx_parity);
  684. MfClassicError error = mf_classic_poller_send_custom_parity_frame(
  685. mfc_poller, tx_buffer, rx_buffer, MF_CLASSIC_FWT_FC);
  686. if(error != MfClassicErrorNone) {
  687. FURI_LOG_W(TAG, "mf_classic_poller_send_encrypted_frame error %d", error);
  688. seader_worker->stage = SeaderPollerEventTypeFail;
  689. break;
  690. }
  691. size_t length = bit_buffer_get_size_bytes(rx_buffer);
  692. const uint8_t* rx_parity = bit_buffer_get_parity(rx_buffer);
  693. memset(display, 0, sizeof(display));
  694. for(uint8_t i = 0; i < length; i++) {
  695. snprintf(
  696. display + (i * 2), sizeof(display), "%02x", bit_buffer_get_byte(rx_buffer, i));
  697. }
  698. FURI_LOG_D(
  699. TAG, "NFC Response without parity %d: %s [%02x]", length, display, rx_parity[0]);
  700. uint8_t with_parity[SEADER_POLLER_MAX_BUFFER_SIZE];
  701. memset(with_parity, 0, sizeof(with_parity));
  702. for(size_t i = 0; i < length; i++) {
  703. uint8_t b = bit_buffer_get_byte(rx_buffer, i);
  704. bit_lib_reverse_bits(&b, 0, 8);
  705. bit_buffer_set_byte(rx_buffer, i, b);
  706. }
  707. length = length + (length / 8) + 1;
  708. uint8_t parts = 1 + length / 9;
  709. for(size_t p = 0; p < parts; p++) {
  710. uint8_t doffset = p * 9;
  711. uint8_t soffset = p * 8;
  712. for(size_t i = 0; i < 9; i++) {
  713. with_parity[i + doffset] = bit_buffer_get_byte(rx_buffer, i + soffset) >> i;
  714. if(i > 0) {
  715. with_parity[i + doffset] |= bit_buffer_get_byte(rx_buffer, i + soffset - 1)
  716. << (9 - i);
  717. }
  718. if(i > 0) {
  719. bool val = bit_lib_get_bit(rx_parity, i - 1);
  720. bit_lib_set_bit(with_parity + i, i - 1, val);
  721. }
  722. }
  723. }
  724. for(size_t i = 0; i < length; i++) {
  725. bit_lib_reverse_bits(with_parity + i, 0, 8);
  726. }
  727. bit_buffer_copy_bytes(rx_buffer, with_parity, length);
  728. memset(display, 0, sizeof(display));
  729. for(uint8_t i = 0; i < length; i++) {
  730. snprintf(
  731. display + (i * 2), sizeof(display), "%02x", bit_buffer_get_byte(rx_buffer, i));
  732. }
  733. FURI_LOG_D(
  734. TAG, "NFC Response with parity %d: %s [%02x]", length, display, rx_parity[0]);
  735. } else {
  736. FURI_LOG_W(TAG, "UNHANDLED FORMAT");
  737. }
  738. seader_send_nfc_rx(
  739. seader,
  740. (uint8_t*)bit_buffer_get_data(rx_buffer),
  741. bit_buffer_get_size_bytes(rx_buffer));
  742. } while(false);
  743. bit_buffer_free(tx_buffer);
  744. bit_buffer_free(rx_buffer);
  745. }
  746. void seader_parse_nfc_command_transmit(
  747. Seader* seader,
  748. NFCSend_t* nfcSend,
  749. SeaderPollerContainer* spc) {
  750. long timeOut = nfcSend->timeOut;
  751. Protocol_t protocol = nfcSend->protocol;
  752. FrameProtocol_t frameProtocol = protocol.buf[1];
  753. #ifdef ASN1_DEBUG
  754. memset(display, 0, sizeof(display));
  755. for(uint8_t i = 0; i < nfcSend->data.size; i++) {
  756. snprintf(display + (i * 2), sizeof(display), "%02x", nfcSend->data.buf[i]);
  757. }
  758. FURI_LOG_D(
  759. TAG,
  760. "Transmit (%ld timeout) %d bytes [%s] via %lx",
  761. timeOut,
  762. nfcSend->data.size,
  763. display,
  764. frameProtocol);
  765. #endif
  766. if(seader->credential->type == SeaderCredentialTypeVirtual) {
  767. seader_picopass_state_machine(seader, nfcSend->data.buf, nfcSend->data.size);
  768. } else if(frameProtocol == FrameProtocol_iclass) {
  769. seader_iso15693_transmit(
  770. seader, spc->picopass_poller, nfcSend->data.buf, nfcSend->data.size);
  771. } else if(frameProtocol == FrameProtocol_nfc) {
  772. if(spc->iso14443_4a_poller) {
  773. seader_iso14443a_transmit(
  774. seader,
  775. spc->iso14443_4a_poller,
  776. nfcSend->data.buf,
  777. nfcSend->data.size,
  778. (uint16_t)timeOut,
  779. nfcSend->format->buf);
  780. } else if(spc->mfc_poller) {
  781. seader_mfc_transmit(
  782. seader,
  783. spc->mfc_poller,
  784. nfcSend->data.buf,
  785. nfcSend->data.size,
  786. (uint16_t)timeOut,
  787. nfcSend->format->buf);
  788. }
  789. } else {
  790. FURI_LOG_W(TAG, "unknown frame protocol %lx", frameProtocol);
  791. }
  792. }
  793. void seader_parse_nfc_off(Seader* seader) {
  794. FURI_LOG_D(TAG, "Set Field Off");
  795. NFCResponse_t* nfcResponse = 0;
  796. nfcResponse = calloc(1, sizeof *nfcResponse);
  797. assert(nfcResponse);
  798. nfcResponse->present = NFCResponse_PR_nfcAck;
  799. Response_t* response = 0;
  800. response = calloc(1, sizeof *response);
  801. assert(response);
  802. response->present = Response_PR_nfcResponse;
  803. response->choice.nfcResponse = *nfcResponse;
  804. seader_send_response(seader, response, ExternalApplicationA, SAMInterface, 0);
  805. free(response);
  806. free(nfcResponse);
  807. }
  808. void seader_parse_nfc_command(Seader* seader, NFCCommand_t* nfcCommand, SeaderPollerContainer* spc) {
  809. switch(nfcCommand->present) {
  810. case NFCCommand_PR_nfcSend:
  811. seader_parse_nfc_command_transmit(seader, &nfcCommand->choice.nfcSend, spc);
  812. break;
  813. case NFCCommand_PR_nfcOff:
  814. seader_parse_nfc_off(seader);
  815. seader->worker->stage = SeaderPollerEventTypeComplete;
  816. break;
  817. default:
  818. FURI_LOG_W(TAG, "unparsed NFCCommand");
  819. break;
  820. };
  821. }
  822. bool seader_worker_state_machine(
  823. Seader* seader,
  824. Payload_t* payload,
  825. bool online,
  826. SeaderPollerContainer* spc) {
  827. bool processed = false;
  828. switch(payload->present) {
  829. case Payload_PR_response:
  830. FURI_LOG_D(TAG, "Payload_PR_response");
  831. seader_parse_response(seader, &payload->choice.response);
  832. processed = true;
  833. break;
  834. case Payload_PR_nfcCommand:
  835. FURI_LOG_D(TAG, "Payload_PR_nfcCommand");
  836. if(online) {
  837. seader_parse_nfc_command(seader, &payload->choice.nfcCommand, spc);
  838. processed = true;
  839. }
  840. break;
  841. case Payload_PR_errorResponse:
  842. FURI_LOG_W(TAG, "Payload_PR_errorResponse");
  843. processed = true;
  844. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventWorkerExit);
  845. break;
  846. default:
  847. FURI_LOG_W(TAG, "unhandled payload");
  848. break;
  849. };
  850. return processed;
  851. }
  852. bool seader_process_success_response_i(
  853. Seader* seader,
  854. uint8_t* apdu,
  855. size_t len,
  856. bool online,
  857. SeaderPollerContainer* spc) {
  858. Payload_t* payload = 0;
  859. payload = calloc(1, sizeof *payload);
  860. assert(payload);
  861. bool processed = false;
  862. asn_dec_rval_t rval =
  863. asn_decode(0, ATS_DER, &asn_DEF_Payload, (void**)&payload, apdu + 6, len - 6);
  864. if(rval.code == RC_OK) {
  865. #ifdef ASN1_DEBUG
  866. if(online == false) {
  867. memset(display, 0, sizeof(display));
  868. for(uint8_t i = 0; i < len - 6; i++) {
  869. snprintf(display + (i * 2), sizeof(display), "%02x", apdu[i + 6]);
  870. }
  871. FURI_LOG_D(TAG, "incoming APDU %s", display);
  872. char payloadDebug[384] = {0};
  873. memset(payloadDebug, 0, sizeof(payloadDebug));
  874. (&asn_DEF_Payload)
  875. ->op->print_struct(
  876. &asn_DEF_Payload, payload, 1, seader_print_struct_callback, payloadDebug);
  877. if(strlen(payloadDebug) > 0) {
  878. FURI_LOG_D(TAG, "Received Payload: %s", payloadDebug);
  879. } else {
  880. FURI_LOG_D(TAG, "Received empty Payload");
  881. }
  882. } else {
  883. FURI_LOG_D(TAG, "Online mode");
  884. }
  885. #endif
  886. processed = seader_worker_state_machine(seader, payload, online, spc);
  887. } else {
  888. memset(display, 0, sizeof(display));
  889. for(uint8_t i = 0; i < len; i++) {
  890. snprintf(display + (i * 2), sizeof(display), "%02x", apdu[i]);
  891. }
  892. FURI_LOG_D(TAG, "Failed to decode APDU payload: [%s]", display);
  893. }
  894. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  895. return processed;
  896. }
  897. bool seader_mf_df_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
  898. return ATQA0 == 0x44 && ATQA1 == 0x03 && SAK == 0x20;
  899. }
  900. NfcCommand seader_worker_card_detect(
  901. Seader* seader,
  902. uint8_t sak,
  903. uint8_t* atqa,
  904. const uint8_t* uid,
  905. uint8_t uid_len,
  906. uint8_t* ats,
  907. uint8_t ats_len) {
  908. UNUSED(ats);
  909. UNUSED(ats_len);
  910. SeaderCredential* credential = seader->credential;
  911. CardDetails_t* cardDetails = 0;
  912. cardDetails = calloc(1, sizeof *cardDetails);
  913. assert(cardDetails);
  914. OCTET_STRING_fromBuf(&cardDetails->csn, (const char*)uid, uid_len);
  915. OCTET_STRING_t sak_string = {.buf = &sak, .size = 1};
  916. OCTET_STRING_t atqa_string = {.buf = atqa, .size = 2};
  917. uint8_t protocol_bytes[] = {0x00, 0x00};
  918. if(sak != 0 && atqa != NULL) { // type 4
  919. protocol_bytes[1] = FrameProtocol_nfc;
  920. OCTET_STRING_fromBuf(
  921. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  922. cardDetails->sak = &sak_string;
  923. cardDetails->atqa = &atqa_string;
  924. credential->isDesfire = seader_mf_df_check_card_type(atqa[0], atqa[1], sak);
  925. if(credential->isDesfire) {
  926. memcpy(credential->diversifier, uid, uid_len);
  927. credential->diversifier_len = uid_len;
  928. }
  929. } else if(sak != 0 && atqa == NULL) { // MFC
  930. protocol_bytes[1] = FrameProtocol_nfc;
  931. OCTET_STRING_fromBuf(
  932. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  933. cardDetails->sak = &sak_string;
  934. } else if(uid_len == 8) { // picopass
  935. protocol_bytes[1] = FrameProtocol_iclass;
  936. OCTET_STRING_fromBuf(
  937. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  938. memcpy(credential->diversifier, uid, uid_len);
  939. credential->diversifier_len = uid_len;
  940. credential->isDesfire = false;
  941. } else {
  942. FURI_LOG_D(TAG, "Unknown card type");
  943. }
  944. seader_send_card_detected(seader, cardDetails);
  945. // Print version information for app and firmware for later review in log
  946. const Version* version = version_get();
  947. FURI_LOG_I(
  948. TAG,
  949. "Firmware origin: %s firmware version: %s app version: %s",
  950. version_get_firmware_origin(version),
  951. version_get_version(version),
  952. FAP_VERSION);
  953. free(cardDetails);
  954. return NfcCommandContinue;
  955. }