mag_helpers.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. #include "mag_helpers.h"
  2. #include "../mag_i.h"
  3. #define GPIO_PIN_A &gpio_ext_pa6
  4. #define GPIO_PIN_B &gpio_ext_pa7
  5. #define RFID_PIN &gpio_rfid_carrier_out
  6. #define ZERO_PREFIX 25 // n zeros prefix
  7. #define ZERO_BETWEEN 53 // n zeros between tracks
  8. #define ZERO_SUFFIX 25 // n zeros suffix
  9. //#define US_CLOCK 240
  10. //#define US_INTERPACKET 10
  11. // bits per char on a given track
  12. const uint8_t bitlen[] = {7, 5, 5};
  13. // char offset by track
  14. const int sublen[] = {32, 48, 48};
  15. uint8_t bit_dir = 0;
  16. void play_bit_rfid(uint8_t send_bit, MagSetting* setting) {
  17. // internal TX over RFID coil
  18. bit_dir ^= 1;
  19. furi_hal_gpio_write(RFID_PIN, bit_dir);
  20. furi_delay_us(setting->us_clock);
  21. if(send_bit) {
  22. bit_dir ^= 1;
  23. furi_hal_gpio_write(RFID_PIN, bit_dir);
  24. }
  25. furi_delay_us(setting->us_clock);
  26. furi_delay_us(setting->us_interpacket);
  27. }
  28. void play_bit_gpio(uint8_t send_bit, MagSetting* setting) {
  29. // external TX over motor driver wired to PIN_A and PIN_B
  30. bit_dir ^= 1;
  31. furi_hal_gpio_write(GPIO_PIN_A, bit_dir);
  32. furi_hal_gpio_write(GPIO_PIN_B, !bit_dir);
  33. furi_delay_us(setting->us_clock);
  34. if(send_bit) {
  35. bit_dir ^= 1;
  36. furi_hal_gpio_write(GPIO_PIN_A, bit_dir);
  37. furi_hal_gpio_write(GPIO_PIN_B, !bit_dir);
  38. }
  39. furi_delay_us(setting->us_clock);
  40. furi_delay_us(setting->us_interpacket);
  41. }
  42. bool play_bit(uint8_t send_bit, MagSetting* setting) {
  43. // Initialize configured TX method
  44. if(setting->tx == MagTxStateRFID) {
  45. play_bit_rfid(send_bit, setting);
  46. } else if(setting->tx == MagTxStateGPIOA6A7) {
  47. play_bit_gpio(send_bit, setting);
  48. } else {
  49. return false;
  50. }
  51. return true;
  52. }
  53. void tx_init_rfid() {
  54. // initialize RFID system for TX
  55. furi_hal_power_enable_otg();
  56. furi_hal_ibutton_start_drive();
  57. furi_hal_ibutton_pin_low();
  58. // Initializing at GpioSpeedLow seems sufficient for our needs; no improvements seen by increasing speed setting
  59. // this doesn't seem to make a difference, leaving it in
  60. furi_hal_gpio_init(&gpio_rfid_data_in, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  61. furi_hal_gpio_write(&gpio_rfid_data_in, false);
  62. // false->ground RFID antenna; true->don't ground
  63. // skotopes (RFID dev) say normally you'd want RFID_PULL in high for signal forming, while modulating RFID_OUT
  64. // dunaevai135 had it low in their old code. Leaving low, as it doesn't seem to make a difference on my janky antenna
  65. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  66. furi_hal_gpio_write(&gpio_nfc_irq_rfid_pull, false);
  67. furi_hal_gpio_init(RFID_PIN, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  68. // confirm this delay is needed / sufficient? legacy from hackathon...
  69. furi_delay_ms(300);
  70. }
  71. void tx_reset_rfid() {
  72. // reset RFID system
  73. furi_hal_gpio_write(RFID_PIN, 0);
  74. furi_hal_rfid_pins_reset();
  75. furi_hal_power_disable_otg();
  76. }
  77. void tx_init_gpio() {
  78. furi_hal_power_enable_otg();
  79. // gpio_item_configure_all_pins(GpioModeOutputPushPull);
  80. furi_hal_gpio_init(GPIO_PIN_A, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  81. furi_hal_gpio_init(GPIO_PIN_B, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  82. }
  83. void tx_reset_gpio() {
  84. furi_hal_gpio_write(GPIO_PIN_A, 0);
  85. furi_hal_gpio_write(GPIO_PIN_B, 0);
  86. //gpio_item_configure_all_pins(GpioModeAnalog);
  87. furi_hal_power_disable_otg();
  88. }
  89. bool tx_init(MagSetting* setting) {
  90. // Initialize configured TX method
  91. if(setting->tx == MagTxStateRFID) {
  92. tx_init_rfid();
  93. } else if(setting->tx == MagTxStateGPIOA6A7) {
  94. tx_init_gpio();
  95. } else {
  96. return false;
  97. }
  98. return true;
  99. }
  100. bool tx_reset(MagSetting* setting) {
  101. // Reset configured TX method
  102. if(setting->tx == MagTxStateRFID) {
  103. tx_reset_rfid();
  104. } else if(setting->tx == MagTxStateGPIOA6A7) {
  105. tx_reset_gpio();
  106. } else {
  107. return false;
  108. }
  109. return true;
  110. }
  111. void track_to_bits(uint8_t* bit_array, const char* track_data, uint8_t track_index) {
  112. // convert individual track to bits
  113. int tmp, crc, lrc = 0;
  114. int i = 0;
  115. // convert track data to bits
  116. for(uint8_t j = 0; track_data[i] != '\0'; j++) {
  117. crc = 1;
  118. tmp = track_data[j] - sublen[track_index];
  119. for(uint8_t k = 0; k < bitlen[track_index] - 1; k++) {
  120. crc ^= tmp & 1;
  121. lrc ^= (tmp & 1) << k;
  122. bit_array[i] = tmp & 1;
  123. i++;
  124. tmp >>= 1;
  125. }
  126. bit_array[i] = crc;
  127. i++;
  128. }
  129. // finish calculating final "byte" (LRC)
  130. tmp = lrc;
  131. crc = 1;
  132. for(uint8_t j = 0; j < bitlen[track_index] - 1; j++) {
  133. crc ^= tmp & 1;
  134. bit_array[i] = tmp & 1;
  135. i++;
  136. tmp >>= 1;
  137. }
  138. bit_array[i] = crc;
  139. i++;
  140. // My makeshift end sentinel. All other values 0/1
  141. bit_array[i] = 2;
  142. i++;
  143. //bool is_correct_length = (i == (strlen(track_data) * bitlen[track_index]));
  144. //furi_assert(is_correct_length);
  145. }
  146. /*
  147. void mag_spoof_single_track_rfid(FuriString* track_str, uint8_t track_index) {
  148. // Quick testing...
  149. tx_init_rfid();
  150. size_t from;
  151. size_t to;
  152. // TODO ';' in first track case
  153. if(track_index == 0) {
  154. from = furi_string_search_char(track_str, '%');
  155. to = furi_string_search_char(track_str, '?', from);
  156. } else if(track_index == 1) {
  157. from = furi_string_search_char(track_str, ';');
  158. to = furi_string_search_char(track_str, '?', from);
  159. } else {
  160. from = 0;
  161. to = furi_string_size(track_str);
  162. }
  163. if(from >= to) {
  164. return;
  165. }
  166. furi_string_mid(track_str, from, to - from + 1);
  167. const char* data = furi_string_get_cstr(track_str);
  168. uint8_t bit_array[(strlen(data) * bitlen[track_index]) + 1];
  169. track_to_bits(bit_array, data, track_index);
  170. FURI_CRITICAL_ENTER();
  171. for(uint8_t i = 0; i < ZERO_PREFIX; i++) play_bit_rfid(0);
  172. for(uint8_t i = 0; bit_array[i] != 2; i++) play_bit_rfid(bit_array[i] & 1);
  173. for(uint8_t i = 0; i < ZERO_SUFFIX; i++) play_bit_rfid(0);
  174. FURI_CRITICAL_EXIT();
  175. tx_reset_rfid();
  176. }
  177. void mag_spoof_two_track_rfid(FuriString* track1, FuriString* track2) {
  178. // Quick testing...
  179. tx_init_rfid();
  180. const char* data1 = furi_string_get_cstr(track1);
  181. uint8_t bit_array1[(strlen(data1) * bitlen[0]) + 1];
  182. const char* data2 = furi_string_get_cstr(track2);
  183. uint8_t bit_array2[(strlen(data2) * bitlen[1]) + 1];
  184. track_to_bits(bit_array1, data1, 0);
  185. track_to_bits(bit_array2, data2, 1);
  186. FURI_CRITICAL_ENTER();
  187. for(uint8_t i = 0; i < ZERO_PREFIX; i++) play_bit_rfid(0);
  188. for(uint8_t i = 0; bit_array1[i] != 2; i++) play_bit_rfid(bit_array1[i] & 1);
  189. for(uint8_t i = 0; i < ZERO_BETWEEN; i++) play_bit_rfid(0);
  190. for(uint8_t i = 0; bit_array2[i] != 2; i++) play_bit_rfid(bit_array2[i] & 1);
  191. for(uint8_t i = 0; i < ZERO_SUFFIX; i++) play_bit_rfid(0);
  192. FURI_CRITICAL_EXIT();
  193. tx_reset_rfid();
  194. }*/
  195. void mag_spoof(Mag* mag) {
  196. MagSetting* setting = mag->setting;
  197. // precompute tracks (WIP; ignores reverse and 3rd track)
  198. // likely will be reworked to Samy's bitmap method anyway...
  199. const char* data1 = furi_string_get_cstr(mag->mag_dev->dev_data.track[0].str);
  200. const char* data2 = furi_string_get_cstr(mag->mag_dev->dev_data.track[0].str);
  201. uint8_t bit_array1[(strlen(data1) * bitlen[0]) + 1];
  202. uint8_t bit_array2[(strlen(data2) * bitlen[1]) + 1];
  203. track_to_bits(bit_array1, data1, 0);
  204. track_to_bits(bit_array2, data2, 1);
  205. bool spoofed = false;
  206. do {
  207. // Initialize configured TX method
  208. if(!tx_init(setting)) break;
  209. // Critical timing section (need to eliminate ifs? does this impact timing?)
  210. FURI_CRITICAL_ENTER();
  211. // Prefix of zeros
  212. for(uint8_t i = 0; i < ZERO_PREFIX; i++) {
  213. if(!play_bit(0, setting)) break;
  214. }
  215. // Track 1
  216. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateOne)) {
  217. for(uint8_t i = 0; bit_array1[i] != 2; i++) {
  218. if(!play_bit((bit_array1[i] & 1), setting)) break;
  219. }
  220. }
  221. // Zeros between tracks
  222. if(setting->track == MagTrackStateAll) {
  223. for(uint8_t i = 0; i < ZERO_BETWEEN; i++) {
  224. if(!play_bit(0, setting)) break;
  225. }
  226. }
  227. // Track 2 (TODO: Reverse track)
  228. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateTwo)) {
  229. for(uint8_t i = 0; bit_array2[i] != 2; i++) {
  230. if(!play_bit((bit_array2[i] & 1), setting)) break;
  231. }
  232. }
  233. // Suffix of zeros
  234. for(uint8_t i = 0; i < ZERO_SUFFIX; i++) {
  235. if(!play_bit(0, setting)) break;
  236. }
  237. FURI_CRITICAL_EXIT();
  238. // Reset configured TX method
  239. if(!tx_reset(setting)) break;
  240. spoofed = true;
  241. } while(0);
  242. UNUSED(spoofed);
  243. /*if(!spoofed) {
  244. // error handling?
  245. // cleanup?
  246. }*/
  247. }
  248. //// @antirez's code from protoview for bitmapping. May want to refactor to use this...
  249. /* Set the 'bitpos' bit to value 'val', in the specified bitmap
  250. * 'b' of len 'blen'.
  251. * Out of range bits will silently be discarded. */
  252. void set_bit(uint8_t* b, uint32_t blen, uint32_t bitpos, bool val) {
  253. uint32_t byte = bitpos / 8;
  254. uint32_t bit = bitpos & 7;
  255. if(byte >= blen) return;
  256. if(val)
  257. b[byte] |= 1 << bit;
  258. else
  259. b[byte] &= ~(1 << bit);
  260. }
  261. /* Get the bit 'bitpos' of the bitmap 'b' of 'blen' bytes.
  262. * Out of range bits return false (not bit set). */
  263. bool get_bit(uint8_t* b, uint32_t blen, uint32_t bitpos) {
  264. uint32_t byte = bitpos / 8;
  265. uint32_t bit = bitpos & 7;
  266. if(byte >= blen) return 0;
  267. return (b[byte] & (1 << bit)) != 0;
  268. }
  269. /*uint32_t convert_signal_to_bits(uint8_t *b, uint32_t blen, RawSamplesBuffer *s, uint32_t idx, uint32_t count, uint32_t rate) {
  270. if (rate == 0) return 0; // We can't perform the conversion.
  271. uint32_t bitpos = 0;
  272. for (uint32_t j = 0; j < count; j++) {
  273. uint32_t dur;
  274. bool level;
  275. raw_samples_get(s, j+idx, &level, &dur);
  276. uint32_t numbits = dur / rate; // full bits that surely fit.
  277. uint32_t rest = dur % rate; // How much we are left with.
  278. if (rest > rate/2) numbits++; // There is another one.
  279. while(numbits--) set_bit(b,blen,bitpos++,s[j].level);
  280. }
  281. return bitpos;
  282. }*/