uhf_worker.c 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. #include "uhf_worker.h"
  2. #include "uhf_tag.h"
  3. // yrm100 module commands
  4. UHFWorkerEvent verify_module_connected(UHFWorker* uhf_worker) {
  5. char* hw_version = m100_get_hardware_version(uhf_worker->module);
  6. char* sw_version = m100_get_software_version(uhf_worker->module);
  7. char* manufacturer = m100_get_manufacturers(uhf_worker->module);
  8. // verify all data exists
  9. if(hw_version == NULL || sw_version == NULL || manufacturer == NULL) return UHFWorkerEventFail;
  10. return UHFWorkerEventSuccess;
  11. }
  12. UHFTag* send_polling_command(UHFWorker* uhf_worker) {
  13. // read epc bank
  14. UHFTag* uhf_tag = uhf_tag_alloc();
  15. while(true) {
  16. M100ResponseType status = m100_send_single_poll(uhf_worker->module, uhf_tag);
  17. furi_delay_ms(100);
  18. if(uhf_worker->state == UHFWorkerStateStop) {
  19. uhf_tag_free(uhf_tag);
  20. return NULL;
  21. }
  22. if(status == M100Success) break;
  23. }
  24. return uhf_tag;
  25. }
  26. static UHFWorkerEvent
  27. read_bank_till_max_length(UHFWorker* uhf_worker, UHFTag* uhf_tag, BankType bank) {
  28. unsigned int retry = 3, word_low = 5, word_high = 100;
  29. unsigned int word_size;
  30. M100ResponseType status;
  31. do {
  32. if(uhf_worker->state == UHFWorkerStateStop) return UHFWorkerEventAborted;
  33. if(word_low >= word_high) return UHFWorkerEventSuccess;
  34. word_size = (word_low + word_high) / 2;
  35. status = m100_read_label_data_storage(uhf_worker->module, uhf_tag, bank, 0, word_size);
  36. if(status == M100Success) {
  37. word_low = word_size + 1;
  38. } else if(status == M100MemoryOverrun) {
  39. word_high = word_size - 1;
  40. } else if(status == M100NoTagResponse) {
  41. retry--;
  42. }
  43. } while(retry);
  44. return UHFWorkerEventSuccess;
  45. }
  46. UHFWorkerEvent read_single_card(UHFWorker* uhf_worker) {
  47. UHFTag* uhf_tag = send_polling_command(uhf_worker);
  48. if(uhf_tag == NULL) return UHFWorkerEventAborted;
  49. uhf_tag_wrapper_set_tag(uhf_worker->uhf_tag_wrapper, uhf_tag);
  50. // Todo : set select here
  51. if(m100_set_select(uhf_worker->module, uhf_tag) != M100Success) return UHFWorkerEventFail;
  52. // read tid
  53. UHFWorkerEvent event;
  54. event = read_bank_till_max_length(uhf_worker, uhf_tag, TIDBank);
  55. if(event != UHFWorkerEventSuccess) return event;
  56. // read user
  57. event = read_bank_till_max_length(uhf_worker, uhf_tag, UserBank);
  58. if(event != UHFWorkerEventSuccess) return event;
  59. return UHFWorkerEventSuccess;
  60. }
  61. UHFWorkerEvent write_single_card(UHFWorker* uhf_worker) {
  62. UHFTag* uhf_tag_des = send_polling_command(uhf_worker);
  63. if(uhf_tag_des == NULL) return UHFWorkerEventAborted;
  64. UHFTag* uhf_tag_from = uhf_worker->uhf_tag_wrapper->uhf_tag;
  65. if(m100_set_select(uhf_worker->module, uhf_tag_des) != M100Success) return UHFWorkerEventFail;
  66. do {
  67. M100ResponseType rp_type = m100_write_label_data_storage(
  68. uhf_worker->module, uhf_tag_from, uhf_tag_des, UserBank, 0, 0);
  69. if(uhf_worker->state == UHFWorkerStateStop) return UHFWorkerEventAborted;
  70. if(rp_type == M100Success) break;
  71. } while(true);
  72. do {
  73. M100ResponseType rp_type = m100_write_label_data_storage(
  74. uhf_worker->module, uhf_tag_from, uhf_tag_des, EPCBank, 0, 0);
  75. if(uhf_worker->state == UHFWorkerStateStop) return UHFWorkerEventAborted;
  76. if(rp_type == M100Success) break;
  77. } while(true);
  78. return UHFWorkerEventSuccess;
  79. }
  80. int32_t uhf_worker_task(void* ctx) {
  81. UHFWorker* uhf_worker = ctx;
  82. if(uhf_worker->state == UHFWorkerStateVerify) {
  83. UHFWorkerEvent event = verify_module_connected(uhf_worker);
  84. uhf_worker->callback(event, uhf_worker->ctx);
  85. } else if(uhf_worker->state == UHFWorkerStateDetectSingle) {
  86. UHFWorkerEvent event = read_single_card(uhf_worker);
  87. uhf_worker->callback(event, uhf_worker->ctx);
  88. } else if(uhf_worker->state == UHFWorkerStateWriteSingle) {
  89. UHFWorkerEvent event = write_single_card(uhf_worker);
  90. uhf_worker->callback(event, uhf_worker->ctx);
  91. }
  92. return 0;
  93. }
  94. UHFWorker* uhf_worker_alloc() {
  95. UHFWorker* uhf_worker = (UHFWorker*)malloc(sizeof(UHFWorker));
  96. uhf_worker->thread = furi_thread_alloc_ex("UHFWorker", 8 * 1024, uhf_worker_task, uhf_worker);
  97. uhf_worker->module = m100_module_alloc();
  98. uhf_worker->callback = NULL;
  99. uhf_worker->ctx = NULL;
  100. return uhf_worker;
  101. }
  102. void uhf_worker_change_state(UHFWorker* worker, UHFWorkerState state) {
  103. worker->state = state;
  104. }
  105. void uhf_worker_start(
  106. UHFWorker* uhf_worker,
  107. UHFWorkerState state,
  108. UHFWorkerCallback callback,
  109. void* ctx) {
  110. uhf_worker->state = state;
  111. uhf_worker->callback = callback;
  112. uhf_worker->ctx = ctx;
  113. furi_thread_start(uhf_worker->thread);
  114. }
  115. void uhf_worker_stop(UHFWorker* uhf_worker) {
  116. furi_assert(uhf_worker);
  117. furi_assert(uhf_worker->thread);
  118. if(furi_thread_get_state(uhf_worker->thread) != FuriThreadStateStopped) {
  119. uhf_worker_change_state(uhf_worker, UHFWorkerStateStop);
  120. furi_thread_join(uhf_worker->thread);
  121. }
  122. }
  123. void uhf_worker_free(UHFWorker* uhf_worker) {
  124. furi_assert(uhf_worker);
  125. furi_thread_free(uhf_worker->thread);
  126. m100_module_free(uhf_worker->module);
  127. free(uhf_worker);
  128. }