scope_scene_run.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368
  1. #include <furi.h>
  2. #include <furi_hal.h>
  3. #include <furi_hal_resources.h>
  4. #include <gui/gui.h>
  5. #include <gui/view_dispatcher.h>
  6. #include <gui/scene_manager.h>
  7. #include <gui/modules/submenu.h>
  8. #include <gui/modules/variable_item_list.h>
  9. #include <gui/modules/widget.h>
  10. #include <notification/notification_messages.h>
  11. #include "stm32wbxx_hal.h"
  12. #include "stm32wbxx_hal_tim.h"
  13. #include "stm32wbxx_nucleo.h"
  14. #include "stm32wbxx_hal_adc.h"
  15. #include "../scope_app_i.h"
  16. #include "../helpers/scope_types.h"
  17. #define DIGITAL_SCALE_12BITS ((uint32_t) 0xFFF)
  18. #define ADC_CONVERTED_DATA_BUFFER_SIZE ((uint32_t) 128)
  19. #define VAR_CONVERTED_DATA_INIT_VALUE (DIGITAL_SCALE_12BITS + 1)
  20. #define VAR_CONVERTED_DATA_INIT_VALUE_16BITS (0xFFFF + 1U)
  21. #define __ADC_CALC_DATA_VOLTAGE(__VREFANALOG_VOLTAGE__, __ADC_DATA__) \
  22. ((__ADC_DATA__) * (__VREFANALOG_VOLTAGE__) / DIGITAL_SCALE_12BITS)
  23. #define VDDA_APPLI ((uint32_t)3300)
  24. // ramVector found from - https://community.nxp.com/t5/i-MX-Processors/Relocate-vector-table-to-ITCM/m-p/1302304
  25. // the aligned aspect is key!
  26. #define TABLE_SIZE 79
  27. uint32_t ramVector[TABLE_SIZE+1] __attribute__((aligned(512)));
  28. const uint32_t AHBPrescTable[16UL] = {1UL, 3UL, 5UL, 1UL, 1UL, 6UL, 10UL, 32UL, 2UL, 4UL, 8UL, 16UL, 64UL, 128UL, 256UL, 512UL};
  29. const uint32_t APBPrescTable[8UL] = {0UL, 0UL, 0UL, 0UL, 1UL, 2UL, 3UL, 4UL};
  30. const uint32_t MSIRangeTable[16UL] = {100000UL, 200000UL, 400000UL, 800000UL, 1000000UL, 2000000UL, \
  31. 4000000UL, 8000000UL, 16000000UL, 24000000UL, 32000000UL, 48000000UL, 0UL, 0UL, 0UL, 0UL}; /* 0UL values are incorrect cases */
  32. double time;
  33. void Error_Handler()
  34. {
  35. while (1) {
  36. }
  37. }
  38. static ADC_HandleTypeDef hadc1;
  39. static DMA_HandleTypeDef hdma_adc1;
  40. static TIM_HandleTypeDef htim2;
  41. __IO uint16_t aADCxConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* ADC group regular conversion data (array of data) */
  42. __IO uint16_t aADCxConvertedData_Voltage_mVoltA[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* Value of voltage calculated from ADC conversion data (unit: mV) (array of data) */
  43. __IO uint16_t aADCxConvertedData_Voltage_mVoltB[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* Value of voltage calculated from ADC conversion data (unit: mV) (array of data) */
  44. __IO uint8_t ubDmaTransferStatus = 2; /* Variable set into DMA interruption callback */
  45. __IO uint16_t *mvoltWrite = &aADCxConvertedData_Voltage_mVoltA[0];
  46. __IO uint16_t *mvoltDisplay = &aADCxConvertedData_Voltage_mVoltB[0];
  47. void HAL_ADC_MspInit(ADC_HandleTypeDef * hadc)
  48. {
  49. GPIO_InitTypeDef GPIO_InitStruct = { 0 };
  50. if (hadc->Instance == ADC1) {
  51. __HAL_RCC_ADC_CLK_ENABLE();
  52. __HAL_RCC_GPIOC_CLK_ENABLE();
  53. GPIO_InitStruct.Pin = GPIO_PIN_0;
  54. GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  55. GPIO_InitStruct.Pull = GPIO_NOPULL;
  56. HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  57. hdma_adc1.Instance = DMA1_Channel1;
  58. hdma_adc1.Init.Request = DMA_REQUEST_ADC1;
  59. hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
  60. hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
  61. hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
  62. hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
  63. hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
  64. hdma_adc1.Init.Mode = DMA_CIRCULAR;
  65. hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
  66. if (HAL_DMA_Init(&hdma_adc1) != HAL_OK) {
  67. Error_Handler();
  68. }
  69. __HAL_LINKDMA(hadc, DMA_Handle, hdma_adc1);
  70. HAL_NVIC_SetPriority(ADC1_IRQn, 15, 0);
  71. HAL_NVIC_EnableIRQ(ADC1_IRQn);
  72. }
  73. }
  74. void HAL_ADC_MspDeInit(ADC_HandleTypeDef * hadc)
  75. {
  76. if (hadc->Instance == ADC1) {
  77. __HAL_RCC_ADC_CLK_DISABLE();
  78. HAL_GPIO_DeInit(GPIOC, GPIO_PIN_0);
  79. HAL_DMA_DeInit(hadc->DMA_Handle);
  80. HAL_NVIC_DisableIRQ(ADC1_IRQn);
  81. }
  82. }
  83. void HAL_TIM_Base_MspInit(TIM_HandleTypeDef * htim_base)
  84. {
  85. if (htim_base->Instance == TIM2) {
  86. __HAL_RCC_TIM2_CLK_ENABLE();
  87. HAL_NVIC_SetPriority(TIM2_IRQn, 15, 0);
  88. HAL_NVIC_EnableIRQ(TIM2_IRQn);
  89. }
  90. }
  91. void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef * htim_base)
  92. {
  93. if (htim_base->Instance == TIM2) {
  94. __HAL_RCC_TIM2_CLK_DISABLE();
  95. HAL_NVIC_DisableIRQ(TIM2_IRQn);
  96. }
  97. }
  98. void DMA1_Channel1_IRQHandler(void)
  99. {
  100. HAL_DMA_IRQHandler(&hdma_adc1);
  101. }
  102. void ADC1_IRQHandler(void)
  103. {
  104. HAL_ADC_IRQHandler(&hadc1);
  105. }
  106. void TIM2_IRQHandler(void)
  107. {
  108. HAL_TIM_IRQHandler(&htim2);
  109. }
  110. static void MX_ADC1_Init(void)
  111. {
  112. ADC_ChannelConfTypeDef sConfig = { 0 };
  113. hadc1.Instance = ADC1;
  114. hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  115. hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  116. hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  117. hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  118. hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  119. hadc1.Init.LowPowerAutoWait = DISABLE;
  120. hadc1.Init.ContinuousConvMode = DISABLE;
  121. hadc1.Init.NbrOfConversion = 1;
  122. hadc1.Init.DiscontinuousConvMode = DISABLE;
  123. hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T2_TRGO;
  124. hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
  125. hadc1.Init.DMAContinuousRequests = ENABLE;
  126. hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
  127. hadc1.Init.OversamplingMode = DISABLE;
  128. if (HAL_ADC_Init(&hadc1) != HAL_OK) {
  129. Error_Handler();
  130. }
  131. sConfig.Channel = ADC_CHANNEL_1;
  132. sConfig.Rank = ADC_REGULAR_RANK_1;
  133. sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLE_5;
  134. sConfig.SingleDiff = ADC_SINGLE_ENDED;
  135. sConfig.OffsetNumber = ADC_OFFSET_NONE;
  136. sConfig.Offset = 0;
  137. if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) {
  138. Error_Handler();
  139. }
  140. }
  141. static void MX_TIM2_Init(uint32_t period)
  142. {
  143. TIM_ClockConfigTypeDef sClockSourceConfig = { 0 };
  144. TIM_MasterConfigTypeDef sMasterConfig = { 0 };
  145. htim2.Instance = TIM2;
  146. htim2.Init.Prescaler = 1;
  147. htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  148. htim2.Init.Period = period;
  149. htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  150. htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  151. if (HAL_TIM_Base_Init(&htim2) != HAL_OK) {
  152. Error_Handler();
  153. }
  154. sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  155. if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) {
  156. Error_Handler();
  157. }
  158. sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  159. sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  160. if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) {
  161. Error_Handler();
  162. }
  163. }
  164. static void MX_DMA_Init(void)
  165. {
  166. __HAL_RCC_DMAMUX1_CLK_ENABLE();
  167. __HAL_RCC_DMA1_CLK_ENABLE();
  168. HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 15, 0);
  169. HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  170. }
  171. static void MX_GPIO_Init(void)
  172. {
  173. __HAL_RCC_GPIOC_CLK_ENABLE();
  174. }
  175. void swap(__IO uint16_t **a, __IO uint16_t **b){
  176. __IO uint16_t *tmp;
  177. tmp = *a;
  178. *a = *b;
  179. *b = tmp;
  180. }
  181. void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef * hadc)
  182. {
  183. UNUSED(hadc);
  184. uint32_t tmp_index = 0;
  185. for (tmp_index = (ADC_CONVERTED_DATA_BUFFER_SIZE / 2); tmp_index < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index++) {
  186. mvoltWrite[tmp_index] = __ADC_CALC_DATA_VOLTAGE(VDDA_APPLI, aADCxConvertedData[tmp_index]);
  187. }
  188. ubDmaTransferStatus = 1;
  189. swap(&mvoltWrite, &mvoltDisplay);
  190. }
  191. void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef * hadc)
  192. {
  193. UNUSED(hadc);
  194. uint32_t tmp_index = 0;
  195. for (tmp_index = 0; tmp_index < (ADC_CONVERTED_DATA_BUFFER_SIZE / 2); tmp_index++) {
  196. mvoltWrite[tmp_index] = __ADC_CALC_DATA_VOLTAGE(VDDA_APPLI, aADCxConvertedData[tmp_index]);
  197. }
  198. ubDmaTransferStatus = 0;
  199. }
  200. void HAL_ADC_ErrorCallback(ADC_HandleTypeDef * hadc)
  201. {
  202. UNUSED(hadc);
  203. Error_Handler();
  204. }
  205. static void app_draw_callback(Canvas * canvas, void *ctx)
  206. {
  207. UNUSED(ctx);
  208. char buf[50];
  209. snprintf(buf, 50, "Time: %.3f", time);
  210. canvas_draw_str(canvas, 10, 10, buf);
  211. for(uint32_t x = 1; x < ADC_CONVERTED_DATA_BUFFER_SIZE; x++){
  212. uint32_t prev = 64 - (mvoltDisplay[x-1] / (VDDA_APPLI / 64));
  213. uint32_t cur = 64 - (mvoltDisplay[x] / (VDDA_APPLI / 64));
  214. canvas_draw_line(canvas, x - 1, prev, x, cur);
  215. }
  216. canvas_draw_line(canvas, 0, 0, 0, 63);
  217. canvas_draw_line(canvas, 0, 63, 128, 63);
  218. }
  219. static void app_input_callback(InputEvent * input_event, void *ctx)
  220. {
  221. furi_assert(ctx);
  222. FuriMessageQueue *event_queue = ctx;
  223. furi_message_queue_put(event_queue, input_event, FuriWaitForever);
  224. }
  225. void scope_scene_run_widget_callback(
  226. GuiButtonType result,
  227. InputType type,
  228. void* context) {
  229. ScopeApp* app = context;
  230. if(type == InputTypeShort) {
  231. view_dispatcher_send_custom_event(app->view_dispatcher, result);
  232. }
  233. }
  234. void scope_scene_run_on_enter(void* context) {
  235. ScopeApp* app = context;
  236. time = app->time;
  237. UNUSED(app);
  238. __disable_irq();
  239. memcpy(ramVector, (uint32_t*)(FLASH_BASE | SCB->VTOR), sizeof(uint32_t) * TABLE_SIZE);
  240. SCB->VTOR = (uint32_t)ramVector;
  241. ramVector[27] = (uint32_t)DMA1_Channel1_IRQHandler;
  242. ramVector[34] = (uint32_t)ADC1_IRQHandler;
  243. ramVector[44] = (uint32_t)TIM2_IRQHandler;
  244. __enable_irq();
  245. HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
  246. FuriMessageQueue *event_queue = furi_message_queue_alloc(8, sizeof(InputEvent));
  247. uint32_t tmp_index_adc_converted_data = 0;
  248. MX_GPIO_Init();
  249. MX_DMA_Init();
  250. uint32_t period = (uint32_t)((double)HAL_RCC_GetPCLK1Freq() * app->time);
  251. MX_TIM2_Init(period);
  252. VREFBUF->CSR |= VREFBUF_CSR_ENVR;
  253. VREFBUF->CSR &= ~VREFBUF_CSR_HIZ;
  254. VREFBUF->CSR |= VREFBUF_CSR_VRS;
  255. while (!(VREFBUF->CSR & VREFBUF_CSR_VRR)) {
  256. };
  257. MX_ADC1_Init();
  258. for (tmp_index_adc_converted_data = 0;
  259. tmp_index_adc_converted_data < ADC_CONVERTED_DATA_BUFFER_SIZE;
  260. tmp_index_adc_converted_data++) {
  261. aADCxConvertedData[tmp_index_adc_converted_data] =
  262. VAR_CONVERTED_DATA_INIT_VALUE;
  263. }
  264. if (HAL_ADCEx_Calibration_Start(&hadc1, ADC_SINGLE_ENDED) != HAL_OK) {
  265. Error_Handler();
  266. }
  267. if (HAL_TIM_Base_Start(&htim2) != HAL_OK) {
  268. Error_Handler();
  269. }
  270. if (HAL_ADC_Start_DMA(&hadc1, (uint32_t *) aADCxConvertedData, ADC_CONVERTED_DATA_BUFFER_SIZE) != HAL_OK) {
  271. Error_Handler();
  272. }
  273. ViewPort *view_port = view_port_alloc();
  274. view_port_draw_callback_set(view_port, app_draw_callback, view_port);
  275. view_port_input_callback_set(view_port, app_input_callback, event_queue);
  276. // Register view port in GUI
  277. Gui *gui = furi_record_open(RECORD_GUI);
  278. gui_add_view_port(gui, view_port, GuiLayerFullscreen);
  279. InputEvent event;
  280. bool running = true;
  281. while (running) {
  282. if (furi_message_queue_get(event_queue, &event, 100) == FuriStatusOk) {
  283. if ((event.type == InputTypePress) || (event.type == InputTypeRepeat)) {
  284. switch (event.key) {
  285. case InputKeyLeft:
  286. break;
  287. case InputKeyRight:
  288. break;
  289. case InputKeyUp:
  290. break;
  291. case InputKeyDown:
  292. break;
  293. default:
  294. running = false;
  295. break;
  296. }
  297. }
  298. }
  299. view_port_update(view_port);
  300. }
  301. HAL_ADC_Stop_DMA (&hadc1);
  302. __disable_irq();
  303. SCB->VTOR = 0;
  304. __enable_irq();
  305. view_port_enabled_set(view_port, false);
  306. gui_remove_view_port(gui, view_port);
  307. view_port_free(view_port);
  308. furi_record_close(RECORD_GUI);
  309. scene_manager_previous_scene(app->scene_manager);
  310. submenu_set_selected_item(app->submenu, 0);
  311. }
  312. bool scope_scene_run_on_event(void* context, SceneManagerEvent event) {
  313. ScopeApp* app = context;
  314. bool consumed = false;
  315. UNUSED(app);
  316. UNUSED(event);
  317. return consumed;
  318. }
  319. void scope_scene_run_on_exit(void* context) {
  320. ScopeApp* app = context;
  321. // Clear views
  322. widget_reset(app->widget);
  323. }