mfkey.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870
  1. #pragma GCC optimize("O3")
  2. #pragma GCC optimize("-funroll-all-loops")
  3. // TODO: Add keys to top of the user dictionary, not the bottom
  4. // TODO: More efficient dictionary bruteforce by scanning through hardcoded very common keys and previously found dictionary keys first?
  5. // (a cache for key_already_found_for_nonce_in_dict)
  6. // TODO: Selectively unroll loops to reduce binary size
  7. // TODO: Collect parity during Mfkey32 attacks to further optimize the attack
  8. // TODO: Why different sscanf between Mfkey32 and Nested?
  9. // TODO: "Read tag again with NFC app" message upon completion, "Complete. Keys added: <n>"
  10. // TODO: Separate Mfkey32 and Nested functions where possible to reduce branch statements
  11. // TODO: More accurate timing for Nested
  12. // TODO: Find ~1 KB memory leak
  13. #include <furi.h>
  14. #include <furi_hal.h>
  15. #include <gui/gui.h>
  16. #include <gui/elements.h>
  17. #include "mfkey_icons.h"
  18. #include <inttypes.h>
  19. #include <toolbox/keys_dict.h>
  20. #include <bit_lib/bit_lib.h>
  21. #include <toolbox/stream/buffered_file_stream.h>
  22. #include <dolphin/dolphin.h>
  23. #include <notification/notification_messages.h>
  24. #include <nfc/protocols/mf_classic/mf_classic.h>
  25. #include "mfkey.h"
  26. #include "crypto1.h"
  27. #include "plugin_interface.h"
  28. #include <flipper_application/flipper_application.h>
  29. #include <loader/firmware_api/firmware_api.h>
  30. #include <storage/storage.h>
  31. // TODO: Remove defines that are not needed
  32. #define KEYS_DICT_SYSTEM_PATH EXT_PATH("nfc/assets/mf_classic_dict.nfc")
  33. #define KEYS_DICT_USER_PATH EXT_PATH("nfc/assets/mf_classic_dict_user.nfc")
  34. #define MF_CLASSIC_NONCE_PATH EXT_PATH("nfc/.mfkey32.log")
  35. #define MF_CLASSIC_NESTED_NONCE_PATH EXT_PATH("nfc/.nested")
  36. #define TAG "MFKey"
  37. #define MAX_NAME_LEN 32
  38. #define MAX_PATH_LEN 64
  39. #define LF_POLY_ODD (0x29CE5C)
  40. #define LF_POLY_EVEN (0x870804)
  41. #define CONST_M1_1 (LF_POLY_EVEN << 1 | 1)
  42. #define CONST_M2_1 (LF_POLY_ODD << 1)
  43. #define CONST_M1_2 (LF_POLY_ODD)
  44. #define CONST_M2_2 (LF_POLY_EVEN << 1 | 1)
  45. #define BIT(x, n) ((x) >> (n) & 1)
  46. #define BEBIT(x, n) BIT(x, (n) ^ 24)
  47. #define SWAPENDIAN(x) \
  48. ((x) = ((x) >> 8 & 0xff00ff) | ((x) & 0xff00ff) << 8, (x) = (x) >> 16 | (x) << 16)
  49. //#define SIZEOF(arr) sizeof(arr) / sizeof(*arr)
  50. static int eta_round_time = 56;
  51. static int eta_total_time = 900;
  52. // MSB_LIMIT: Chunk size (out of 256)
  53. static int MSB_LIMIT = 16;
  54. int check_state(struct Crypto1State* t, MfClassicNonce* n) {
  55. if(!(t->odd | t->even)) return 0;
  56. if(n->attack == mfkey32) {
  57. rollback_word_noret(t, 0, 0);
  58. rollback_word_noret(t, n->nr0_enc, 1);
  59. rollback_word_noret(t, n->uid_xor_nt0, 0);
  60. struct Crypto1State temp = {t->odd, t->even};
  61. crypt_word_noret(t, n->uid_xor_nt1, 0);
  62. crypt_word_noret(t, n->nr1_enc, 1);
  63. if(n->ar1_enc == (crypt_word(t) ^ n->p64b)) {
  64. crypto1_get_lfsr(&temp, &(n->key));
  65. return 1;
  66. }
  67. return 0;
  68. } else if(n->attack == static_nested) {
  69. struct Crypto1State temp = {t->odd, t->even};
  70. rollback_word_noret(t, n->uid_xor_nt1, 0);
  71. if(n->ks1_1_enc == crypt_word_ret(t, n->uid_xor_nt0, 0)) {
  72. rollback_word_noret(&temp, n->uid_xor_nt1, 0);
  73. crypto1_get_lfsr(&temp, &(n->key));
  74. return 1;
  75. }
  76. return 0;
  77. }
  78. return 0;
  79. }
  80. static inline int state_loop(
  81. unsigned int* states_buffer,
  82. int xks,
  83. int m1,
  84. int m2,
  85. unsigned int in,
  86. uint8_t and_val) {
  87. int states_tail = 0;
  88. int round = 0, s = 0, xks_bit = 0, round_in = 0;
  89. for(round = 1; round <= 12; round++) {
  90. xks_bit = BIT(xks, round);
  91. if(round > 4) {
  92. round_in = ((in >> (2 * (round - 4))) & and_val) << 24;
  93. }
  94. for(s = 0; s <= states_tail; s++) {
  95. states_buffer[s] <<= 1;
  96. if((filter(states_buffer[s]) ^ filter(states_buffer[s] | 1)) != 0) {
  97. states_buffer[s] |= filter(states_buffer[s]) ^ xks_bit;
  98. if(round > 4) {
  99. update_contribution(states_buffer, s, m1, m2);
  100. states_buffer[s] ^= round_in;
  101. }
  102. } else if(filter(states_buffer[s]) == xks_bit) {
  103. // TODO: Refactor
  104. if(round > 4) {
  105. states_buffer[++states_tail] = states_buffer[s + 1];
  106. states_buffer[s + 1] = states_buffer[s] | 1;
  107. update_contribution(states_buffer, s, m1, m2);
  108. states_buffer[s++] ^= round_in;
  109. update_contribution(states_buffer, s, m1, m2);
  110. states_buffer[s] ^= round_in;
  111. } else {
  112. states_buffer[++states_tail] = states_buffer[++s];
  113. states_buffer[s] = states_buffer[s - 1] | 1;
  114. }
  115. } else {
  116. states_buffer[s--] = states_buffer[states_tail--];
  117. }
  118. }
  119. }
  120. return states_tail;
  121. }
  122. int binsearch(unsigned int data[], int start, int stop) {
  123. int mid, val = data[stop] & 0xff000000;
  124. while(start != stop) {
  125. mid = (stop - start) >> 1;
  126. if((data[start + mid] ^ 0x80000000) > (val ^ 0x80000000))
  127. stop = start + mid;
  128. else
  129. start += mid + 1;
  130. }
  131. return start;
  132. }
  133. void quicksort(unsigned int array[], int low, int high) {
  134. //if (SIZEOF(array) == 0)
  135. // return;
  136. if(low >= high) return;
  137. int middle = low + (high - low) / 2;
  138. unsigned int pivot = array[middle];
  139. int i = low, j = high;
  140. while(i <= j) {
  141. while(array[i] < pivot) {
  142. i++;
  143. }
  144. while(array[j] > pivot) {
  145. j--;
  146. }
  147. if(i <= j) { // swap
  148. int temp = array[i];
  149. array[i] = array[j];
  150. array[j] = temp;
  151. i++;
  152. j--;
  153. }
  154. }
  155. if(low < j) {
  156. quicksort(array, low, j);
  157. }
  158. if(high > i) {
  159. quicksort(array, i, high);
  160. }
  161. }
  162. int extend_table(unsigned int data[], int tbl, int end, int bit, int m1, int m2, unsigned int in) {
  163. in <<= 24;
  164. for(data[tbl] <<= 1; tbl <= end; data[++tbl] <<= 1) {
  165. if((filter(data[tbl]) ^ filter(data[tbl] | 1)) != 0) {
  166. data[tbl] |= filter(data[tbl]) ^ bit;
  167. update_contribution(data, tbl, m1, m2);
  168. data[tbl] ^= in;
  169. } else if(filter(data[tbl]) == bit) {
  170. data[++end] = data[tbl + 1];
  171. data[tbl + 1] = data[tbl] | 1;
  172. update_contribution(data, tbl, m1, m2);
  173. data[tbl++] ^= in;
  174. update_contribution(data, tbl, m1, m2);
  175. data[tbl] ^= in;
  176. } else {
  177. data[tbl--] = data[end--];
  178. }
  179. }
  180. return end;
  181. }
  182. int old_recover(
  183. unsigned int odd[],
  184. int o_head,
  185. int o_tail,
  186. int oks,
  187. unsigned int even[],
  188. int e_head,
  189. int e_tail,
  190. int eks,
  191. int rem,
  192. int s,
  193. MfClassicNonce* n,
  194. unsigned int in,
  195. int first_run) {
  196. int o, e, i;
  197. if(rem == -1) {
  198. for(e = e_head; e <= e_tail; ++e) {
  199. even[e] = (even[e] << 1) ^ evenparity32(even[e] & LF_POLY_EVEN) ^ (!!(in & 4));
  200. for(o = o_head; o <= o_tail; ++o, ++s) {
  201. struct Crypto1State temp = {0, 0};
  202. temp.even = odd[o];
  203. temp.odd = even[e] ^ evenparity32(odd[o] & LF_POLY_ODD);
  204. if(check_state(&temp, n)) {
  205. return -1;
  206. }
  207. }
  208. }
  209. return s;
  210. }
  211. if(first_run == 0) {
  212. for(i = 0; (i < 4) && (rem-- != 0); i++) {
  213. oks >>= 1;
  214. eks >>= 1;
  215. in >>= 2;
  216. o_tail = extend_table(
  217. odd, o_head, o_tail, oks & 1, LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
  218. if(o_head > o_tail) return s;
  219. e_tail = extend_table(
  220. even, e_head, e_tail, eks & 1, LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, in & 3);
  221. if(e_head > e_tail) return s;
  222. }
  223. }
  224. first_run = 0;
  225. quicksort(odd, o_head, o_tail);
  226. quicksort(even, e_head, e_tail);
  227. while(o_tail >= o_head && e_tail >= e_head) {
  228. if(((odd[o_tail] ^ even[e_tail]) >> 24) == 0) {
  229. o_tail = binsearch(odd, o_head, o = o_tail);
  230. e_tail = binsearch(even, e_head, e = e_tail);
  231. s = old_recover(
  232. odd, o_tail--, o, oks, even, e_tail--, e, eks, rem, s, n, in, first_run);
  233. if(s == -1) {
  234. break;
  235. }
  236. } else if((odd[o_tail] ^ 0x80000000) > (even[e_tail] ^ 0x80000000)) {
  237. o_tail = binsearch(odd, o_head, o_tail) - 1;
  238. } else {
  239. e_tail = binsearch(even, e_head, e_tail) - 1;
  240. }
  241. }
  242. return s;
  243. }
  244. static inline int sync_state(ProgramState* program_state) {
  245. int ts = furi_hal_rtc_get_timestamp();
  246. int elapsed_time = ts - program_state->eta_timestamp;
  247. if(elapsed_time < program_state->eta_round) {
  248. program_state->eta_round -= elapsed_time;
  249. } else {
  250. program_state->eta_round = 0;
  251. }
  252. if(elapsed_time < program_state->eta_total) {
  253. program_state->eta_total -= elapsed_time;
  254. } else {
  255. program_state->eta_total = 0;
  256. }
  257. program_state->eta_timestamp = ts;
  258. if(program_state->close_thread_please) {
  259. return 1;
  260. }
  261. return 0;
  262. }
  263. int calculate_msb_tables(
  264. int oks,
  265. int eks,
  266. int msb_round,
  267. MfClassicNonce* n,
  268. unsigned int* states_buffer,
  269. struct Msb* odd_msbs,
  270. struct Msb* even_msbs,
  271. unsigned int* temp_states_odd,
  272. unsigned int* temp_states_even,
  273. unsigned int in,
  274. ProgramState* program_state) {
  275. //FURI_LOG_I(TAG, "MSB GO %i", msb_iter); // DEBUG
  276. unsigned int msb_head = (MSB_LIMIT * msb_round); // msb_iter ranges from 0 to (256/MSB_LIMIT)-1
  277. unsigned int msb_tail = (MSB_LIMIT * (msb_round + 1));
  278. int states_tail = 0, tail = 0;
  279. int i = 0, j = 0, semi_state = 0, found = 0;
  280. unsigned int msb = 0;
  281. in = ((in >> 16 & 0xff) | (in << 16) | (in & 0xff00)) << 1;
  282. // TODO: Why is this necessary?
  283. memset(odd_msbs, 0, MSB_LIMIT * sizeof(struct Msb));
  284. memset(even_msbs, 0, MSB_LIMIT * sizeof(struct Msb));
  285. for(semi_state = 1 << 20; semi_state >= 0; semi_state--) {
  286. if(semi_state % 32768 == 0) {
  287. if(sync_state(program_state) == 1) {
  288. return 0;
  289. }
  290. }
  291. if(filter(semi_state) == (oks & 1)) { //-V547
  292. states_buffer[0] = semi_state;
  293. states_tail = state_loop(states_buffer, oks, CONST_M1_1, CONST_M2_1, 0, 0);
  294. for(i = states_tail; i >= 0; i--) {
  295. msb = states_buffer[i] >> 24;
  296. if((msb >= msb_head) && (msb < msb_tail)) {
  297. found = 0;
  298. for(j = 0; j < odd_msbs[msb - msb_head].tail - 1; j++) {
  299. if(odd_msbs[msb - msb_head].states[j] == states_buffer[i]) {
  300. found = 1;
  301. break;
  302. }
  303. }
  304. if(!found) {
  305. tail = odd_msbs[msb - msb_head].tail++;
  306. odd_msbs[msb - msb_head].states[tail] = states_buffer[i];
  307. }
  308. }
  309. }
  310. }
  311. if(filter(semi_state) == (eks & 1)) { //-V547
  312. states_buffer[0] = semi_state;
  313. states_tail = state_loop(states_buffer, eks, CONST_M1_2, CONST_M2_2, in, 3);
  314. for(i = 0; i <= states_tail; i++) {
  315. msb = states_buffer[i] >> 24;
  316. if((msb >= msb_head) && (msb < msb_tail)) {
  317. found = 0;
  318. for(j = 0; j < even_msbs[msb - msb_head].tail; j++) {
  319. if(even_msbs[msb - msb_head].states[j] == states_buffer[i]) {
  320. found = 1;
  321. break;
  322. }
  323. }
  324. if(!found) {
  325. tail = even_msbs[msb - msb_head].tail++;
  326. even_msbs[msb - msb_head].states[tail] = states_buffer[i];
  327. }
  328. }
  329. }
  330. }
  331. }
  332. oks >>= 12;
  333. eks >>= 12;
  334. for(i = 0; i < MSB_LIMIT; i++) {
  335. if(sync_state(program_state) == 1) {
  336. return 0;
  337. }
  338. // TODO: Why is this necessary?
  339. memset(temp_states_even, 0, sizeof(unsigned int) * (1280));
  340. memset(temp_states_odd, 0, sizeof(unsigned int) * (1280));
  341. memcpy(temp_states_odd, odd_msbs[i].states, odd_msbs[i].tail * sizeof(unsigned int));
  342. memcpy(temp_states_even, even_msbs[i].states, even_msbs[i].tail * sizeof(unsigned int));
  343. int res = old_recover(
  344. temp_states_odd,
  345. 0,
  346. odd_msbs[i].tail,
  347. oks,
  348. temp_states_even,
  349. 0,
  350. even_msbs[i].tail,
  351. eks,
  352. 3,
  353. 0,
  354. n,
  355. in >> 16,
  356. 1);
  357. if(res == -1) {
  358. return 1;
  359. }
  360. //odd_msbs[i].tail = 0;
  361. //even_msbs[i].tail = 0;
  362. }
  363. return 0;
  364. }
  365. void** allocate_blocks(const size_t* block_sizes, int num_blocks) {
  366. void** block_pointers = malloc(num_blocks * sizeof(void*));
  367. if(block_pointers == NULL) {
  368. return NULL;
  369. }
  370. for(int i = 0; i < num_blocks; i++) {
  371. if(memmgr_heap_get_max_free_block() < block_sizes[i]) {
  372. // Not enough memory, free previously allocated blocks
  373. for(int j = 0; j < i; j++) {
  374. free(block_pointers[j]);
  375. }
  376. free(block_pointers);
  377. return NULL;
  378. }
  379. block_pointers[i] = malloc(block_sizes[i]);
  380. if(block_pointers[i] == NULL) {
  381. // Allocation failed, free previously allocated blocks
  382. for(int j = 0; j < i; j++) {
  383. free(block_pointers[j]);
  384. }
  385. free(block_pointers);
  386. return NULL;
  387. }
  388. }
  389. return block_pointers;
  390. }
  391. bool recover(MfClassicNonce* n, int ks2, unsigned int in, ProgramState* program_state) {
  392. bool found = false;
  393. const size_t block_sizes[] = {49216, 49216, 5120, 5120, 4096};
  394. const size_t reduced_block_sizes[] = {24608, 24608, 5120, 5120, 4096};
  395. const int num_blocks = sizeof(block_sizes) / sizeof(block_sizes[0]);
  396. void** block_pointers = allocate_blocks(block_sizes, num_blocks);
  397. if(block_pointers == NULL) {
  398. // System has less than the guaranteed amount of RAM (140 KB) - adjust some parameters to run anyway at half speed
  399. eta_round_time *= 2;
  400. eta_total_time *= 2;
  401. MSB_LIMIT /= 2;
  402. block_pointers = allocate_blocks(reduced_block_sizes, num_blocks);
  403. if(block_pointers == NULL) {
  404. // System has less than 70 KB of RAM - should never happen so we don't reduce speed further
  405. program_state->err = InsufficientRAM;
  406. program_state->mfkey_state = Error;
  407. return false;
  408. }
  409. }
  410. struct Msb* odd_msbs = block_pointers[0];
  411. struct Msb* even_msbs = block_pointers[1];
  412. unsigned int* temp_states_odd = block_pointers[2];
  413. unsigned int* temp_states_even = block_pointers[3];
  414. unsigned int* states_buffer = block_pointers[4];
  415. int oks = 0, eks = 0;
  416. int i = 0, msb = 0;
  417. for(i = 31; i >= 0; i -= 2) {
  418. oks = oks << 1 | BEBIT(ks2, i);
  419. }
  420. for(i = 30; i >= 0; i -= 2) {
  421. eks = eks << 1 | BEBIT(ks2, i);
  422. }
  423. int bench_start = furi_hal_rtc_get_timestamp();
  424. program_state->eta_total = eta_total_time;
  425. program_state->eta_timestamp = bench_start;
  426. for(msb = 0; msb <= ((256 / MSB_LIMIT) - 1); msb++) {
  427. program_state->search = msb;
  428. program_state->eta_round = eta_round_time;
  429. program_state->eta_total = eta_total_time - (eta_round_time * msb);
  430. if(calculate_msb_tables(
  431. oks,
  432. eks,
  433. msb,
  434. n,
  435. states_buffer,
  436. odd_msbs,
  437. even_msbs,
  438. temp_states_odd,
  439. temp_states_even,
  440. in,
  441. program_state)) {
  442. //int bench_stop = furi_hal_rtc_get_timestamp();
  443. //FURI_LOG_I(TAG, "Cracked in %i seconds", bench_stop - bench_start);
  444. found = true;
  445. break;
  446. }
  447. if(program_state->close_thread_please) {
  448. break;
  449. }
  450. }
  451. // Free the allocated blocks
  452. for(int i = 0; i < num_blocks; i++) {
  453. free(block_pointers[i]);
  454. }
  455. free(block_pointers);
  456. return found;
  457. }
  458. bool key_already_found_for_nonce_in_solved(
  459. MfClassicKey* keyarray,
  460. int keyarray_size,
  461. MfClassicNonce* nonce) {
  462. for(int k = 0; k < keyarray_size; k++) {
  463. uint64_t key_as_int = bit_lib_bytes_to_num_be(keyarray[k].data, sizeof(MfClassicKey));
  464. struct Crypto1State temp = {0, 0};
  465. for(int i = 0; i < 24; i++) {
  466. (&temp)->odd |= (BIT(key_as_int, 2 * i + 1) << (i ^ 3));
  467. (&temp)->even |= (BIT(key_as_int, 2 * i) << (i ^ 3));
  468. }
  469. if(nonce->attack == mfkey32) {
  470. crypt_word_noret(&temp, nonce->uid_xor_nt1, 0);
  471. crypt_word_noret(&temp, nonce->nr1_enc, 1);
  472. if(nonce->ar1_enc == (crypt_word(&temp) ^ nonce->p64b)) {
  473. return true;
  474. }
  475. } else if(nonce->attack == static_nested) {
  476. uint32_t expected_ks1 = crypt_word_ret(&temp, nonce->uid_xor_nt0, 0);
  477. if(nonce->ks1_1_enc == expected_ks1) {
  478. return true;
  479. }
  480. }
  481. }
  482. return false;
  483. }
  484. #pragma GCC push_options
  485. #pragma GCC optimize("Os")
  486. static void finished_beep() {
  487. // Beep to indicate completion
  488. NotificationApp* notification = furi_record_open("notification");
  489. notification_message(notification, &sequence_audiovisual_alert);
  490. notification_message(notification, &sequence_display_backlight_on);
  491. furi_record_close("notification");
  492. }
  493. void mfkey(ProgramState* program_state) {
  494. MfClassicKey found_key; // recovered key
  495. size_t keyarray_size = 0;
  496. MfClassicKey* keyarray = malloc(sizeof(MfClassicKey) * 1);
  497. uint32_t i = 0, j = 0;
  498. //FURI_LOG_I(TAG, "Free heap before alloc(): %zub", memmgr_get_free_heap());
  499. Storage* storage = furi_record_open(RECORD_STORAGE);
  500. FlipperApplication* app = flipper_application_alloc(storage, firmware_api_interface);
  501. flipper_application_preload(app, APP_DATA_PATH("plugins/mfkey_init_plugin.fal"));
  502. flipper_application_map_to_memory(app);
  503. const FlipperAppPluginDescriptor* app_descriptor =
  504. flipper_application_plugin_get_descriptor(app);
  505. const MfkeyPlugin* init_plugin = app_descriptor->entry_point;
  506. // Check for nonces
  507. program_state->mfkey32_present = init_plugin->napi_mf_classic_mfkey32_nonces_check_presence();
  508. program_state->nested_present = init_plugin->napi_mf_classic_nested_nonces_check_presence();
  509. if(!(program_state->mfkey32_present) && !(program_state->nested_present)) {
  510. program_state->err = MissingNonces;
  511. program_state->mfkey_state = Error;
  512. flipper_application_free(app);
  513. furi_record_close(RECORD_STORAGE);
  514. free(keyarray);
  515. return;
  516. }
  517. // Read dictionaries (optional)
  518. KeysDict* system_dict = {0};
  519. bool system_dict_exists = keys_dict_check_presence(KEYS_DICT_SYSTEM_PATH);
  520. KeysDict* user_dict = {0};
  521. bool user_dict_exists = keys_dict_check_presence(KEYS_DICT_USER_PATH);
  522. uint32_t total_dict_keys = 0;
  523. if(system_dict_exists) {
  524. system_dict =
  525. keys_dict_alloc(KEYS_DICT_SYSTEM_PATH, KeysDictModeOpenExisting, sizeof(MfClassicKey));
  526. total_dict_keys += keys_dict_get_total_keys(system_dict);
  527. }
  528. user_dict = keys_dict_alloc(KEYS_DICT_USER_PATH, KeysDictModeOpenAlways, sizeof(MfClassicKey));
  529. if(user_dict_exists) {
  530. total_dict_keys += keys_dict_get_total_keys(user_dict);
  531. }
  532. user_dict_exists = true;
  533. program_state->dict_count = total_dict_keys;
  534. program_state->mfkey_state = DictionaryAttack;
  535. // Read nonces
  536. MfClassicNonceArray* nonce_arr;
  537. nonce_arr = init_plugin->napi_mf_classic_nonce_array_alloc(
  538. system_dict, system_dict_exists, user_dict, program_state);
  539. if(system_dict_exists) {
  540. keys_dict_free(system_dict);
  541. }
  542. if(nonce_arr->total_nonces == 0) {
  543. // Nothing to crack
  544. program_state->err = ZeroNonces;
  545. program_state->mfkey_state = Error;
  546. init_plugin->napi_mf_classic_nonce_array_free(nonce_arr);
  547. flipper_application_free(app);
  548. furi_record_close(RECORD_STORAGE);
  549. keys_dict_free(user_dict);
  550. free(keyarray);
  551. return;
  552. }
  553. flipper_application_free(app);
  554. furi_record_close(RECORD_STORAGE);
  555. // TODO: Track free state at the time this is called to ensure double free does not happen
  556. furi_assert(nonce_arr);
  557. furi_assert(nonce_arr->stream);
  558. buffered_file_stream_close(nonce_arr->stream);
  559. stream_free(nonce_arr->stream);
  560. //FURI_LOG_I(TAG, "Free heap after free(): %zub", memmgr_get_free_heap());
  561. program_state->mfkey_state = MFKeyAttack;
  562. // TODO: Work backwards on this array and free memory
  563. for(i = 0; i < nonce_arr->total_nonces; i++) {
  564. MfClassicNonce next_nonce = nonce_arr->remaining_nonce_array[i];
  565. if(key_already_found_for_nonce_in_solved(keyarray, keyarray_size, &next_nonce)) {
  566. nonce_arr->remaining_nonces--;
  567. (program_state->cracked)++;
  568. (program_state->num_completed)++;
  569. continue;
  570. }
  571. //FURI_LOG_I(TAG, "Beginning recovery for %8lx", next_nonce.uid);
  572. if(next_nonce.attack == mfkey32) {
  573. if(!recover(&next_nonce, next_nonce.ar0_enc ^ next_nonce.p64, 0, program_state)) {
  574. if(program_state->close_thread_please) {
  575. break;
  576. }
  577. // No key found in recover()
  578. (program_state->num_completed)++;
  579. continue;
  580. }
  581. } else if(next_nonce.attack == static_nested) {
  582. if(!recover(
  583. &next_nonce,
  584. next_nonce.ks1_2_enc,
  585. next_nonce.nt1 ^ next_nonce.uid,
  586. program_state)) {
  587. if(program_state->close_thread_please) {
  588. break;
  589. }
  590. // No key found in recover()
  591. (program_state->num_completed)++;
  592. continue;
  593. }
  594. }
  595. (program_state->cracked)++;
  596. (program_state->num_completed)++;
  597. found_key = next_nonce.key;
  598. bool already_found = false;
  599. for(j = 0; j < keyarray_size; j++) {
  600. if(memcmp(keyarray[j].data, found_key.data, MF_CLASSIC_KEY_SIZE) == 0) {
  601. already_found = true;
  602. break;
  603. }
  604. }
  605. if(already_found == false) {
  606. // New key
  607. keyarray = realloc(keyarray, sizeof(MfClassicKey) * (keyarray_size + 1)); //-V701
  608. keyarray_size += 1;
  609. keyarray[keyarray_size - 1] = found_key;
  610. (program_state->unique_cracked)++;
  611. }
  612. }
  613. // TODO: Update display to show all keys were found
  614. // TODO: Prepend found key(s) to user dictionary file
  615. //FURI_LOG_I(TAG, "Unique keys found:");
  616. for(i = 0; i < keyarray_size; i++) {
  617. //FURI_LOG_I(TAG, "%012" PRIx64, keyarray[i]);
  618. keys_dict_add_key(user_dict, keyarray[i].data, sizeof(MfClassicKey));
  619. }
  620. if(keyarray_size > 0) {
  621. dolphin_deed(DolphinDeedNfcMfcAdd);
  622. }
  623. free(nonce_arr);
  624. keys_dict_free(user_dict);
  625. free(keyarray);
  626. if(program_state->mfkey_state == Error) {
  627. return;
  628. }
  629. //FURI_LOG_I(TAG, "mfkey function completed normally"); // DEBUG
  630. program_state->mfkey_state = Complete;
  631. // No need to alert the user if they asked it to stop
  632. if(!(program_state->close_thread_please)) {
  633. finished_beep();
  634. }
  635. return;
  636. }
  637. // Screen is 128x64 px
  638. static void render_callback(Canvas* const canvas, void* ctx) {
  639. furi_assert(ctx);
  640. ProgramState* program_state = ctx;
  641. furi_mutex_acquire(program_state->mutex, FuriWaitForever);
  642. char draw_str[44] = {};
  643. canvas_clear(canvas);
  644. canvas_draw_frame(canvas, 0, 0, 128, 64);
  645. canvas_draw_frame(canvas, 0, 15, 128, 64);
  646. snprintf(draw_str, sizeof(draw_str), "RAM: %zub", memmgr_get_free_heap());
  647. canvas_draw_str_aligned(canvas, 48, 5, AlignLeft, AlignTop, draw_str);
  648. canvas_draw_icon(canvas, 114, 4, &I_mfkey);
  649. if(program_state->mfkey_state == MFKeyAttack) {
  650. float eta_round = (float)1 - ((float)program_state->eta_round / (float)eta_round_time);
  651. float eta_total = (float)1 - ((float)program_state->eta_total / (float)eta_total_time);
  652. float progress = (float)program_state->num_completed / (float)program_state->total;
  653. if(eta_round < 0 || eta_round > 1) {
  654. // Round ETA miscalculated
  655. eta_round = 1;
  656. program_state->eta_round = 0;
  657. }
  658. if(eta_total < 0 || eta_total > 1) {
  659. // Total ETA miscalculated
  660. eta_total = 1;
  661. program_state->eta_total = 0;
  662. }
  663. snprintf(
  664. draw_str,
  665. sizeof(draw_str),
  666. "Cracking: %d/%d - in prog.",
  667. program_state->num_completed,
  668. program_state->total);
  669. elements_progress_bar_with_text(canvas, 5, 18, 118, progress, draw_str);
  670. snprintf(
  671. draw_str,
  672. sizeof(draw_str),
  673. "Round: %d/%d - ETA %02d Sec",
  674. (program_state->search) + 1, // Zero indexed
  675. 256 / MSB_LIMIT,
  676. program_state->eta_round);
  677. elements_progress_bar_with_text(canvas, 5, 31, 118, eta_round, draw_str);
  678. snprintf(draw_str, sizeof(draw_str), "Total ETA %03d Sec", program_state->eta_total);
  679. elements_progress_bar_with_text(canvas, 5, 44, 118, eta_total, draw_str);
  680. } else if(program_state->mfkey_state == DictionaryAttack) {
  681. snprintf(
  682. draw_str, sizeof(draw_str), "Dict solves: %d (in progress)", program_state->cracked);
  683. canvas_draw_str_aligned(canvas, 10, 18, AlignLeft, AlignTop, draw_str);
  684. snprintf(draw_str, sizeof(draw_str), "Keys in dict: %d", program_state->dict_count);
  685. canvas_draw_str_aligned(canvas, 26, 28, AlignLeft, AlignTop, draw_str);
  686. } else if(program_state->mfkey_state == Complete) {
  687. // TODO: Scrollable list view to see cracked keys if user presses down
  688. elements_progress_bar(canvas, 5, 18, 118, 1);
  689. canvas_draw_str_aligned(canvas, 40, 31, AlignLeft, AlignTop, "Complete");
  690. snprintf(
  691. draw_str,
  692. sizeof(draw_str),
  693. "Keys added to user dict: %d",
  694. program_state->unique_cracked);
  695. canvas_draw_str_aligned(canvas, 10, 41, AlignLeft, AlignTop, draw_str);
  696. } else if(program_state->mfkey_state == Ready) {
  697. canvas_draw_str_aligned(canvas, 50, 30, AlignLeft, AlignTop, "Ready");
  698. elements_button_center(canvas, "Start");
  699. elements_button_right(canvas, "Help");
  700. } else if(program_state->mfkey_state == Help) {
  701. canvas_draw_str_aligned(canvas, 7, 20, AlignLeft, AlignTop, "Collect nonces using Detect");
  702. canvas_draw_str_aligned(canvas, 7, 30, AlignLeft, AlignTop, "Reader or FlipperNested.");
  703. canvas_draw_str_aligned(canvas, 7, 40, AlignLeft, AlignTop, "Devs: noproto, AG, ALiberty");
  704. canvas_draw_str_aligned(canvas, 7, 50, AlignLeft, AlignTop, "Thanks: bettse, Foxushka");
  705. } else if(program_state->mfkey_state == Error) {
  706. canvas_draw_str_aligned(canvas, 50, 25, AlignLeft, AlignTop, "Error");
  707. if(program_state->err == MissingNonces) {
  708. canvas_draw_str_aligned(canvas, 25, 36, AlignLeft, AlignTop, "No nonces found");
  709. } else if(program_state->err == ZeroNonces) {
  710. canvas_draw_str_aligned(canvas, 15, 36, AlignLeft, AlignTop, "Nonces already cracked");
  711. } else if(program_state->err == InsufficientRAM) {
  712. canvas_draw_str_aligned(canvas, 35, 36, AlignLeft, AlignTop, "No free RAM");
  713. } else {
  714. // Unhandled error
  715. }
  716. } else {
  717. // Unhandled program state
  718. }
  719. canvas_set_font(canvas, FontPrimary);
  720. canvas_draw_str_aligned(canvas, 5, 4, AlignLeft, AlignTop, "MFKey");
  721. furi_mutex_release(program_state->mutex);
  722. }
  723. static void input_callback(InputEvent* input_event, FuriMessageQueue* event_queue) {
  724. furi_assert(event_queue);
  725. PluginEvent event = {.type = EventTypeKey, .input = *input_event};
  726. furi_message_queue_put(event_queue, &event, FuriWaitForever);
  727. }
  728. static void mfkey_state_init(ProgramState* program_state) {
  729. program_state->mfkey_state = Ready;
  730. program_state->cracked = 0;
  731. program_state->unique_cracked = 0;
  732. program_state->num_completed = 0;
  733. program_state->total = 0;
  734. program_state->dict_count = 0;
  735. }
  736. // Entrypoint for worker thread
  737. static int32_t mfkey_worker_thread(void* ctx) {
  738. ProgramState* program_state = ctx;
  739. program_state->mfkey_state = Initializing;
  740. //FURI_LOG_I(TAG, "Hello from the mfkey worker thread"); // DEBUG
  741. mfkey(program_state);
  742. return 0;
  743. }
  744. int32_t mfkey_main() {
  745. FuriMessageQueue* event_queue = furi_message_queue_alloc(8, sizeof(PluginEvent));
  746. ProgramState* program_state = malloc(sizeof(ProgramState));
  747. mfkey_state_init(program_state);
  748. program_state->mutex = furi_mutex_alloc(FuriMutexTypeNormal);
  749. if(!program_state->mutex) {
  750. //FURI_LOG_E(TAG, "cannot create mutex\r\n");
  751. free(program_state);
  752. return 255;
  753. }
  754. // Set system callbacks
  755. ViewPort* view_port = view_port_alloc();
  756. view_port_draw_callback_set(view_port, render_callback, program_state);
  757. view_port_input_callback_set(view_port, input_callback, event_queue);
  758. // Open GUI and register view_port
  759. Gui* gui = furi_record_open(RECORD_GUI);
  760. gui_add_view_port(gui, view_port, GuiLayerFullscreen);
  761. program_state->mfkeythread =
  762. furi_thread_alloc_ex("MFKey Worker", 2048, mfkey_worker_thread, program_state);
  763. PluginEvent event;
  764. for(bool main_loop = true; main_loop;) {
  765. FuriStatus event_status = furi_message_queue_get(event_queue, &event, 100);
  766. furi_mutex_acquire(program_state->mutex, FuriWaitForever);
  767. if(event_status == FuriStatusOk) {
  768. // press events
  769. if(event.type == EventTypeKey) {
  770. if(event.input.type == InputTypePress) {
  771. switch(event.input.key) {
  772. case InputKeyUp:
  773. break;
  774. case InputKeyDown:
  775. break;
  776. case InputKeyRight:
  777. if(program_state->mfkey_state == Ready) {
  778. program_state->mfkey_state = Help;
  779. }
  780. break;
  781. case InputKeyLeft:
  782. break;
  783. case InputKeyOk:
  784. if(program_state->mfkey_state == Ready) {
  785. furi_thread_start(program_state->mfkeythread);
  786. }
  787. break;
  788. case InputKeyBack:
  789. if(program_state->mfkey_state == Help) {
  790. program_state->mfkey_state = Ready;
  791. } else {
  792. program_state->close_thread_please = true;
  793. // Wait until thread is finished
  794. furi_thread_join(program_state->mfkeythread);
  795. main_loop = false;
  796. }
  797. break;
  798. default:
  799. break;
  800. }
  801. }
  802. }
  803. }
  804. furi_mutex_release(program_state->mutex);
  805. view_port_update(view_port);
  806. }
  807. // Thread joined in back event handler
  808. furi_thread_free(program_state->mfkeythread);
  809. view_port_enabled_set(view_port, false);
  810. gui_remove_view_port(gui, view_port);
  811. furi_record_close("gui");
  812. view_port_free(view_port);
  813. furi_message_queue_free(event_queue);
  814. furi_mutex_free(program_state->mutex);
  815. free(program_state);
  816. return 0;
  817. }
  818. #pragma GCC pop_options