sam_api.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140
  1. #include "sam_api.h"
  2. #include <toolbox/path.h>
  3. #include <toolbox/version.h>
  4. #include <bit_lib/bit_lib.h>
  5. //#define ASN1_DEBUG true
  6. #define TAG "SAMAPI"
  7. #define ASN1_PREFIX 6
  8. #define SEADER_ICLASS_SR_SIO_BASE_BLOCK 10
  9. #define SEADER_SERIAL_FILE_NAME "sam_serial"
  10. const uint8_t picopass_iclass_key[] = {0xaf, 0xa7, 0x85, 0xa7, 0xda, 0xb3, 0x33, 0x78};
  11. static char display[SEADER_UART_RX_BUF_SIZE * 2 + 1] = {0};
  12. #ifdef ASN1_DEBUG
  13. char asn1_log[SEADER_UART_RX_BUF_SIZE] = {0};
  14. #endif
  15. uint8_t read4Block6[] = {RFAL_PICOPASS_CMD_READ4, 0x06, 0x45, 0x56};
  16. uint8_t read4Block9[] = {RFAL_PICOPASS_CMD_READ4, 0x09, 0xB2, 0xAE};
  17. uint8_t read4Block10[] = {RFAL_PICOPASS_CMD_READ4, 0x0A, 0x29, 0x9C};
  18. uint8_t read4Block13[] = {RFAL_PICOPASS_CMD_READ4, 0x0D, 0x96, 0xE8};
  19. //uint8_t read4Block14[] = {RFAL_PICOPASS_CMD_READ4, 0x0E, 0x0d, 0xda};
  20. uint8_t updateBlock2[] = {RFAL_PICOPASS_CMD_UPDATE, 0x02};
  21. uint8_t ev2_request[] =
  22. {0x00, 0xa4, 0x04, 0x00, 0x0a, 0xa0, 0x00, 0x00, 0x04, 0x40, 0x00, 0x01, 0x01, 0x00, 0x01, 0x00};
  23. uint8_t FILE_NOT_FOUND[] = {0x6a, 0x82};
  24. void* calloc(size_t count, size_t size) {
  25. return malloc(count * size);
  26. }
  27. // Forward declarations
  28. void seader_send_nfc_rx(Seader* seader, uint8_t* buffer, size_t len);
  29. PicopassError seader_worker_fake_epurse_update(BitBuffer* tx_buffer, BitBuffer* rx_buffer) {
  30. const uint8_t* buffer = bit_buffer_get_data(tx_buffer);
  31. uint8_t fake_response[8];
  32. memset(fake_response, 0, sizeof(fake_response));
  33. memcpy(fake_response + 0, buffer + 6, 4);
  34. memcpy(fake_response + 4, buffer + 2, 4);
  35. bit_buffer_append_bytes(rx_buffer, fake_response, sizeof(fake_response));
  36. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  37. memset(display, 0, sizeof(display));
  38. for(uint8_t i = 0; i < bit_buffer_get_size_bytes(rx_buffer); i++) {
  39. snprintf(display + (i * 2), sizeof(display), "%02x", bit_buffer_get_data(rx_buffer)[i]);
  40. }
  41. FURI_LOG_I(TAG, "Fake update E-Purse response: %s", display);
  42. return PicopassErrorNone;
  43. }
  44. void seader_picopass_state_machine(Seader* seader, uint8_t* buffer, size_t len) {
  45. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  46. bit_buffer_append_bytes(tx_buffer, buffer, len);
  47. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  48. uint8_t config[PICOPASS_BLOCK_LEN] = {0x12, 0xff, 0xff, 0xff, 0x7f, 0x1f, 0xff, 0x3c};
  49. uint8_t sr_aia[PICOPASS_BLOCK_LEN] = {0xFF, 0xff, 0xff, 0xff, 0xFF, 0xFf, 0xff, 0xFF};
  50. uint8_t epurse[PICOPASS_BLOCK_LEN] = {0xff, 0xff, 0xff, 0xff, 0xe3, 0xff, 0xff, 0xff};
  51. uint8_t pacs_sr_cfg[PICOPASS_BLOCK_LEN] = {0xA3, 0x03, 0x03, 0x03, 0x00, 0x03, 0xe0, 0x14};
  52. uint8_t zeroes[PICOPASS_BLOCK_LEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
  53. uint8_t tmac[4] = {};
  54. uint8_t cc_p[12] = {};
  55. uint8_t div_key[PICOPASS_BLOCK_LEN] = {};
  56. uint8_t offset; // for READ4
  57. do {
  58. switch(buffer[0]) {
  59. case RFAL_PICOPASS_CMD_READ_OR_IDENTIFY:
  60. if(buffer[1] == AIA_INDEX) {
  61. bit_buffer_append_bytes(rx_buffer, sr_aia, sizeof(sr_aia));
  62. } else if(buffer[1] == PACS_CFG_INDEX) {
  63. bit_buffer_append_bytes(rx_buffer, pacs_sr_cfg, sizeof(pacs_sr_cfg));
  64. } else { // What i've seen is 0c 12
  65. offset = buffer[1] - SEADER_ICLASS_SR_SIO_BASE_BLOCK;
  66. bit_buffer_append_bytes(
  67. rx_buffer,
  68. seader->credential->sio + (PICOPASS_BLOCK_LEN * offset),
  69. PICOPASS_BLOCK_LEN);
  70. }
  71. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  72. break;
  73. case RFAL_PICOPASS_CMD_UPDATE:
  74. seader_worker_fake_epurse_update(tx_buffer, rx_buffer);
  75. break;
  76. case RFAL_PICOPASS_CMD_READCHECK_KD:
  77. if(buffer[1] == EPURSE_INDEX) {
  78. bit_buffer_append_bytes(rx_buffer, epurse, sizeof(epurse));
  79. }
  80. break;
  81. case RFAL_PICOPASS_CMD_CHECK:
  82. loclass_iclass_calc_div_key(
  83. seader->credential->diversifier, picopass_iclass_key, div_key, false);
  84. memcpy(cc_p, epurse, PICOPASS_BLOCK_LEN);
  85. memcpy(cc_p + 8, buffer + 1, PICOPASS_MAC_LEN);
  86. loclass_opt_doTagMAC(cc_p, div_key, tmac);
  87. bit_buffer_append_bytes(rx_buffer, tmac, sizeof(tmac));
  88. break;
  89. case RFAL_PICOPASS_CMD_READ4:
  90. if(buffer[1] < SEADER_ICLASS_SR_SIO_BASE_BLOCK) {
  91. if(buffer[1] == PACS_CFG_INDEX) {
  92. bit_buffer_append_bytes(rx_buffer, pacs_sr_cfg, sizeof(pacs_sr_cfg));
  93. bit_buffer_append_bytes(rx_buffer, zeroes, sizeof(zeroes));
  94. bit_buffer_append_bytes(rx_buffer, zeroes, sizeof(zeroes));
  95. bit_buffer_append_bytes(rx_buffer, zeroes, sizeof(zeroes));
  96. }
  97. } else {
  98. offset = buffer[1] - SEADER_ICLASS_SR_SIO_BASE_BLOCK;
  99. bit_buffer_append_bytes(
  100. rx_buffer,
  101. seader->credential->sio + (PICOPASS_BLOCK_LEN * offset),
  102. PICOPASS_BLOCK_LEN * 4);
  103. }
  104. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  105. break;
  106. case RFAL_PICOPASS_CMD_PAGESEL:
  107. // this should be considered an attempt, but realisticly not working
  108. bit_buffer_append_bytes(rx_buffer, config, sizeof(config));
  109. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  110. break;
  111. }
  112. seader_send_nfc_rx(
  113. seader,
  114. (uint8_t*)bit_buffer_get_data(rx_buffer),
  115. bit_buffer_get_size_bytes(rx_buffer));
  116. } while(false);
  117. bit_buffer_free(tx_buffer);
  118. bit_buffer_free(rx_buffer);
  119. }
  120. uint8_t APDU_HEADER_LEN = 5;
  121. bool seader_send_apdu(
  122. Seader* seader,
  123. uint8_t CLA,
  124. uint8_t INS,
  125. uint8_t P1,
  126. uint8_t P2,
  127. uint8_t* payload,
  128. uint8_t payloadLen) {
  129. SeaderWorker* seader_worker = seader->worker;
  130. SeaderUartBridge* seader_uart = seader_worker->uart;
  131. if(seader_uart->T == 1) {
  132. APDU_HEADER_LEN = 7;
  133. }
  134. if(APDU_HEADER_LEN + payloadLen > SEADER_UART_RX_BUF_SIZE) {
  135. FURI_LOG_E(TAG, "Cannot send message, too long: %d", APDU_HEADER_LEN + payloadLen);
  136. return false;
  137. }
  138. uint8_t length = APDU_HEADER_LEN + payloadLen;
  139. uint8_t* apdu = malloc(length);
  140. if(!apdu) {
  141. FURI_LOG_E(TAG, "Failed to allocate memory for apdu in seader_send_apdu");
  142. return false;
  143. }
  144. apdu[0] = CLA;
  145. apdu[1] = INS;
  146. apdu[2] = P1;
  147. apdu[3] = P2;
  148. if(seader_uart->T == 1) {
  149. apdu[4] = 0x00;
  150. apdu[5] = 0x00;
  151. apdu[6] = payloadLen;
  152. } else {
  153. apdu[4] = payloadLen;
  154. }
  155. memcpy(apdu + APDU_HEADER_LEN, payload, payloadLen);
  156. memset(display, 0, sizeof(display));
  157. for(uint8_t i = 0; i < length; i++) {
  158. snprintf(display + (i * 2), sizeof(display), "%02x", apdu[i]);
  159. }
  160. FURI_LOG_D(TAG, "seader_send_apdu %s", display);
  161. if(seader_uart->T == 1) {
  162. seader_send_t1(seader_uart, apdu, length);
  163. } else {
  164. seader_ccid_XfrBlock(seader_uart, apdu, length);
  165. }
  166. free(apdu);
  167. return true;
  168. }
  169. #ifdef ASN1_DEBUG
  170. static int seader_print_struct_callback(const void* buffer, size_t size, void* app_key) {
  171. if(app_key) {
  172. char* str = (char*)app_key;
  173. size_t next = strlen(str);
  174. strncpy(str + next, buffer, size);
  175. } else {
  176. uint8_t next = strlen(asn1_log);
  177. strncpy(asn1_log + next, buffer, size);
  178. }
  179. return 0;
  180. }
  181. #else
  182. static int seader_print_struct_callback(const void* buffer, size_t size, void* app_key) {
  183. UNUSED(buffer);
  184. UNUSED(size);
  185. UNUSED(app_key);
  186. return 0;
  187. }
  188. #endif
  189. void seader_send_payload(
  190. Seader* seader,
  191. Payload_t* payload,
  192. uint8_t to,
  193. uint8_t from,
  194. uint8_t replyTo) {
  195. uint8_t rBuffer[SEADER_UART_RX_BUF_SIZE] = {0};
  196. asn_enc_rval_t er = der_encode_to_buffer(
  197. &asn_DEF_Payload, payload, rBuffer + ASN1_PREFIX, sizeof(rBuffer) - ASN1_PREFIX);
  198. #ifdef ASN1_DEBUG
  199. if(er.encoded > -1) {
  200. char payloadDebug[1024] = {0};
  201. memset(payloadDebug, 0, sizeof(payloadDebug));
  202. (&asn_DEF_Payload)
  203. ->op->print_struct(
  204. &asn_DEF_Payload, payload, 1, seader_print_struct_callback, payloadDebug);
  205. if(strlen(payloadDebug) > 0) {
  206. FURI_LOG_D(TAG, "Sending payload[%d %d %d]: %s", to, from, replyTo, payloadDebug);
  207. }
  208. } else {
  209. FURI_LOG_W(TAG, "Failed to print_struct payload");
  210. }
  211. #endif
  212. //0xa0, 0xda, 0x02, 0x63, 0x00, 0x00, 0x0a,
  213. //0x44, 0x0a, 0x44, 0x00, 0x00, 0x00, 0xa0, 0x02, 0x96, 0x00
  214. rBuffer[0] = to;
  215. rBuffer[1] = from;
  216. rBuffer[2] = replyTo;
  217. seader_send_apdu(seader, 0xA0, 0xDA, 0x02, 0x63, rBuffer, 6 + er.encoded);
  218. }
  219. void seader_send_response(
  220. Seader* seader,
  221. Response_t* response,
  222. uint8_t to,
  223. uint8_t from,
  224. uint8_t replyTo) {
  225. Payload_t* payload = 0;
  226. payload = calloc(1, sizeof *payload);
  227. assert(payload);
  228. payload->present = Payload_PR_response;
  229. payload->choice.response = *response;
  230. seader_send_payload(seader, payload, to, from, replyTo);
  231. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  232. }
  233. void seader_send_request_pacs(Seader* seader) {
  234. RequestPacs_t* requestPacs = 0;
  235. requestPacs = calloc(1, sizeof *requestPacs);
  236. assert(requestPacs);
  237. requestPacs->contentElementTag = ContentElementTag_implicitFormatPhysicalAccessBits;
  238. SamCommand_t* samCommand = 0;
  239. samCommand = calloc(1, sizeof *samCommand);
  240. assert(samCommand);
  241. samCommand->present = SamCommand_PR_requestPacs;
  242. seader->samCommand = samCommand->present;
  243. samCommand->choice.requestPacs = *requestPacs;
  244. Payload_t* payload = 0;
  245. payload = calloc(1, sizeof *payload);
  246. assert(payload);
  247. payload->present = Payload_PR_samCommand;
  248. payload->choice.samCommand = *samCommand;
  249. seader_send_payload(seader, payload, 0x44, 0x0a, 0x44);
  250. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  251. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  252. ASN_STRUCT_FREE(asn_DEF_RequestPacs, requestPacs);
  253. }
  254. void seader_worker_send_serial_number(Seader* seader) {
  255. SamCommand_t* samCommand = 0;
  256. samCommand = calloc(1, sizeof *samCommand);
  257. assert(samCommand);
  258. samCommand->present = SamCommand_PR_serialNumber;
  259. seader->samCommand = samCommand->present;
  260. Payload_t* payload = 0;
  261. payload = calloc(1, sizeof *payload);
  262. assert(payload);
  263. payload->present = Payload_PR_samCommand;
  264. payload->choice.samCommand = *samCommand;
  265. seader_send_payload(seader, payload, 0x44, 0x0a, 0x44);
  266. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  267. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  268. }
  269. void seader_worker_send_version(Seader* seader) {
  270. SamCommand_t* samCommand = 0;
  271. samCommand = calloc(1, sizeof *samCommand);
  272. assert(samCommand);
  273. samCommand->present = SamCommand_PR_version;
  274. seader->samCommand = samCommand->present;
  275. Payload_t* payload = 0;
  276. payload = calloc(1, sizeof *payload);
  277. assert(payload);
  278. payload->present = Payload_PR_samCommand;
  279. payload->choice.samCommand = *samCommand;
  280. seader_send_payload(seader, payload, 0x44, 0x0a, 0x44);
  281. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  282. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  283. }
  284. void seader_send_card_detected(Seader* seader, CardDetails_t* cardDetails) {
  285. CardDetected_t* cardDetected = 0;
  286. cardDetected = calloc(1, sizeof *cardDetected);
  287. assert(cardDetected);
  288. cardDetected->detectedCardDetails = *cardDetails;
  289. SamCommand_t* samCommand = 0;
  290. samCommand = calloc(1, sizeof *samCommand);
  291. assert(samCommand);
  292. samCommand->present = SamCommand_PR_cardDetected;
  293. seader->samCommand = samCommand->present;
  294. samCommand->choice.cardDetected = *cardDetected;
  295. Payload_t* payload = 0;
  296. payload = calloc(1, sizeof *payload);
  297. assert(payload);
  298. payload->present = Payload_PR_samCommand;
  299. payload->choice.samCommand = *samCommand;
  300. seader_send_payload(seader, payload, 0x44, 0x0a, 0x44);
  301. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  302. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  303. ASN_STRUCT_FREE(asn_DEF_CardDetected, cardDetected);
  304. }
  305. bool seader_unpack_pacs(Seader* seader, uint8_t* buf, size_t size) {
  306. SeaderCredential* seader_credential = seader->credential;
  307. PAC_t* pac = 0;
  308. pac = calloc(1, sizeof *pac);
  309. assert(pac);
  310. bool rtn = false;
  311. asn_dec_rval_t rval = asn_decode(0, ATS_DER, &asn_DEF_PAC, (void**)&pac, buf, size);
  312. if(rval.code == RC_OK) {
  313. char pacDebug[384] = {0};
  314. (&asn_DEF_PAC)
  315. ->op->print_struct(&asn_DEF_PAC, pac, 1, seader_print_struct_callback, pacDebug);
  316. if(strlen(pacDebug) > 0) {
  317. FURI_LOG_D(TAG, "Received pac: %s", pacDebug);
  318. }
  319. memset(display, 0, sizeof(display));
  320. if(seader_credential->sio[0] == 0x30) {
  321. for(uint8_t i = 0; i < seader_credential->sio_len; i++) {
  322. snprintf(display + (i * 2), sizeof(display), "%02x", seader_credential->sio[i]);
  323. }
  324. FURI_LOG_D(TAG, "SIO %s", display);
  325. }
  326. if(pac->size <= sizeof(seader_credential->credential)) {
  327. // TODO: make credential into a 12 byte array
  328. seader_credential->bit_length = pac->size * 8 - pac->bits_unused;
  329. memcpy(&seader_credential->credential, pac->buf, pac->size);
  330. seader_credential->credential = __builtin_bswap64(seader_credential->credential);
  331. seader_credential->credential = seader_credential->credential >>
  332. (64 - seader_credential->bit_length);
  333. FURI_LOG_D(
  334. TAG,
  335. "credential (%d) %016llx",
  336. seader_credential->bit_length,
  337. seader_credential->credential);
  338. rtn = true;
  339. } else {
  340. // PACS too big (probably bad data)
  341. view_dispatcher_send_custom_event(
  342. seader->view_dispatcher, SeaderCustomEventWorkerExit);
  343. }
  344. }
  345. ASN_STRUCT_FREE(asn_DEF_PAC, pac);
  346. return rtn;
  347. }
  348. // 800201298106683d052026b6820101
  349. //300F800201298106683D052026B6820101
  350. bool seader_parse_version(SeaderWorker* seader_worker, uint8_t* buf, size_t size) {
  351. bool rtn = false;
  352. if(size > 30) {
  353. // Too large to handle now
  354. FURI_LOG_W(TAG, "Version of %d is to long to parse", size);
  355. return false;
  356. }
  357. SamVersion_t* version = 0;
  358. version = calloc(1, sizeof *version);
  359. assert(version);
  360. // Add sequence prefix
  361. uint8_t seq[32] = {0x30};
  362. seq[1] = (uint8_t)size;
  363. memcpy(seq + 2, buf, size);
  364. asn_dec_rval_t rval =
  365. asn_decode(0, ATS_DER, &asn_DEF_SamVersion, (void**)&version, seq, size + 2);
  366. if(rval.code == RC_OK) {
  367. char versionDebug[128] = {0};
  368. (&asn_DEF_SamVersion)
  369. ->op->print_struct(
  370. &asn_DEF_SamVersion, version, 1, seader_print_struct_callback, versionDebug);
  371. if(strlen(versionDebug) > 0) {
  372. FURI_LOG_D(TAG, "Received version: %s", versionDebug);
  373. }
  374. if(version->version.size == 2) {
  375. memcpy(seader_worker->sam_version, version->version.buf, version->version.size);
  376. }
  377. rtn = true;
  378. }
  379. ASN_STRUCT_FREE(asn_DEF_SamVersion, version);
  380. return rtn;
  381. }
  382. bool seader_sam_save_serial(Seader* seader, uint8_t* buf, size_t size) {
  383. SeaderCredential* cred = seader->credential;
  384. const char* file_header = "SAM Serial Number";
  385. const uint32_t file_version = 1;
  386. bool use_load_path = true;
  387. bool saved = false;
  388. FlipperFormat* file = flipper_format_file_alloc(cred->storage);
  389. FuriString* temp_str;
  390. temp_str = furi_string_alloc();
  391. do {
  392. if(use_load_path && !furi_string_empty(cred->load_path)) {
  393. // Get directory name
  394. path_extract_dirname(furi_string_get_cstr(cred->load_path), temp_str);
  395. // Make path to file to save
  396. furi_string_cat_printf(temp_str, "/%s%s", SEADER_SERIAL_FILE_NAME, ".txt");
  397. } else {
  398. furi_string_printf(
  399. temp_str, "%s/%s%s", STORAGE_APP_DATA_PATH_PREFIX, SEADER_SERIAL_FILE_NAME, ".txt");
  400. }
  401. // Open file
  402. if(!flipper_format_file_open_always(file, furi_string_get_cstr(temp_str))) break;
  403. if(!flipper_format_write_header_cstr(file, file_header, file_version)) break;
  404. if(!flipper_format_write_hex(file, "Chip Serial Number", buf, size)) break;
  405. saved = true;
  406. } while(false);
  407. if(!saved) {
  408. dialog_message_show_storage_error(cred->dialogs, "Can not save\nserial file");
  409. }
  410. furi_string_free(temp_str);
  411. flipper_format_free(file);
  412. return saved;
  413. }
  414. bool seader_sam_save_serial_QR(Seader* seader, char* serial) {
  415. SeaderCredential* cred = seader->credential;
  416. const char* file_header = "QRCode";
  417. const uint32_t file_version = 0;
  418. bool saved = false;
  419. FlipperFormat* file = flipper_format_file_alloc(cred->storage);
  420. FuriString* temp_str;
  421. temp_str = furi_string_alloc();
  422. do {
  423. storage_simply_mkdir(cred->storage, EXT_PATH("qrcodes"));
  424. furi_string_printf(
  425. temp_str, "%s/%s%s", EXT_PATH("qrcodes"), "seader_sam_serial", ".qrcode");
  426. // Open file
  427. if(!flipper_format_file_open_always(file, furi_string_get_cstr(temp_str))) break;
  428. if(!flipper_format_write_header_cstr(file, file_header, file_version)) break;
  429. if(!flipper_format_write_string_cstr(file, "Message", serial)) break;
  430. saved = true;
  431. } while(false);
  432. if(!saved) {
  433. dialog_message_show_storage_error(cred->dialogs, "Can not save\nQR file");
  434. }
  435. furi_string_free(temp_str);
  436. flipper_format_free(file);
  437. return saved;
  438. }
  439. bool seader_parse_serial_number(Seader* seader, uint8_t* buf, size_t size) {
  440. memset(display, 0, sizeof(display));
  441. for(uint8_t i = 0; i < size; i++) {
  442. snprintf(display + (i * 2), sizeof(display), "%02x", buf[i]);
  443. }
  444. FURI_LOG_D(TAG, "Received serial: %s", display);
  445. seader_sam_save_serial_QR(seader, display);
  446. return seader_sam_save_serial(seader, buf, size);
  447. }
  448. bool seader_parse_sam_response(Seader* seader, SamResponse_t* samResponse) {
  449. SeaderWorker* seader_worker = seader->worker;
  450. switch(seader->samCommand) {
  451. case SamCommand_PR_requestPacs:
  452. FURI_LOG_I(TAG, "samResponse SamCommand_PR_requestPacs");
  453. seader_unpack_pacs(seader, samResponse->buf, samResponse->size);
  454. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventPollerSuccess);
  455. seader->samCommand = SamCommand_PR_NOTHING;
  456. break;
  457. case SamCommand_PR_version:
  458. FURI_LOG_I(TAG, "samResponse SamCommand_PR_version");
  459. seader_parse_version(seader_worker, samResponse->buf, samResponse->size);
  460. seader_worker_send_serial_number(seader);
  461. break;
  462. case SamCommand_PR_serialNumber:
  463. FURI_LOG_I(TAG, "samResponse SamCommand_PR_serialNumber");
  464. seader_parse_serial_number(seader, samResponse->buf, samResponse->size);
  465. seader->samCommand = SamCommand_PR_NOTHING;
  466. break;
  467. case SamCommand_PR_cardDetected:
  468. FURI_LOG_I(TAG, "samResponse SamCommand_PR_cardDetected");
  469. seader_send_request_pacs(seader);
  470. break;
  471. case SamCommand_PR_NOTHING:
  472. FURI_LOG_I(TAG, "samResponse SamCommand_PR_NOTHING");
  473. memset(display, 0, sizeof(display));
  474. for(uint8_t i = 0; i < samResponse->size; i++) {
  475. snprintf(display + (i * 2), sizeof(display), "%02x", samResponse->buf[i]);
  476. }
  477. FURI_LOG_I(TAG, "Unknown samResponse %d: %s", samResponse->size, display);
  478. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventWorkerExit);
  479. break;
  480. }
  481. return false;
  482. }
  483. bool seader_parse_response(Seader* seader, Response_t* response) {
  484. switch(response->present) {
  485. case Response_PR_samResponse:
  486. seader_parse_sam_response(seader, &response->choice.samResponse);
  487. break;
  488. default:
  489. FURI_LOG_D(TAG, "non-sam response");
  490. break;
  491. };
  492. return false;
  493. }
  494. void seader_send_nfc_rx(Seader* seader, uint8_t* buffer, size_t len) {
  495. OCTET_STRING_t rxData = {.buf = buffer, .size = len};
  496. uint8_t status[] = {0x00, 0x00};
  497. RfStatus_t rfStatus = {.buf = status, .size = 2};
  498. NFCRx_t* nfcRx = 0;
  499. nfcRx = calloc(1, sizeof *nfcRx);
  500. assert(nfcRx);
  501. nfcRx->rfStatus = rfStatus;
  502. nfcRx->data = &rxData;
  503. NFCResponse_t* nfcResponse = 0;
  504. nfcResponse = calloc(1, sizeof *nfcResponse);
  505. assert(nfcResponse);
  506. nfcResponse->present = NFCResponse_PR_nfcRx;
  507. nfcResponse->choice.nfcRx = *nfcRx;
  508. Response_t* response = 0;
  509. response = calloc(1, sizeof *response);
  510. assert(response);
  511. response->present = Response_PR_nfcResponse;
  512. response->choice.nfcResponse = *nfcResponse;
  513. seader_send_response(seader, response, 0x14, 0x0a, 0x0);
  514. ASN_STRUCT_FREE(asn_DEF_NFCRx, nfcRx);
  515. ASN_STRUCT_FREE(asn_DEF_NFCResponse, nfcResponse);
  516. ASN_STRUCT_FREE(asn_DEF_Response, response);
  517. }
  518. void seader_capture_sio(BitBuffer* tx_buffer, BitBuffer* rx_buffer, SeaderCredential* credential) {
  519. const uint8_t* buffer = bit_buffer_get_data(tx_buffer);
  520. size_t len = bit_buffer_get_size_bytes(tx_buffer);
  521. const uint8_t* rxBuffer = bit_buffer_get_data(rx_buffer);
  522. if(credential->type == SeaderCredentialTypePicopass) {
  523. if(memcmp(buffer, read4Block6, len) == 0 && rxBuffer[0] == 0x30) {
  524. memcpy(credential->sio, rxBuffer, 32);
  525. credential->sio_len += 32;
  526. } else if(memcmp(buffer, read4Block10, len) == 0 && rxBuffer[0] == 0x30) {
  527. memcpy(credential->sio, rxBuffer, 32);
  528. credential->sio_len += 32;
  529. } else if(memcmp(buffer, read4Block9, len) == 0) {
  530. memcpy(credential->sio + 32, rxBuffer + 8, 24);
  531. credential->sio_len += 24;
  532. } else if(memcmp(buffer, read4Block13, len) == 0) {
  533. memcpy(credential->sio + 32, rxBuffer + 8, 24);
  534. credential->sio_len += 24;
  535. }
  536. } else if(credential->type == SeaderCredentialType14A) {
  537. // Desfire EV1 passes SIO in the clear
  538. uint8_t desfire_read[] = {
  539. 0x90, 0xbd, 0x00, 0x00, 0x07, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
  540. if(memcmp(buffer, desfire_read, len) == 0 && rxBuffer[0] == 0x30) {
  541. credential->sio_len =
  542. bit_buffer_get_size_bytes(rx_buffer) - 2; // -2 for the APDU response bytes
  543. memcpy(credential->sio, rxBuffer, credential->sio_len);
  544. }
  545. }
  546. }
  547. void seader_iso15693_transmit(
  548. Seader* seader,
  549. PicopassPoller* picopass_poller,
  550. uint8_t* buffer,
  551. size_t len) {
  552. SeaderWorker* seader_worker = seader->worker;
  553. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  554. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  555. PicopassError error = PicopassErrorNone;
  556. do {
  557. bit_buffer_append_bytes(tx_buffer, buffer, len);
  558. if(memcmp(buffer, updateBlock2, sizeof(updateBlock2)) == 0) {
  559. error = seader_worker_fake_epurse_update(tx_buffer, rx_buffer);
  560. } else {
  561. error = picopass_poller_send_frame(
  562. picopass_poller, tx_buffer, rx_buffer, SEADER_POLLER_MAX_FWT);
  563. }
  564. if(error == PicopassErrorIncorrectCrc) {
  565. error = PicopassErrorNone;
  566. }
  567. if(error != PicopassErrorNone) {
  568. seader_worker->stage = SeaderPollerEventTypeFail;
  569. break;
  570. }
  571. seader_capture_sio(tx_buffer, rx_buffer, seader->credential);
  572. seader_send_nfc_rx(
  573. seader,
  574. (uint8_t*)bit_buffer_get_data(rx_buffer),
  575. bit_buffer_get_size_bytes(rx_buffer));
  576. } while(false);
  577. bit_buffer_free(tx_buffer);
  578. bit_buffer_free(rx_buffer);
  579. }
  580. /* Assumes this is called in the context of the NFC API callback */
  581. void seader_iso14443a_transmit(
  582. Seader* seader,
  583. Iso14443_4aPoller* iso14443_4a_poller,
  584. uint8_t* buffer,
  585. size_t len,
  586. uint16_t timeout,
  587. uint8_t format[3]) {
  588. UNUSED(timeout);
  589. UNUSED(format);
  590. furi_assert(seader);
  591. furi_assert(buffer);
  592. furi_assert(iso14443_4a_poller);
  593. SeaderWorker* seader_worker = seader->worker;
  594. SeaderCredential* credential = seader->credential;
  595. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  596. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  597. do {
  598. if(credential->isDesfire && memcmp(buffer, ev2_request, len) == 0) {
  599. FURI_LOG_I(TAG, "Intercept Desfire EV2 response and return File Not Found");
  600. bit_buffer_append_bytes(rx_buffer, FILE_NOT_FOUND, sizeof(FILE_NOT_FOUND));
  601. } else {
  602. bit_buffer_append_bytes(tx_buffer, buffer, len);
  603. Iso14443_4aError error =
  604. iso14443_4a_poller_send_block(iso14443_4a_poller, tx_buffer, rx_buffer);
  605. if(error != Iso14443_4aErrorNone) {
  606. FURI_LOG_W(TAG, "iso14443_4a_poller_send_block error %d", error);
  607. seader_worker->stage = SeaderPollerEventTypeFail;
  608. break;
  609. }
  610. }
  611. seader_capture_sio(tx_buffer, rx_buffer, credential);
  612. seader_send_nfc_rx(
  613. seader,
  614. (uint8_t*)bit_buffer_get_data(rx_buffer),
  615. bit_buffer_get_size_bytes(rx_buffer));
  616. } while(false);
  617. bit_buffer_free(tx_buffer);
  618. bit_buffer_free(rx_buffer);
  619. }
  620. /* Assumes this is called in the context of the NFC API callback */
  621. #define MF_CLASSIC_FWT_FC (60000)
  622. void seader_mfc_transmit(
  623. Seader* seader,
  624. MfClassicPoller* mfc_poller,
  625. uint8_t* buffer,
  626. size_t len,
  627. uint16_t timeout,
  628. uint8_t format[3]) {
  629. UNUSED(timeout);
  630. furi_assert(seader);
  631. furi_assert(buffer);
  632. furi_assert(mfc_poller);
  633. SeaderWorker* seader_worker = seader->worker;
  634. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  635. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  636. do {
  637. if(format[0] == 0x00 && format[1] == 0xC0 && format[2] == 0x00) {
  638. bit_buffer_append_bytes(tx_buffer, buffer, len);
  639. MfClassicError error =
  640. mf_classic_poller_send_frame(mfc_poller, tx_buffer, rx_buffer, MF_CLASSIC_FWT_FC);
  641. if(error != MfClassicErrorNone) {
  642. FURI_LOG_W(TAG, "mf_classic_poller_send_frame error %d", error);
  643. seader_worker->stage = SeaderPollerEventTypeFail;
  644. break;
  645. }
  646. } else if(
  647. (format[0] == 0x00 && format[1] == 0x00 && format[2] == 0x40) ||
  648. (format[0] == 0x00 && format[1] == 0x00 && format[2] == 0x24) ||
  649. (format[0] == 0x00 && format[1] == 0x00 && format[2] == 0x44)) {
  650. memset(display, 0, sizeof(display));
  651. for(uint8_t i = 0; i < len; i++) {
  652. snprintf(display + (i * 2), sizeof(display), "%02x", buffer[i]);
  653. }
  654. FURI_LOG_D(TAG, "NFC Send with parity %d: %s", len, display);
  655. // Only handles message up to 8 data bytes
  656. uint8_t tx_parity = 0;
  657. uint8_t len_without_parity = len - 1;
  658. // Don't forget to swap the bits of buffer[8]
  659. for(size_t i = 0; i < len; i++) {
  660. bit_lib_reverse_bits(buffer + i, 0, 8);
  661. }
  662. // Pull out parity bits
  663. for(size_t i = 0; i < len_without_parity; i++) {
  664. bool val = bit_lib_get_bit(buffer + i + 1, i);
  665. bit_lib_set_bit(&tx_parity, i, val);
  666. }
  667. for(size_t i = 0; i < len_without_parity; i++) {
  668. buffer[i] = (buffer[i] << i) | (buffer[i + 1] >> (8 - i));
  669. }
  670. bit_buffer_append_bytes(tx_buffer, buffer, len_without_parity);
  671. for(size_t i = 0; i < len_without_parity; i++) {
  672. bit_lib_reverse_bits(buffer + i, 0, 8);
  673. bit_buffer_set_byte_with_parity(
  674. tx_buffer, i, buffer[i], bit_lib_get_bit(&tx_parity, i));
  675. }
  676. memset(display, 0, sizeof(display));
  677. for(uint8_t i = 0; i < bit_buffer_get_size_bytes(tx_buffer); i++) {
  678. snprintf(
  679. display + (i * 2), sizeof(display), "%02x", bit_buffer_get_byte(tx_buffer, i));
  680. }
  681. FURI_LOG_D(
  682. TAG,
  683. "NFC Send without parity %d: %s [%02x]",
  684. bit_buffer_get_size_bytes(tx_buffer),
  685. display,
  686. tx_parity);
  687. MfClassicError error = mf_classic_poller_send_custom_parity_frame(
  688. mfc_poller, tx_buffer, rx_buffer, MF_CLASSIC_FWT_FC);
  689. if(error != MfClassicErrorNone) {
  690. FURI_LOG_W(TAG, "mf_classic_poller_send_encrypted_frame error %d", error);
  691. seader_worker->stage = SeaderPollerEventTypeFail;
  692. break;
  693. }
  694. size_t length = bit_buffer_get_size_bytes(rx_buffer);
  695. const uint8_t* rx_parity = bit_buffer_get_parity(rx_buffer);
  696. memset(display, 0, sizeof(display));
  697. for(uint8_t i = 0; i < length; i++) {
  698. snprintf(
  699. display + (i * 2), sizeof(display), "%02x", bit_buffer_get_byte(rx_buffer, i));
  700. }
  701. FURI_LOG_D(
  702. TAG, "NFC Response without parity %d: %s [%02x]", length, display, rx_parity[0]);
  703. uint8_t with_parity[SEADER_POLLER_MAX_BUFFER_SIZE];
  704. memset(with_parity, 0, sizeof(with_parity));
  705. for(size_t i = 0; i < length; i++) {
  706. uint8_t b = bit_buffer_get_byte(rx_buffer, i);
  707. bit_lib_reverse_bits(&b, 0, 8);
  708. bit_buffer_set_byte(rx_buffer, i, b);
  709. }
  710. length = length + (length / 8) + 1;
  711. uint8_t parts = 1 + length / 9;
  712. for(size_t p = 0; p < parts; p++) {
  713. uint8_t doffset = p * 9;
  714. uint8_t soffset = p * 8;
  715. for(size_t i = 0; i < 9; i++) {
  716. with_parity[i + doffset] = bit_buffer_get_byte(rx_buffer, i + soffset) >> i;
  717. if(i > 0) {
  718. with_parity[i + doffset] |= bit_buffer_get_byte(rx_buffer, i + soffset - 1)
  719. << (9 - i);
  720. }
  721. if(i > 0) {
  722. bool val = bit_lib_get_bit(rx_parity, i - 1);
  723. bit_lib_set_bit(with_parity + i, i - 1, val);
  724. }
  725. }
  726. }
  727. for(size_t i = 0; i < length; i++) {
  728. bit_lib_reverse_bits(with_parity + i, 0, 8);
  729. }
  730. bit_buffer_copy_bytes(rx_buffer, with_parity, length);
  731. memset(display, 0, sizeof(display));
  732. for(uint8_t i = 0; i < length; i++) {
  733. snprintf(
  734. display + (i * 2), sizeof(display), "%02x", bit_buffer_get_byte(rx_buffer, i));
  735. }
  736. FURI_LOG_D(
  737. TAG, "NFC Response with parity %d: %s [%02x]", length, display, rx_parity[0]);
  738. } else {
  739. FURI_LOG_W(TAG, "UNHANDLED FORMAT");
  740. }
  741. seader_send_nfc_rx(
  742. seader,
  743. (uint8_t*)bit_buffer_get_data(rx_buffer),
  744. bit_buffer_get_size_bytes(rx_buffer));
  745. } while(false);
  746. bit_buffer_free(tx_buffer);
  747. bit_buffer_free(rx_buffer);
  748. }
  749. void seader_parse_nfc_command_transmit(
  750. Seader* seader,
  751. NFCSend_t* nfcSend,
  752. SeaderPollerContainer* spc) {
  753. long timeOut = nfcSend->timeOut;
  754. Protocol_t protocol = nfcSend->protocol;
  755. FrameProtocol_t frameProtocol = protocol.buf[1];
  756. #ifdef ASN1_DEBUG
  757. memset(display, 0, sizeof(display));
  758. for(uint8_t i = 0; i < nfcSend->data.size; i++) {
  759. snprintf(display + (i * 2), sizeof(display), "%02x", nfcSend->data.buf[i]);
  760. }
  761. FURI_LOG_D(
  762. TAG,
  763. "Transmit (%ld timeout) %d bytes [%s] via %lx",
  764. timeOut,
  765. nfcSend->data.size,
  766. display,
  767. frameProtocol);
  768. #endif
  769. if(seader->credential->type == SeaderCredentialTypeVirtual) {
  770. seader_picopass_state_machine(seader, nfcSend->data.buf, nfcSend->data.size);
  771. } else if(frameProtocol == FrameProtocol_iclass) {
  772. seader_iso15693_transmit(
  773. seader, spc->picopass_poller, nfcSend->data.buf, nfcSend->data.size);
  774. } else if(frameProtocol == FrameProtocol_nfc) {
  775. if(spc->iso14443_4a_poller) {
  776. seader_iso14443a_transmit(
  777. seader,
  778. spc->iso14443_4a_poller,
  779. nfcSend->data.buf,
  780. nfcSend->data.size,
  781. (uint16_t)timeOut,
  782. nfcSend->format->buf);
  783. } else if(spc->mfc_poller) {
  784. seader_mfc_transmit(
  785. seader,
  786. spc->mfc_poller,
  787. nfcSend->data.buf,
  788. nfcSend->data.size,
  789. (uint16_t)timeOut,
  790. nfcSend->format->buf);
  791. }
  792. } else {
  793. FURI_LOG_W(TAG, "unknown frame protocol %lx", frameProtocol);
  794. }
  795. }
  796. void seader_parse_nfc_off(Seader* seader) {
  797. FURI_LOG_D(TAG, "Set Field Off");
  798. NFCResponse_t* nfcResponse = 0;
  799. nfcResponse = calloc(1, sizeof *nfcResponse);
  800. assert(nfcResponse);
  801. nfcResponse->present = NFCResponse_PR_nfcAck;
  802. Response_t* response = 0;
  803. response = calloc(1, sizeof *response);
  804. assert(response);
  805. response->present = Response_PR_nfcResponse;
  806. response->choice.nfcResponse = *nfcResponse;
  807. seader_send_response(seader, response, 0x44, 0x0a, 0);
  808. free(response);
  809. free(nfcResponse);
  810. }
  811. void seader_parse_nfc_command(Seader* seader, NFCCommand_t* nfcCommand, SeaderPollerContainer* spc) {
  812. switch(nfcCommand->present) {
  813. case NFCCommand_PR_nfcSend:
  814. seader_parse_nfc_command_transmit(seader, &nfcCommand->choice.nfcSend, spc);
  815. break;
  816. case NFCCommand_PR_nfcOff:
  817. seader_parse_nfc_off(seader);
  818. seader->worker->stage = SeaderPollerEventTypeComplete;
  819. break;
  820. default:
  821. FURI_LOG_W(TAG, "unparsed NFCCommand");
  822. break;
  823. };
  824. }
  825. bool seader_worker_state_machine(
  826. Seader* seader,
  827. Payload_t* payload,
  828. bool online,
  829. SeaderPollerContainer* spc) {
  830. bool processed = false;
  831. switch(payload->present) {
  832. case Payload_PR_response:
  833. FURI_LOG_D(TAG, "Payload_PR_response");
  834. seader_parse_response(seader, &payload->choice.response);
  835. processed = true;
  836. break;
  837. case Payload_PR_nfcCommand:
  838. FURI_LOG_D(TAG, "Payload_PR_nfcCommand");
  839. if(online) {
  840. seader_parse_nfc_command(seader, &payload->choice.nfcCommand, spc);
  841. processed = true;
  842. }
  843. break;
  844. case Payload_PR_errorResponse:
  845. FURI_LOG_W(TAG, "Payload_PR_errorResponse");
  846. processed = true;
  847. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventWorkerExit);
  848. break;
  849. default:
  850. FURI_LOG_W(TAG, "unhandled payload");
  851. break;
  852. };
  853. return processed;
  854. }
  855. bool seader_process_success_response_i(
  856. Seader* seader,
  857. uint8_t* apdu,
  858. size_t len,
  859. bool online,
  860. SeaderPollerContainer* spc) {
  861. Payload_t* payload = 0;
  862. payload = calloc(1, sizeof *payload);
  863. assert(payload);
  864. bool processed = false;
  865. asn_dec_rval_t rval =
  866. asn_decode(0, ATS_DER, &asn_DEF_Payload, (void**)&payload, apdu + 6, len - 6);
  867. if(rval.code == RC_OK) {
  868. #ifdef ASN1_DEBUG
  869. if(online == false) {
  870. memset(display, 0, sizeof(display));
  871. for(uint8_t i = 0; i < len - 6; i++) {
  872. snprintf(display + (i * 2), sizeof(display), "%02x", apdu[i + 6]);
  873. }
  874. FURI_LOG_D(TAG, "incoming APDU %s", display);
  875. char payloadDebug[384] = {0};
  876. memset(payloadDebug, 0, sizeof(payloadDebug));
  877. (&asn_DEF_Payload)
  878. ->op->print_struct(
  879. &asn_DEF_Payload, payload, 1, seader_print_struct_callback, payloadDebug);
  880. if(strlen(payloadDebug) > 0) {
  881. FURI_LOG_D(TAG, "Received Payload: %s", payloadDebug);
  882. } else {
  883. FURI_LOG_D(TAG, "Received empty Payload");
  884. }
  885. } else {
  886. FURI_LOG_D(TAG, "Online mode");
  887. }
  888. #endif
  889. processed = seader_worker_state_machine(seader, payload, online, spc);
  890. } else {
  891. memset(display, 0, sizeof(display));
  892. for(uint8_t i = 0; i < len; i++) {
  893. snprintf(display + (i * 2), sizeof(display), "%02x", apdu[i]);
  894. }
  895. FURI_LOG_D(TAG, "Failed to decode APDU payload: [%s]", display);
  896. }
  897. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  898. return processed;
  899. }
  900. bool seader_mf_df_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
  901. return ATQA0 == 0x44 && ATQA1 == 0x03 && SAK == 0x20;
  902. }
  903. NfcCommand seader_worker_card_detect(
  904. Seader* seader,
  905. uint8_t sak,
  906. uint8_t* atqa,
  907. const uint8_t* uid,
  908. uint8_t uid_len,
  909. uint8_t* ats,
  910. uint8_t ats_len) {
  911. UNUSED(ats);
  912. UNUSED(ats_len);
  913. SeaderCredential* credential = seader->credential;
  914. CardDetails_t* cardDetails = 0;
  915. cardDetails = calloc(1, sizeof *cardDetails);
  916. assert(cardDetails);
  917. OCTET_STRING_fromBuf(&cardDetails->csn, (const char*)uid, uid_len);
  918. OCTET_STRING_t sak_string = {.buf = &sak, .size = 1};
  919. OCTET_STRING_t atqa_string = {.buf = atqa, .size = 2};
  920. uint8_t protocol_bytes[] = {0x00, 0x00};
  921. if(sak != 0 && atqa != NULL) { // type 4
  922. protocol_bytes[1] = FrameProtocol_nfc;
  923. OCTET_STRING_fromBuf(
  924. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  925. cardDetails->sak = &sak_string;
  926. cardDetails->atqa = &atqa_string;
  927. credential->isDesfire = seader_mf_df_check_card_type(atqa[0], atqa[1], sak);
  928. if(credential->isDesfire) {
  929. memcpy(credential->diversifier, uid, uid_len);
  930. credential->diversifier_len = uid_len;
  931. }
  932. } else if(sak != 0 && atqa == NULL) { // MFC
  933. protocol_bytes[1] = FrameProtocol_nfc;
  934. OCTET_STRING_fromBuf(
  935. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  936. cardDetails->sak = &sak_string;
  937. } else if(uid_len == 8) { // picopass
  938. protocol_bytes[1] = FrameProtocol_iclass;
  939. OCTET_STRING_fromBuf(
  940. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  941. memcpy(credential->diversifier, uid, uid_len);
  942. credential->diversifier_len = uid_len;
  943. credential->isDesfire = false;
  944. } else {
  945. FURI_LOG_D(TAG, "Unknown card type");
  946. }
  947. seader_send_card_detected(seader, cardDetails);
  948. // Print version information for app and firmware for later review in log
  949. const Version* version = version_get();
  950. FURI_LOG_I(
  951. TAG,
  952. "Firmware origin: %s firmware version: %s app version: %s",
  953. version_get_firmware_origin(version),
  954. version_get_version(version),
  955. FAP_VERSION);
  956. free(cardDetails);
  957. return NfcCommandContinue;
  958. }