uhf_module.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391
  1. #include "uhf_module.h"
  2. #include "uhf_module_cmd.h"
  3. #define DELAY_MS 100
  4. #define WAIT_TICK 4000 // max wait time in between each byte
  5. volatile uint16_t tick = 0;
  6. // void rx_callback(UartIrqEvent event, uint8_t data, void* ctx) {
  7. // UNUSED(event);
  8. // Buffer* buffer = ctx;
  9. // if(buffer->closed) return; // buffer closed
  10. // buffer_append_single(buffer, data); // append data
  11. // if(data == FRAME_END) buffer_close(buffer); // end of frame
  12. // tick = WAIT_TICK; // reset tick
  13. // }
  14. static M100ResponseType setup_and_send_rx(M100Module* module, uint8_t* cmd, size_t cmd_length) {
  15. UHFUart* uart = module->uart;
  16. Buffer* buffer = uart->buffer;
  17. // clear buffer
  18. uhf_buffer_reset(buffer);
  19. // send cmd
  20. uhf_uart_send_wait(uart, cmd, cmd_length);
  21. // wait for response
  22. while(!uhf_is_buffer_closed(buffer) && !uhf_uart_tick(uart)) {}
  23. // reset tick
  24. uhf_uart_tick_reset(uart);
  25. // Validation Checks
  26. uint8_t* data = uhf_buffer_get_data(buffer);
  27. size_t length = uhf_buffer_get_size(buffer);
  28. // check if size > 0
  29. if(!length) return M100EmptyResponse;
  30. // check if data is valid
  31. if(data[0] != FRAME_START || data[length - 1] != FRAME_END) return M100ValidationFail;
  32. // check if checksum is correct
  33. if(checksum(data + 1, length - 3) != data[length - 2]) return M100ChecksumFail;
  34. return M100SuccessResponse;
  35. }
  36. M100ModuleInfo* m100_module_info_alloc() {
  37. M100ModuleInfo* module_info = (M100ModuleInfo*)malloc(sizeof(M100ModuleInfo));
  38. return module_info;
  39. }
  40. void m100_module_info_free(M100ModuleInfo* module_info) {
  41. if(module_info->hw_version != NULL) free(module_info->hw_version);
  42. if(module_info->sw_version != NULL) free(module_info->sw_version);
  43. if(module_info->manufacturer != NULL) free(module_info->manufacturer);
  44. free(module_info);
  45. }
  46. M100Module* m100_module_alloc() {
  47. M100Module* module = (M100Module*)malloc(sizeof(M100Module));
  48. module->transmitting_power = DEFAULT_TRANSMITTING_POWER;
  49. module->region = DEFAULT_WORKING_REGION;
  50. module->info = m100_module_info_alloc();
  51. module->uart = uhf_uart_alloc();
  52. return module;
  53. }
  54. void m100_module_free(M100Module* module) {
  55. m100_module_info_free(module->info);
  56. uhf_uart_free(module->uart);
  57. free(module);
  58. }
  59. uint8_t checksum(const uint8_t* data, size_t length) {
  60. // CheckSum8 Modulo 256
  61. // Sum of Bytes % 256
  62. uint64_t sum_val = 0x00;
  63. for(size_t i = 0; i < length; i++) {
  64. sum_val += data[i];
  65. }
  66. return (uint8_t)(sum_val % 0x100);
  67. }
  68. uint16_t crc16_genibus(const uint8_t* data, size_t length) {
  69. uint16_t crc = 0xFFFF; // Initial value
  70. uint16_t polynomial = 0x1021; // CRC-16/GENIBUS polynomial
  71. for(size_t i = 0; i < length; i++) {
  72. crc ^= (data[i] << 8); // Move byte into MSB of 16bit CRC
  73. for(int j = 0; j < 8; j++) {
  74. if(crc & 0x8000) {
  75. crc = (crc << 1) ^ polynomial;
  76. } else {
  77. crc <<= 1;
  78. }
  79. }
  80. }
  81. return crc ^ 0xFFFF; // Post-inversion
  82. }
  83. char* _m100_info_helper(M100Module* module, char** info) {
  84. if(!uhf_buffer_get_size(module->uart->buffer)) return NULL;
  85. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  86. uint16_t payload_len = data[3];
  87. payload_len = (payload_len << 8) + data[4];
  88. FuriString* temp_str = furi_string_alloc();
  89. for(int i = 0; i < payload_len; i++) {
  90. furi_string_cat_printf(temp_str, "%c", data[6 + i]);
  91. }
  92. if(*info == NULL) {
  93. *info = (char*)malloc(sizeof(char) * payload_len);
  94. } else {
  95. for(size_t i = 0; i < strlen(*info); i++) {
  96. (*info)[i] = 0;
  97. }
  98. }
  99. memcpy(*info, furi_string_get_cstr(temp_str), payload_len);
  100. furi_string_free(temp_str);
  101. return *info;
  102. }
  103. char* m100_get_hardware_version(M100Module* module) {
  104. setup_and_send_rx(module, (uint8_t*)&CMD_HW_VERSION.cmd[0], CMD_HW_VERSION.length);
  105. return _m100_info_helper(module, &module->info->hw_version);
  106. }
  107. char* m100_get_software_version(M100Module* module) {
  108. setup_and_send_rx(module, (uint8_t*)&CMD_SW_VERSION.cmd[0], CMD_SW_VERSION.length);
  109. return _m100_info_helper(module, &module->info->sw_version);
  110. }
  111. char* m100_get_manufacturers(M100Module* module) {
  112. setup_and_send_rx(module, (uint8_t*)&CMD_MANUFACTURERS.cmd[0], CMD_MANUFACTURERS.length);
  113. return _m100_info_helper(module, &module->info->manufacturer);
  114. }
  115. M100ResponseType m100_single_poll(M100Module* module, UHFTag* uhf_tag) {
  116. M100ResponseType rp_type =
  117. setup_and_send_rx(module, (uint8_t*)&CMD_SINGLE_POLLING.cmd[0], CMD_SINGLE_POLLING.length);
  118. if(rp_type != M100SuccessResponse) return rp_type;
  119. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  120. size_t length = uhf_buffer_get_size(module->uart->buffer);
  121. uint16_t pc = data[6];
  122. uint16_t crc = 0;
  123. // mask out epc length from protocol control
  124. size_t epc_len = pc;
  125. epc_len >>= 3;
  126. epc_len *= 2;
  127. // get protocol control
  128. pc <<= 8;
  129. pc += data[7];
  130. // get cyclic redundency check
  131. crc = data[8 + epc_len];
  132. crc <<= 8;
  133. crc += data[8 + epc_len + 1];
  134. // validate checksum
  135. if(checksum(data + 1, length - 3) != data[length - 2]) return M100ValidationFail;
  136. // validate crc
  137. if(crc16_genibus(data + 6, epc_len + 2) != crc) return M100ValidationFail;
  138. uhf_tag_set_epc_pc(uhf_tag, pc);
  139. uhf_tag_set_epc_crc(uhf_tag, crc);
  140. uhf_tag_set_epc(uhf_tag, data + 8, epc_len);
  141. return M100SuccessResponse;
  142. }
  143. M100ResponseType m100_set_select(M100Module* module, UHFTag* uhf_tag) {
  144. // Set select
  145. uint8_t cmd[MAX_BUFFER_SIZE];
  146. size_t cmd_length = CMD_SET_SELECT_PARAMETER.length;
  147. size_t mask_length_bytes = uhf_tag->epc->size;
  148. size_t mask_length_bits = mask_length_bytes * 8;
  149. // payload len == sel param len + ptr len + mask len + epc len
  150. size_t payload_len = 7 + mask_length_bytes;
  151. memcpy(cmd, CMD_SET_SELECT_PARAMETER.cmd, cmd_length);
  152. // set new length
  153. cmd_length = 12 + mask_length_bytes + 2;
  154. // set payload length
  155. cmd[3] = (payload_len >> 8) & 0xFF;
  156. cmd[4] = payload_len & 0xFF;
  157. // set select param
  158. cmd[5] = 0x01; // 0x00=rfu, 0x01=epc, 0x10=tid, 0x11=user
  159. // set ptr
  160. cmd[9] = 0x20; // epc data begins after 0x20
  161. // set mask length
  162. cmd[10] = mask_length_bits;
  163. // truncate
  164. cmd[11] = false;
  165. // set mask
  166. memcpy((void*)&cmd[12], uhf_tag->epc->data, mask_length_bytes);
  167. // set checksum
  168. cmd[cmd_length - 2] = checksum(cmd + 1, 11 + mask_length_bytes);
  169. // end frame
  170. cmd[cmd_length - 1] = FRAME_END;
  171. setup_and_send_rx(module, cmd, 12 + mask_length_bytes + 3);
  172. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  173. if(checksum(data + 1, 5) != data[6]) return M100ValidationFail; // error in rx
  174. if(data[5] != 0x00) return M100ValidationFail; // error if not 0
  175. return M100SuccessResponse;
  176. }
  177. UHFTag* m100_get_select_param(M100Module* module) {
  178. uhf_buffer_reset(module->uart->buffer);
  179. // furi_hal_uart_set_irq_cb(FuriHalUartIdLPUART1, rx_callback, module->uart->buffer);
  180. // furi_hal_uart_tx(
  181. // FuriHalUartIdUSART1,
  182. // (uint8_t*)&CMD_GET_SELECT_PARAMETER.cmd,
  183. // CMD_GET_SELECT_PARAMETER.length);
  184. // furi_delay_ms(DELAY_MS);
  185. // UHFTag* uhf_tag = uhf_tag_alloc();
  186. // uint8_t* data = buffer_get_data(module->uart->buffer);
  187. // size_t mask_length =
  188. // uhf_tag_set_epc(uhf_tag, data + 12, )
  189. // TODO : implement
  190. return NULL;
  191. }
  192. M100ResponseType m100_read_label_data_storage(
  193. M100Module* module,
  194. UHFTag* uhf_tag,
  195. BankType bank,
  196. uint32_t access_pwd,
  197. uint16_t word_count) {
  198. /*
  199. Will probably remove UHFTag as param and get it from get selected tag
  200. */
  201. if(bank == EPCBank) return M100SuccessResponse;
  202. uint8_t cmd[MAX_BUFFER_SIZE];
  203. size_t cmd_length = CMD_READ_LABEL_DATA_STORAGE_AREA.length;
  204. memcpy(cmd, CMD_READ_LABEL_DATA_STORAGE_AREA.cmd, cmd_length);
  205. // set access password
  206. cmd[5] = (access_pwd >> 24) & 0xFF;
  207. cmd[6] = (access_pwd >> 16) & 0xFF;
  208. cmd[7] = (access_pwd >> 8) & 0xFF;
  209. cmd[8] = access_pwd & 0xFF;
  210. // set mem bank
  211. cmd[9] = (uint8_t)bank;
  212. // set word counter
  213. cmd[12] = (word_count >> 8) & 0xFF;
  214. cmd[13] = word_count & 0xFF;
  215. // calc checksum
  216. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  217. M100ResponseType rp_type = setup_and_send_rx(module, cmd, cmd_length);
  218. if(rp_type != M100SuccessResponse) return rp_type;
  219. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  220. uint8_t rtn_command = data[2];
  221. uint16_t payload_len = data[3];
  222. payload_len = (payload_len << 8) + data[4];
  223. if(rtn_command == 0xFF) {
  224. if(payload_len == 0x01) return M100NoTagResponse;
  225. return M100MemoryOverrun;
  226. }
  227. size_t ptr_offset = 5 /*<-ptr offset*/ + uhf_tag_get_epc_size(uhf_tag) + 3 /*<-pc + ul*/;
  228. size_t bank_data_length = payload_len - (ptr_offset - 5 /*dont include the offset*/);
  229. if(bank == TIDBank) {
  230. uhf_tag_set_tid(uhf_tag, data + ptr_offset, bank_data_length);
  231. } else if(bank == UserBank) {
  232. uhf_tag_set_user(uhf_tag, data + ptr_offset, bank_data_length);
  233. }
  234. return M100SuccessResponse;
  235. }
  236. M100ResponseType m100_write_label_data_storage(
  237. M100Module* module,
  238. UHFTag* saved_tag,
  239. UHFTag* selected_tag,
  240. BankType bank,
  241. uint16_t source_address,
  242. uint32_t access_pwd) {
  243. uint8_t cmd[MAX_BUFFER_SIZE];
  244. size_t cmd_length = CMD_WRITE_LABEL_DATA_STORE.length;
  245. memcpy(cmd, CMD_WRITE_LABEL_DATA_STORE.cmd, cmd_length);
  246. uint16_t payload_len = 9;
  247. uint16_t data_length = 0;
  248. if(bank == ReservedBank) {
  249. // access pwd len + kill pwd len
  250. payload_len += 4;
  251. data_length = 4;
  252. } else if(bank == EPCBank) {
  253. // epc len + pc len
  254. payload_len += 4 + uhf_tag_get_epc_size(saved_tag);
  255. data_length = 4 + uhf_tag_get_epc_size(saved_tag);
  256. // set data
  257. uint8_t tmp_arr[4];
  258. tmp_arr[0] = (uint8_t)((uhf_tag_get_epc_crc(selected_tag) >> 8) & 0xFF);
  259. tmp_arr[1] = (uint8_t)(uhf_tag_get_epc_crc(selected_tag) & 0xFF);
  260. tmp_arr[2] = (uint8_t)((uhf_tag_get_epc_pc(saved_tag) >> 8) & 0xFF);
  261. tmp_arr[3] = (uint8_t)(uhf_tag_get_epc_pc(saved_tag) & 0xFF);
  262. memcpy(cmd + 14, tmp_arr, 4);
  263. memcpy(cmd + 18, uhf_tag_get_epc(saved_tag), uhf_tag_get_epc_size(saved_tag));
  264. } else if(bank == UserBank) {
  265. payload_len += uhf_tag_get_user_size(saved_tag);
  266. data_length = uhf_tag_get_user_size(saved_tag);
  267. // set data
  268. memcpy(cmd + 14, uhf_tag_get_user(saved_tag), uhf_tag_get_user_size(saved_tag));
  269. }
  270. // set payload length
  271. cmd[3] = (payload_len >> 8) & 0xFF;
  272. cmd[4] = payload_len & 0xFF;
  273. // set access password
  274. cmd[5] = (access_pwd >> 24) & 0xFF;
  275. cmd[6] = (access_pwd >> 16) & 0xFF;
  276. cmd[7] = (access_pwd >> 8) & 0xFF;
  277. cmd[8] = access_pwd & 0xFF;
  278. // set membank
  279. cmd[9] = (uint8_t)bank;
  280. // set source address
  281. cmd[10] = (source_address >> 8) & 0xFF;
  282. cmd[11] = source_address & 0xFF;
  283. // set data length
  284. size_t data_length_words = data_length / 2;
  285. cmd[12] = (data_length_words >> 8) & 0xFF;
  286. cmd[13] = data_length_words & 0xFF;
  287. // update cmd len
  288. cmd_length = 7 + payload_len;
  289. // calculate checksum
  290. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  291. cmd[cmd_length - 1] = FRAME_END;
  292. // send cmd
  293. // furi_hal_uart_set_irq_cb(FuriHalUartIdUSART1, rx_callback, module->uart->buffer);
  294. // furi_hal_uart_tx(FuriHalUartIdUSART1, cmd, cmd_length);
  295. // unsigned int delay = DELAY_MS / 2;
  296. // unsigned int timeout = 15;
  297. // while(!buffer_get_size(module->uart->buffer)) {
  298. // furi_delay_ms(delay);
  299. // if(!timeout--) break;
  300. // }
  301. setup_and_send_rx(module, cmd, cmd_length);
  302. uint8_t* buff_data = uhf_buffer_get_data(module->uart->buffer);
  303. size_t buff_length = uhf_buffer_get_size(module->uart->buffer);
  304. if(buff_data[2] == 0xFF && buff_length == 8)
  305. return M100NoTagResponse;
  306. else if(buff_data[2] == 0xFF)
  307. return M100ValidationFail;
  308. return M100SuccessResponse;
  309. }
  310. void m100_set_baudrate(M100Module* module, uint32_t baudrate) {
  311. size_t length = CMD_SET_COMMUNICATION_BAUD_RATE.length;
  312. uint8_t cmd[length];
  313. memcpy(cmd, CMD_SET_COMMUNICATION_BAUD_RATE.cmd, length);
  314. uint16_t br_mod = baudrate / 100; // module format
  315. cmd[6] = 0xFF & br_mod; // pow LSB
  316. cmd[5] = 0xFF & (br_mod >> 8); // pow MSB
  317. cmd[length - 2] = checksum(cmd + 1, length - 3);
  318. // setup_and_send_rx(module, cmd, length);
  319. uhf_uart_send_wait(module->uart, cmd, length);
  320. uhf_uart_set_baudrate(module->uart, baudrate);
  321. module->uart->baudrate = baudrate;
  322. }
  323. bool m100_set_working_region(M100Module* module, WorkingRegion region) {
  324. size_t length = CMD_SET_WORK_AREA.length;
  325. uint8_t cmd[length];
  326. memcpy(cmd, CMD_SET_WORK_AREA.cmd, length);
  327. cmd[5] = (uint8_t)region;
  328. cmd[length - 2] = checksum(cmd + 1, length - 3);
  329. setup_and_send_rx(module, cmd, length);
  330. module->region = region;
  331. return true;
  332. }
  333. bool m100_set_transmitting_power(M100Module* module, uint16_t power) {
  334. size_t length = CMD_SET_TRANSMITTING_POWER.length;
  335. uint8_t cmd[length];
  336. memcpy(cmd, CMD_SET_TRANSMITTING_POWER.cmd, length);
  337. cmd[5] = (power >> 8) & 0xFF;
  338. cmd[6] = power & 0xFF;
  339. cmd[length - 2] = checksum(cmd + 1, length - 3);
  340. setup_and_send_rx(module, cmd, length);
  341. module->transmitting_power = power;
  342. return true;
  343. }
  344. bool m100_set_freq_hopping(M100Module* module, bool hopping) {
  345. UNUSED(module);
  346. UNUSED(hopping);
  347. return true;
  348. }
  349. bool m100_set_power(M100Module* module, uint8_t* power) {
  350. UNUSED(module);
  351. UNUSED(power);
  352. return true;
  353. }
  354. uint32_t m100_get_baudrate(M100Module* module) {
  355. return module->uart->baudrate;
  356. }