uhf_module.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395
  1. #include "uhf_module.h"
  2. #include "uhf_module_cmd.h"
  3. #define DELAY_MS 100
  4. #define WAIT_TICK 4000 // max wait time in between each byte
  5. volatile uint16_t tick = 0;
  6. // void rx_callback(UartIrqEvent event, uint8_t data, void* ctx) {
  7. // UNUSED(event);
  8. // Buffer* buffer = ctx;
  9. // if(buffer->closed) return; // buffer closed
  10. // buffer_append_single(buffer, data); // append data
  11. // if(data == FRAME_END) buffer_close(buffer); // end of frame
  12. // tick = WAIT_TICK; // reset tick
  13. // }
  14. static M100ResponseType setup_and_send_rx(M100Module* module, uint8_t* cmd, size_t cmd_length) {
  15. UHFUart* uart = module->uart;
  16. Buffer* buffer = uart->buffer;
  17. // clear buffer
  18. uhf_buffer_reset(buffer);
  19. // send cmd
  20. uhf_uart_send_wait(uart, cmd, cmd_length);
  21. // wait for response
  22. while(!uhf_is_buffer_closed(buffer) && !uhf_uart_tick(uart)) {}
  23. // reset tick
  24. uhf_uart_tick_reset(uart);
  25. // Validation Checks
  26. uint8_t* data = uhf_buffer_get_data(buffer);
  27. size_t length = uhf_buffer_get_size(buffer);
  28. // DEBUG
  29. // for(size_t i = 0; i < length; i++) {
  30. // FURI_LOG_E("UHF_MODULE_TX", "%02X ", data[i]);
  31. // }
  32. // check if size > 0
  33. if(!length) return M100EmptyResponse;
  34. // check if data is valid
  35. if(data[0] != FRAME_START || data[length - 1] != FRAME_END) return M100ValidationFail;
  36. // check if checksum is correct
  37. if(checksum(data + 1, length - 3) != data[length - 2]) return M100ChecksumFail;
  38. return M100SuccessResponse;
  39. }
  40. M100ModuleInfo* m100_module_info_alloc() {
  41. M100ModuleInfo* module_info = (M100ModuleInfo*)malloc(sizeof(M100ModuleInfo));
  42. return module_info;
  43. }
  44. void m100_module_info_free(M100ModuleInfo* module_info) {
  45. if(module_info->hw_version != NULL) free(module_info->hw_version);
  46. if(module_info->sw_version != NULL) free(module_info->sw_version);
  47. if(module_info->manufacturer != NULL) free(module_info->manufacturer);
  48. free(module_info);
  49. }
  50. M100Module* m100_module_alloc() {
  51. M100Module* module = (M100Module*)malloc(sizeof(M100Module));
  52. module->transmitting_power = DEFAULT_TRANSMITTING_POWER;
  53. module->region = DEFAULT_WORKING_REGION;
  54. module->info = m100_module_info_alloc();
  55. module->uart = uhf_uart_alloc();
  56. return module;
  57. }
  58. void m100_module_free(M100Module* module) {
  59. m100_module_info_free(module->info);
  60. uhf_uart_free(module->uart);
  61. free(module);
  62. }
  63. uint8_t checksum(const uint8_t* data, size_t length) {
  64. // CheckSum8 Modulo 256
  65. // Sum of Bytes % 256
  66. uint64_t sum_val = 0x00;
  67. for(size_t i = 0; i < length; i++) {
  68. sum_val += data[i];
  69. }
  70. return (uint8_t)(sum_val % 0x100);
  71. }
  72. uint16_t crc16_genibus(const uint8_t* data, size_t length) {
  73. uint16_t crc = 0xFFFF; // Initial value
  74. uint16_t polynomial = 0x1021; // CRC-16/GENIBUS polynomial
  75. for(size_t i = 0; i < length; i++) {
  76. crc ^= (data[i] << 8); // Move byte into MSB of 16bit CRC
  77. for(int j = 0; j < 8; j++) {
  78. if(crc & 0x8000) {
  79. crc = (crc << 1) ^ polynomial;
  80. } else {
  81. crc <<= 1;
  82. }
  83. }
  84. }
  85. return crc ^ 0xFFFF; // Post-inversion
  86. }
  87. char* _m100_info_helper(M100Module* module, char** info) {
  88. if(!uhf_buffer_get_size(module->uart->buffer)) return NULL;
  89. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  90. uint16_t payload_len = data[3];
  91. payload_len = (payload_len << 8) + data[4];
  92. FuriString* temp_str = furi_string_alloc();
  93. for(int i = 0; i < payload_len; i++) {
  94. furi_string_cat_printf(temp_str, "%c", data[6 + i]);
  95. }
  96. if(*info == NULL) {
  97. *info = (char*)malloc(sizeof(char) * payload_len);
  98. } else {
  99. for(size_t i = 0; i < strlen(*info); i++) {
  100. (*info)[i] = 0;
  101. }
  102. }
  103. memcpy(*info, furi_string_get_cstr(temp_str), payload_len);
  104. furi_string_free(temp_str);
  105. return *info;
  106. }
  107. char* m100_get_hardware_version(M100Module* module) {
  108. setup_and_send_rx(module, (uint8_t*)&CMD_HW_VERSION.cmd[0], CMD_HW_VERSION.length);
  109. return _m100_info_helper(module, &module->info->hw_version);
  110. }
  111. char* m100_get_software_version(M100Module* module) {
  112. setup_and_send_rx(module, (uint8_t*)&CMD_SW_VERSION.cmd[0], CMD_SW_VERSION.length);
  113. return _m100_info_helper(module, &module->info->sw_version);
  114. }
  115. char* m100_get_manufacturers(M100Module* module) {
  116. setup_and_send_rx(module, (uint8_t*)&CMD_MANUFACTURERS.cmd[0], CMD_MANUFACTURERS.length);
  117. return _m100_info_helper(module, &module->info->manufacturer);
  118. }
  119. M100ResponseType m100_single_poll(M100Module* module, UHFTag* uhf_tag) {
  120. M100ResponseType rp_type =
  121. setup_and_send_rx(module, (uint8_t*)&CMD_SINGLE_POLLING.cmd[0], CMD_SINGLE_POLLING.length);
  122. if(rp_type != M100SuccessResponse) return rp_type;
  123. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  124. size_t length = uhf_buffer_get_size(module->uart->buffer);
  125. uint16_t pc = data[6];
  126. uint16_t crc = 0;
  127. // mask out epc length from protocol control
  128. size_t epc_len = pc;
  129. epc_len >>= 3;
  130. epc_len *= 2;
  131. // get protocol control
  132. pc <<= 8;
  133. pc += data[7];
  134. // get cyclic redundency check
  135. crc = data[8 + epc_len];
  136. crc <<= 8;
  137. crc += data[8 + epc_len + 1];
  138. // validate checksum
  139. if(checksum(data + 1, length - 3) != data[length - 2]) return M100ValidationFail;
  140. // validate crc
  141. if(crc16_genibus(data + 6, epc_len + 2) != crc) return M100ValidationFail;
  142. uhf_tag_set_epc_pc(uhf_tag, pc);
  143. uhf_tag_set_epc_crc(uhf_tag, crc);
  144. uhf_tag_set_epc(uhf_tag, data + 8, epc_len);
  145. return M100SuccessResponse;
  146. }
  147. M100ResponseType m100_set_select(M100Module* module, UHFTag* uhf_tag) {
  148. // Set select
  149. uint8_t cmd[MAX_BUFFER_SIZE];
  150. size_t cmd_length = CMD_SET_SELECT_PARAMETER.length;
  151. size_t mask_length_bytes = uhf_tag->epc->size;
  152. size_t mask_length_bits = mask_length_bytes * 8;
  153. // payload len == sel param len + ptr len + mask len + epc len
  154. size_t payload_len = 7 + mask_length_bytes;
  155. memcpy(cmd, CMD_SET_SELECT_PARAMETER.cmd, cmd_length);
  156. // set new length
  157. cmd_length = 12 + mask_length_bytes + 2;
  158. // set payload length
  159. cmd[3] = (payload_len >> 8) & 0xFF;
  160. cmd[4] = payload_len & 0xFF;
  161. // set select param
  162. cmd[5] = 0x01; // 0x00=rfu, 0x01=epc, 0x10=tid, 0x11=user
  163. // set ptr
  164. cmd[9] = 0x20; // epc data begins after 0x20
  165. // set mask length
  166. cmd[10] = mask_length_bits;
  167. // truncate
  168. cmd[11] = false;
  169. // set mask
  170. memcpy((void*)&cmd[12], uhf_tag->epc->data, mask_length_bytes);
  171. // set checksum
  172. cmd[cmd_length - 2] = checksum(cmd + 1, 11 + mask_length_bytes);
  173. // end frame
  174. cmd[cmd_length - 1] = FRAME_END;
  175. setup_and_send_rx(module, cmd, 12 + mask_length_bytes + 3);
  176. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  177. if(checksum(data + 1, 5) != data[6]) return M100ValidationFail; // error in rx
  178. if(data[5] != 0x00) return M100ValidationFail; // error if not 0
  179. return M100SuccessResponse;
  180. }
  181. UHFTag* m100_get_select_param(M100Module* module) {
  182. uhf_buffer_reset(module->uart->buffer);
  183. // furi_hal_uart_set_irq_cb(FuriHalUartIdLPUART1, rx_callback, module->uart->buffer);
  184. // furi_hal_uart_tx(
  185. // FuriHalUartIdUSART1,
  186. // (uint8_t*)&CMD_GET_SELECT_PARAMETER.cmd,
  187. // CMD_GET_SELECT_PARAMETER.length);
  188. // furi_delay_ms(DELAY_MS);
  189. // UHFTag* uhf_tag = uhf_tag_alloc();
  190. // uint8_t* data = buffer_get_data(module->uart->buffer);
  191. // size_t mask_length =
  192. // uhf_tag_set_epc(uhf_tag, data + 12, )
  193. // TODO : implement
  194. return NULL;
  195. }
  196. M100ResponseType m100_read_label_data_storage(
  197. M100Module* module,
  198. UHFTag* uhf_tag,
  199. BankType bank,
  200. uint32_t access_pwd,
  201. uint16_t word_count) {
  202. /*
  203. Will probably remove UHFTag as param and get it from get selected tag
  204. */
  205. if(bank == EPCBank) return M100SuccessResponse;
  206. uint8_t cmd[MAX_BUFFER_SIZE];
  207. size_t cmd_length = CMD_READ_LABEL_DATA_STORAGE_AREA.length;
  208. memcpy(cmd, CMD_READ_LABEL_DATA_STORAGE_AREA.cmd, cmd_length);
  209. // set access password
  210. cmd[5] = (access_pwd >> 24) & 0xFF;
  211. cmd[6] = (access_pwd >> 16) & 0xFF;
  212. cmd[7] = (access_pwd >> 8) & 0xFF;
  213. cmd[8] = access_pwd & 0xFF;
  214. // set mem bank
  215. cmd[9] = (uint8_t)bank;
  216. // set word counter
  217. cmd[12] = (word_count >> 8) & 0xFF;
  218. cmd[13] = word_count & 0xFF;
  219. // calc checksum
  220. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  221. M100ResponseType rp_type = setup_and_send_rx(module, cmd, cmd_length);
  222. if(rp_type != M100SuccessResponse) return rp_type;
  223. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  224. uint8_t rtn_command = data[2];
  225. uint16_t payload_len = data[3];
  226. payload_len = (payload_len << 8) + data[4];
  227. if(rtn_command == 0xFF) {
  228. if(payload_len == 0x01) return M100NoTagResponse;
  229. return M100MemoryOverrun;
  230. }
  231. size_t ptr_offset = 5 /*<-ptr offset*/ + uhf_tag_get_epc_size(uhf_tag) + 3 /*<-pc + ul*/;
  232. size_t bank_data_length = payload_len - (ptr_offset - 5 /*dont include the offset*/);
  233. if(bank == TIDBank) {
  234. uhf_tag_set_tid(uhf_tag, data + ptr_offset, bank_data_length);
  235. } else if(bank == UserBank) {
  236. uhf_tag_set_user(uhf_tag, data + ptr_offset, bank_data_length);
  237. }
  238. return M100SuccessResponse;
  239. }
  240. M100ResponseType m100_write_label_data_storage(
  241. M100Module* module,
  242. UHFTag* saved_tag,
  243. UHFTag* selected_tag,
  244. BankType bank,
  245. uint16_t source_address,
  246. uint32_t access_pwd) {
  247. uint8_t cmd[MAX_BUFFER_SIZE];
  248. size_t cmd_length = CMD_WRITE_LABEL_DATA_STORE.length;
  249. memcpy(cmd, CMD_WRITE_LABEL_DATA_STORE.cmd, cmd_length);
  250. uint16_t payload_len = 9;
  251. uint16_t data_length = 0;
  252. if(bank == ReservedBank) {
  253. // access pwd len + kill pwd len
  254. payload_len += 4;
  255. data_length = 4;
  256. } else if(bank == EPCBank) {
  257. // epc len + pc len
  258. payload_len += 4 + uhf_tag_get_epc_size(saved_tag);
  259. data_length = 4 + uhf_tag_get_epc_size(saved_tag);
  260. // set data
  261. uint8_t tmp_arr[4];
  262. tmp_arr[0] = (uint8_t)((uhf_tag_get_epc_crc(selected_tag) >> 8) & 0xFF);
  263. tmp_arr[1] = (uint8_t)(uhf_tag_get_epc_crc(selected_tag) & 0xFF);
  264. tmp_arr[2] = (uint8_t)((uhf_tag_get_epc_pc(saved_tag) >> 8) & 0xFF);
  265. tmp_arr[3] = (uint8_t)(uhf_tag_get_epc_pc(saved_tag) & 0xFF);
  266. memcpy(cmd + 14, tmp_arr, 4);
  267. memcpy(cmd + 18, uhf_tag_get_epc(saved_tag), uhf_tag_get_epc_size(saved_tag));
  268. } else if(bank == UserBank) {
  269. payload_len += uhf_tag_get_user_size(saved_tag);
  270. data_length = uhf_tag_get_user_size(saved_tag);
  271. // set data
  272. memcpy(cmd + 14, uhf_tag_get_user(saved_tag), uhf_tag_get_user_size(saved_tag));
  273. }
  274. // set payload length
  275. cmd[3] = (payload_len >> 8) & 0xFF;
  276. cmd[4] = payload_len & 0xFF;
  277. // set access password
  278. cmd[5] = (access_pwd >> 24) & 0xFF;
  279. cmd[6] = (access_pwd >> 16) & 0xFF;
  280. cmd[7] = (access_pwd >> 8) & 0xFF;
  281. cmd[8] = access_pwd & 0xFF;
  282. // set membank
  283. cmd[9] = (uint8_t)bank;
  284. // set source address
  285. cmd[10] = (source_address >> 8) & 0xFF;
  286. cmd[11] = source_address & 0xFF;
  287. // set data length
  288. size_t data_length_words = data_length / 2;
  289. cmd[12] = (data_length_words >> 8) & 0xFF;
  290. cmd[13] = data_length_words & 0xFF;
  291. // update cmd len
  292. cmd_length = 7 + payload_len;
  293. // calculate checksum
  294. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  295. cmd[cmd_length - 1] = FRAME_END;
  296. // send cmd
  297. // furi_hal_uart_set_irq_cb(FuriHalUartIdUSART1, rx_callback, module->uart->buffer);
  298. // furi_hal_uart_tx(FuriHalUartIdUSART1, cmd, cmd_length);
  299. // unsigned int delay = DELAY_MS / 2;
  300. // unsigned int timeout = 15;
  301. // while(!buffer_get_size(module->uart->buffer)) {
  302. // furi_delay_ms(delay);
  303. // if(!timeout--) break;
  304. // }
  305. setup_and_send_rx(module, cmd, cmd_length);
  306. uint8_t* buff_data = uhf_buffer_get_data(module->uart->buffer);
  307. size_t buff_length = uhf_buffer_get_size(module->uart->buffer);
  308. if(buff_data[2] == 0xFF && buff_length == 8)
  309. return M100NoTagResponse;
  310. else if(buff_data[2] == 0xFF)
  311. return M100ValidationFail;
  312. return M100SuccessResponse;
  313. }
  314. void m100_set_baudrate(M100Module* module, uint32_t baudrate) {
  315. size_t length = CMD_SET_COMMUNICATION_BAUD_RATE.length;
  316. uint8_t cmd[length];
  317. memcpy(cmd, CMD_SET_COMMUNICATION_BAUD_RATE.cmd, length);
  318. uint16_t br_mod = baudrate / 100; // module format
  319. cmd[6] = 0xFF & br_mod; // pow LSB
  320. cmd[5] = 0xFF & (br_mod >> 8); // pow MSB
  321. cmd[length - 2] = checksum(cmd + 1, length - 3);
  322. // setup_and_send_rx(module, cmd, length);
  323. uhf_uart_send_wait(module->uart, cmd, length);
  324. uhf_uart_set_baudrate(module->uart, baudrate);
  325. module->uart->baudrate = baudrate;
  326. }
  327. bool m100_set_working_region(M100Module* module, WorkingRegion region) {
  328. size_t length = CMD_SET_WORK_AREA.length;
  329. uint8_t cmd[length];
  330. memcpy(cmd, CMD_SET_WORK_AREA.cmd, length);
  331. cmd[5] = (uint8_t)region;
  332. cmd[length - 2] = checksum(cmd + 1, length - 3);
  333. setup_and_send_rx(module, cmd, length);
  334. module->region = region;
  335. return true;
  336. }
  337. bool m100_set_transmitting_power(M100Module* module, uint16_t power) {
  338. size_t length = CMD_SET_TRANSMITTING_POWER.length;
  339. uint8_t cmd[length];
  340. memcpy(cmd, CMD_SET_TRANSMITTING_POWER.cmd, length);
  341. cmd[5] = (power >> 8) & 0xFF;
  342. cmd[6] = power & 0xFF;
  343. cmd[length - 2] = checksum(cmd + 1, length - 3);
  344. setup_and_send_rx(module, cmd, length);
  345. module->transmitting_power = power;
  346. return true;
  347. }
  348. bool m100_set_freq_hopping(M100Module* module, bool hopping) {
  349. UNUSED(module);
  350. UNUSED(hopping);
  351. return true;
  352. }
  353. bool m100_set_power(M100Module* module, uint8_t* power) {
  354. UNUSED(module);
  355. UNUSED(power);
  356. return true;
  357. }
  358. uint32_t m100_get_baudrate(M100Module* module) {
  359. return module->uart->baudrate;
  360. }