| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- /* sha1.c - Functions to compute SHA1 message digest of files or
- memory blocks according to the NIST specification FIPS-180-1.
- Copyright (C) 2000-2001, 2003-2006, 2008-2022 Free Software Foundation, Inc.
- This file is free software: you can redistribute it and/or modify
- it under the terms of the GNU Lesser General Public License as
- published by the Free Software Foundation; either version 2.1 of the
- License, or (at your option) any later version.
- This file is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU Lesser General Public License for more details.
- You should have received a copy of the GNU Lesser General Public License
- along with this program. If not, see <https://www.gnu.org/licenses/>. */
- /* Written by Scott G. Miller
- Credits:
- Robert Klep <robert@ilse.nl> -- Expansion function fix
- */
- /* Specification. */
- #include "sha1.h"
- #include <stdint.h>
- #include <string.h>
- #ifdef WORDS_BIGENDIAN
- #define SWAP(n) (n)
- #else
- #include "byteswap.h"
- #define SWAP(n) swap_uint32(n)
- #endif
- /* This array contains the bytes used to pad the buffer to the next
- 64-byte boundary. (RFC 1321, 3.1: Step 1) */
- static const unsigned char fillbuf[64] = {0x80, 0 /* , 0, 0, ... */};
- /* Take a pointer to a 160 bit block of data (five 32 bit ints) and
- initialize it to the start constants of the SHA1 algorithm. This
- must be called before using hash in the call to sha1_hash. */
- void sha1_init_ctx(struct sha1_ctx* ctx) {
- ctx->A = 0x67452301;
- ctx->B = 0xefcdab89;
- ctx->C = 0x98badcfe;
- ctx->D = 0x10325476;
- ctx->E = 0xc3d2e1f0;
- ctx->total[0] = ctx->total[1] = 0;
- ctx->buflen = 0;
- }
- /* Copy the 4 byte value from v into the memory location pointed to by *cp,
- If your architecture allows unaligned access this is equivalent to
- * (uint32_t *) cp = v */
- static void set_uint32(char* cp, uint32_t v) {
- memcpy(cp, &v, sizeof v);
- }
- /* Put result from CTX in first 20 bytes following RESBUF. The result
- must be in little endian byte order. */
- void* sha1_read_ctx(const struct sha1_ctx* ctx, void* resbuf) {
- char* r = resbuf;
- set_uint32(r + 0 * sizeof ctx->A, SWAP(ctx->A));
- set_uint32(r + 1 * sizeof ctx->B, SWAP(ctx->B));
- set_uint32(r + 2 * sizeof ctx->C, SWAP(ctx->C));
- set_uint32(r + 3 * sizeof ctx->D, SWAP(ctx->D));
- set_uint32(r + 4 * sizeof ctx->E, SWAP(ctx->E));
- return resbuf;
- }
- /* Process the remaining bytes in the internal buffer and the usual
- prolog according to the standard and write the result to RESBUF. */
- void* sha1_finish_ctx(struct sha1_ctx* ctx, void* resbuf) {
- /* Take yet unprocessed bytes into account. */
- uint32_t bytes = ctx->buflen;
- size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
- /* Now count remaining bytes. */
- ctx->total[0] += bytes;
- if(ctx->total[0] < bytes) ++ctx->total[1];
- /* Put the 64-bit file length in *bits* at the end of the buffer. */
- ctx->buffer[size - 2] = SWAP((ctx->total[1] << 3) | (ctx->total[0] >> 29));
- ctx->buffer[size - 1] = SWAP(ctx->total[0] << 3);
- memcpy(&((char*)ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
- /* Process last bytes. */
- sha1_process_block(ctx->buffer, size * 4, ctx);
- return sha1_read_ctx(ctx, resbuf);
- }
- /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
- result is always in little endian byte order, so that a byte-wise
- output yields to the wanted ASCII representation of the message
- digest. */
- void* sha1_buffer(const char* buffer, size_t len, void* resblock) {
- struct sha1_ctx ctx;
- /* Initialize the computation context. */
- sha1_init_ctx(&ctx);
- /* Process whole buffer but last len % 64 bytes. */
- sha1_process_bytes(buffer, len, &ctx);
- /* Put result in desired memory area. */
- return sha1_finish_ctx(&ctx, resblock);
- }
- void sha1_process_bytes(const void* buffer, size_t len, struct sha1_ctx* ctx) {
- /* When we already have some bits in our internal buffer concatenate
- both inputs first. */
- if(ctx->buflen != 0) {
- size_t left_over = ctx->buflen;
- size_t add = 128 - left_over > len ? len : 128 - left_over;
- memcpy(&((char*)ctx->buffer)[left_over], buffer, add);
- ctx->buflen += add;
- if(ctx->buflen > 64) {
- sha1_process_block(ctx->buffer, ctx->buflen & ~63, ctx);
- ctx->buflen &= 63;
- /* The regions in the following copy operation cannot overlap,
- because ctx->buflen < 64 ≤ (left_over + add) & ~63. */
- memcpy(ctx->buffer, &((char*)ctx->buffer)[(left_over + add) & ~63], ctx->buflen);
- }
- buffer = (const char*)buffer + add;
- len -= add;
- }
- /* Process available complete blocks. */
- if(len >= 64) {
- #if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned)
- #define UNALIGNED_P(p) ((uintptr_t)(p) % sizeof(uint32_t) != 0)
- if(UNALIGNED_P(buffer))
- while(len > 64) {
- sha1_process_block(memcpy(ctx->buffer, buffer, 64), 64, ctx); //-V1086
- buffer = (const char*)buffer + 64;
- len -= 64;
- }
- else
- #endif
- {
- sha1_process_block(buffer, len & ~63, ctx);
- buffer = (const char*)buffer + (len & ~63);
- len &= 63;
- }
- }
- /* Move remaining bytes in internal buffer. */
- if(len > 0) {
- size_t left_over = ctx->buflen;
- memcpy(&((char*)ctx->buffer)[left_over], buffer, len);
- left_over += len;
- if(left_over >= 64) {
- sha1_process_block(ctx->buffer, 64, ctx);
- left_over -= 64;
- /* The regions in the following copy operation cannot overlap,
- because left_over ≤ 64. */
- memcpy(ctx->buffer, &ctx->buffer[16], left_over);
- }
- ctx->buflen = left_over;
- }
- }
- /* --- Code below is the primary difference between md5.c and sha1.c --- */
- /* SHA1 round constants */
- static const int sha1_round_constants[4] = {0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xca62c1d6};
- /* Round functions. Note that F2 is the same as F4. */
- #define F1(B, C, D) (D ^ (B & (C ^ D)))
- #define F2_4(B, C, D) (B ^ C ^ D)
- #define F3(B, C, D) ((B & C) | (D & (B | C)))
- #define FN(I, B, C, D) (I == 0 ? F1(B, C, D) : (I == 2 ? F3(B, C, D) : F2_4(B, C, D)))
- /* Process LEN bytes of BUFFER, accumulating context into CTX.
- It is assumed that LEN % 64 == 0.
- Most of this code comes from GnuPG's cipher/sha1.c. */
- void sha1_process_block(const void* buffer, size_t len, struct sha1_ctx* ctx) {
- const uint32_t* words = buffer;
- size_t nwords = len / sizeof(uint32_t);
- const uint32_t* endp = words + nwords;
- uint32_t x[16];
- uint32_t a = ctx->A;
- uint32_t b = ctx->B;
- uint32_t c = ctx->C;
- uint32_t d = ctx->D;
- uint32_t e = ctx->E;
- uint32_t lolen = len;
- /* First increment the byte count. RFC 1321 specifies the possible
- length of the file up to 2^64 bits. Here we only compute the
- number of bytes. Do a double word increment. */
- ctx->total[0] += lolen;
- ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen);
- #define rol(x, n) (((x) << (n)) | ((uint32_t)(x) >> (32 - (n))))
- #define M(I) \
- (tm = x[I & 0x0f] ^ x[(I - 14) & 0x0f] ^ x[(I - 8) & 0x0f] ^ x[(I - 3) & 0x0f], \
- (x[I & 0x0f] = rol(tm, 1)))
- #define R(A, B, C, D, E, F, K, M, KI) \
- do { \
- E += rol(A, 5) + F(KI, B, C, D) + K + M; \
- B = rol(B, 30); \
- } while(0)
- while(words < endp) {
- uint32_t tm;
- int t;
- for(t = 0; t < 16; t++) {
- x[t] = SWAP(*words);
- words++;
- }
- for(uint8_t i = 0; i < 80; i++) {
- uint32_t m = i < 16 ? x[i] : M(i);
- uint8_t ki = i / 20;
- int k_const = sha1_round_constants[ki];
- R(a, b, c, d, e, FN, k_const, m, ki);
- uint32_t tt = a;
- a = e;
- e = d;
- d = c;
- c = b;
- b = tt;
- }
- a = ctx->A += a;
- b = ctx->B += b;
- c = ctx->C += c;
- d = ctx->D += d;
- e = ctx->E += e;
- }
- }
- /*
- * Hey Emacs!
- * Local Variables:
- * coding: utf-8
- * End:
- */
|