| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- /*
- * Copyright 2019 Google Inc. All Rights Reserved.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "matrixutils.h"
- #include "vectorutils.h"
- namespace cardboard {
- namespace {
- // Returns true if the cofactor for a given row and column should be negated.
- static bool IsCofactorNegated(int row, int col)
- {
- // Negated iff (row + col) is odd.
- return ((row + col) & 1) != 0;
- }
- static double CofactorElement3(const Matrix3x3& m, int row, int col)
- {
- static const int index[3][2] = { { 1, 2 }, { 0, 2 }, { 0, 1 } };
- const int i0 = index[row][0];
- const int i1 = index[row][1];
- const int j0 = index[col][0];
- const int j1 = index[col][1];
- const double cofactor = m(i0, j0) * m(i1, j1) - m(i0, j1) * m(i1, j0);
- return IsCofactorNegated(row, col) ? -cofactor : cofactor;
- }
- // Multiplies a matrix and some type of column vector to
- // produce another column vector of the same type.
- Vector3 MultiplyMatrixAndVector(const Matrix3x3& m, const Vector3& v)
- {
- Vector3 result = Vector3::Zero();
- for (int row = 0; row < 3; ++row) {
- for (int col = 0; col < 3; ++col)
- result[row] += m(row, col) * v[col];
- }
- return result;
- }
- // Sets the upper 3x3 of a Matrix to represent a 3D rotation.
- void RotationMatrix3x3(const Rotation& r, Matrix3x3* matrix)
- {
- //
- // Given a quaternion (a,b,c,d) where d is the scalar part, the 3x3 rotation
- // matrix is:
- //
- // a^2 - b^2 - c^2 + d^2 2ab - 2cd 2ac + 2bd
- // 2ab + 2cd -a^2 + b^2 - c^2 + d^2 2bc - 2ad
- // 2ac - 2bd 2bc + 2ad -a^2 - b^2 + c^2 + d^2
- //
- const Vector<4>& quat = r.GetQuaternion();
- const double aa = quat[0] * quat[0];
- const double bb = quat[1] * quat[1];
- const double cc = quat[2] * quat[2];
- const double dd = quat[3] * quat[3];
- const double ab = quat[0] * quat[1];
- const double ac = quat[0] * quat[2];
- const double bc = quat[1] * quat[2];
- const double ad = quat[0] * quat[3];
- const double bd = quat[1] * quat[3];
- const double cd = quat[2] * quat[3];
- Matrix3x3& m = *matrix;
- m[0][0] = aa - bb - cc + dd;
- m[0][1] = 2 * ab - 2 * cd;
- m[0][2] = 2 * ac + 2 * bd;
- m[1][0] = 2 * ab + 2 * cd;
- m[1][1] = -aa + bb - cc + dd;
- m[1][2] = 2 * bc - 2 * ad;
- m[2][0] = 2 * ac - 2 * bd;
- m[2][1] = 2 * bc + 2 * ad;
- m[2][2] = -aa - bb + cc + dd;
- }
- } // anonymous namespace
- Vector3 operator*(const Matrix3x3& m, const Vector3& v) { return MultiplyMatrixAndVector(m, v); }
- Matrix3x3 CofactorMatrix(const Matrix3x3& m)
- {
- Matrix3x3 result;
- for (int row = 0; row < 3; ++row) {
- for (int col = 0; col < 3; ++col)
- result(row, col) = CofactorElement3(m, row, col);
- }
- return result;
- }
- Matrix3x3 AdjugateWithDeterminant(const Matrix3x3& m, double* determinant)
- {
- const Matrix3x3 cofactor_matrix = CofactorMatrix(m);
- if (determinant) {
- *determinant = m(0, 0) * cofactor_matrix(0, 0) + m(0, 1) * cofactor_matrix(0, 1)
- + m(0, 2) * cofactor_matrix(0, 2);
- }
- return Transpose(cofactor_matrix);
- }
- // Returns the transpose of a matrix.
- Matrix3x3 Transpose(const Matrix3x3& m)
- {
- Matrix3x3 result;
- for (int row = 0; row < 3; ++row) {
- for (int col = 0; col < 3; ++col)
- result(row, col) = m(col, row);
- }
- return result;
- }
- Matrix3x3 InverseWithDeterminant(const Matrix3x3& m, double* determinant)
- {
- // The inverse is the adjugate divided by the determinant.
- double det;
- Matrix3x3 adjugate = AdjugateWithDeterminant(m, &det);
- if (determinant)
- *determinant = det;
- if (det == 0)
- return Matrix3x3::Zero();
- else
- return adjugate * (1 / det);
- }
- Matrix3x3 Inverse(const Matrix3x3& m) { return InverseWithDeterminant(m, nullptr); }
- Matrix3x3 RotationMatrixNH(const Rotation& r)
- {
- Matrix3x3 m;
- RotationMatrix3x3(r, &m);
- return m;
- }
- } // namespace cardboard
|