uhf_module.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384
  1. #include "uhf_module.h"
  2. #include "uhf_module_cmd.h"
  3. #define DELAY_MS 100
  4. #define WAIT_TICK 4000 // max wait time in between each byte
  5. static M100ResponseType setup_and_send_rx(M100Module* module, uint8_t* cmd, size_t cmd_length) {
  6. UHFUart* uart = module->uart;
  7. Buffer* buffer = uart->buffer;
  8. // clear buffer
  9. uhf_buffer_reset(buffer);
  10. // send cmd
  11. uhf_uart_send_wait(uart, cmd, cmd_length);
  12. // wait for response by polling
  13. while(!uhf_is_buffer_closed(buffer) && !uhf_uart_tick(uart)) {}
  14. // reset tick
  15. uhf_uart_tick_reset(uart);
  16. // Validation Checks
  17. uint8_t* data = uhf_buffer_get_data(buffer);
  18. size_t length = uhf_buffer_get_size(buffer);
  19. // check if size > 0
  20. if(!length) return M100EmptyResponse;
  21. // check if data is valid
  22. if(data[0] != FRAME_START || data[length - 1] != FRAME_END) return M100ValidationFail;
  23. // check if checksum is correct
  24. if(checksum(data + 1, length - 3) != data[length - 2]) return M100ChecksumFail;
  25. return M100SuccessResponse;
  26. }
  27. M100ModuleInfo* m100_module_info_alloc() {
  28. M100ModuleInfo* module_info = (M100ModuleInfo*)malloc(sizeof(M100ModuleInfo));
  29. return module_info;
  30. }
  31. void m100_module_info_free(M100ModuleInfo* module_info) {
  32. if(module_info->hw_version != NULL) free(module_info->hw_version);
  33. if(module_info->sw_version != NULL) free(module_info->sw_version);
  34. if(module_info->manufacturer != NULL) free(module_info->manufacturer);
  35. free(module_info);
  36. }
  37. M100Module* m100_module_alloc() {
  38. M100Module* module = (M100Module*)malloc(sizeof(M100Module));
  39. module->transmitting_power = DEFAULT_TRANSMITTING_POWER;
  40. module->region = DEFAULT_WORKING_REGION;
  41. module->info = m100_module_info_alloc();
  42. module->uart = uhf_uart_alloc();
  43. module->write_mask = WRITE_EPC | WRITE_TID | WRITE_USER | WRITE_RFU;
  44. return module;
  45. }
  46. void m100_module_free(M100Module* module) {
  47. m100_module_info_free(module->info);
  48. uhf_uart_free(module->uart);
  49. free(module);
  50. }
  51. uint8_t checksum(const uint8_t* data, size_t length) {
  52. // CheckSum8 Modulo 256
  53. // Sum of Bytes % 256
  54. uint64_t sum_val = 0x00;
  55. for(size_t i = 0; i < length; i++) {
  56. sum_val += data[i];
  57. }
  58. return (uint8_t)(sum_val % 0x100);
  59. }
  60. uint16_t crc16_genibus(const uint8_t* data, size_t length) {
  61. uint16_t crc = 0xFFFF; // Initial value
  62. uint16_t polynomial = 0x1021; // CRC-16/GENIBUS polynomial
  63. for(size_t i = 0; i < length; i++) {
  64. crc ^= (data[i] << 8); // Move byte into MSB of 16bit CRC
  65. for(int j = 0; j < 8; j++) {
  66. if(crc & 0x8000) {
  67. crc = (crc << 1) ^ polynomial;
  68. } else {
  69. crc <<= 1;
  70. }
  71. }
  72. }
  73. return crc ^ 0xFFFF; // Post-inversion
  74. }
  75. char* _m100_info_helper(M100Module* module, char** info) {
  76. if(!uhf_buffer_get_size(module->uart->buffer)) return NULL;
  77. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  78. uint16_t payload_len = data[3];
  79. payload_len = (payload_len << 8) + data[4];
  80. FuriString* temp_str = furi_string_alloc();
  81. for(int i = 0; i < payload_len; i++) {
  82. furi_string_cat_printf(temp_str, "%c", data[6 + i]);
  83. }
  84. if(*info == NULL) {
  85. *info = (char*)malloc(sizeof(char) * payload_len);
  86. } else {
  87. for(size_t i = 0; i < strlen(*info); i++) {
  88. (*info)[i] = 0;
  89. }
  90. }
  91. memcpy(*info, furi_string_get_cstr(temp_str), payload_len);
  92. furi_string_free(temp_str);
  93. return *info;
  94. }
  95. char* m100_get_hardware_version(M100Module* module) {
  96. setup_and_send_rx(module, (uint8_t*)&CMD_HW_VERSION.cmd[0], CMD_HW_VERSION.length);
  97. return _m100_info_helper(module, &module->info->hw_version);
  98. }
  99. char* m100_get_software_version(M100Module* module) {
  100. setup_and_send_rx(module, (uint8_t*)&CMD_SW_VERSION.cmd[0], CMD_SW_VERSION.length);
  101. return _m100_info_helper(module, &module->info->sw_version);
  102. }
  103. char* m100_get_manufacturers(M100Module* module) {
  104. setup_and_send_rx(module, (uint8_t*)&CMD_MANUFACTURERS.cmd[0], CMD_MANUFACTURERS.length);
  105. return _m100_info_helper(module, &module->info->manufacturer);
  106. }
  107. M100ResponseType m100_single_poll(M100Module* module, UHFTag* uhf_tag) {
  108. M100ResponseType rp_type =
  109. setup_and_send_rx(module, (uint8_t*)&CMD_SINGLE_POLLING.cmd[0], CMD_SINGLE_POLLING.length);
  110. if(rp_type != M100SuccessResponse) return rp_type;
  111. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  112. uint16_t pc = data[6];
  113. uint16_t crc = 0;
  114. // mask out epc length from protocol control
  115. size_t epc_len = pc;
  116. epc_len >>= 3;
  117. epc_len *= 2;
  118. // get protocol control
  119. pc <<= 8;
  120. pc += data[7];
  121. // get cyclic redundency check
  122. crc = data[8 + epc_len];
  123. crc <<= 8;
  124. crc += data[8 + epc_len + 1];
  125. // validate crc
  126. if(crc16_genibus(data + 6, epc_len + 2) != crc) return M100ValidationFail;
  127. uhf_tag_set_epc_pc(uhf_tag, pc);
  128. uhf_tag_set_epc_crc(uhf_tag, crc);
  129. uhf_tag_set_epc(uhf_tag, data + 8, epc_len);
  130. return M100SuccessResponse;
  131. }
  132. M100ResponseType m100_set_select(M100Module* module, UHFTag* uhf_tag) {
  133. // Set select
  134. uint8_t cmd[MAX_BUFFER_SIZE];
  135. size_t cmd_length = CMD_SET_SELECT_PARAMETER.length;
  136. size_t mask_length_bytes = uhf_tag->epc->size;
  137. size_t mask_length_bits = mask_length_bytes * 8;
  138. // payload len == sel param len + ptr len + mask len + epc len
  139. size_t payload_len = 7 + mask_length_bytes;
  140. memcpy(cmd, CMD_SET_SELECT_PARAMETER.cmd, cmd_length);
  141. // set new length
  142. cmd_length = 12 + mask_length_bytes + 2;
  143. // set payload length
  144. cmd[3] = (payload_len >> 8) & 0xFF;
  145. cmd[4] = payload_len & 0xFF;
  146. // set select param
  147. cmd[5] = 0x01; // 0x00=rfu, 0x01=epc, 0x10=tid, 0x11=user
  148. // set ptr
  149. cmd[9] = 0x20; // epc data begins after 0x20
  150. // set mask length
  151. cmd[10] = mask_length_bits;
  152. // truncate
  153. cmd[11] = false;
  154. // set mask
  155. memcpy((void*)&cmd[12], uhf_tag->epc->data, mask_length_bytes);
  156. // set checksum
  157. cmd[cmd_length - 2] = checksum(cmd + 1, 11 + mask_length_bytes);
  158. // end frame
  159. cmd[cmd_length - 1] = FRAME_END;
  160. M100ResponseType rp_type = setup_and_send_rx(module, cmd, 12 + mask_length_bytes + 3);
  161. if(rp_type != M100SuccessResponse) return rp_type;
  162. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  163. if(data[5] != 0x00) return M100ValidationFail; // error if not 0
  164. return M100SuccessResponse;
  165. }
  166. void m100_enable_write_mask(M100Module* module, WriteMask mask) {
  167. module->write_mask |= mask;
  168. }
  169. void m100_disable_write_mask(M100Module* module, WriteMask mask) {
  170. module->write_mask &= ~mask;
  171. }
  172. bool m100_is_write_mask_enabled(M100Module* module, WriteMask mask) {
  173. return (module->write_mask & mask) == mask;
  174. }
  175. UHFTag* m100_get_select_param(M100Module* module) {
  176. uhf_buffer_reset(module->uart->buffer);
  177. // furi_hal_uart_set_irq_cb(FuriHalUartIdLPUART1, rx_callback, module->uart->buffer);
  178. // furi_hal_uart_tx(
  179. // FuriHalUartIdUSART1,
  180. // (uint8_t*)&CMD_GET_SELECT_PARAMETER.cmd,
  181. // CMD_GET_SELECT_PARAMETER.length);
  182. // furi_delay_ms(DELAY_MS);
  183. // UHFTag* uhf_tag = uhf_tag_alloc();
  184. // uint8_t* data = buffer_get_data(module->uart->buffer);
  185. // size_t mask_length =
  186. // uhf_tag_set_epc(uhf_tag, data + 12, )
  187. // TODO : implement
  188. return NULL;
  189. }
  190. M100ResponseType m100_read_label_data_storage(
  191. M100Module* module,
  192. UHFTag* uhf_tag,
  193. BankType bank,
  194. uint32_t access_pwd,
  195. uint16_t word_count) {
  196. /*
  197. Will probably remove UHFTag as param and get it from get selected tag
  198. */
  199. if(bank == EPCBank) return M100SuccessResponse;
  200. uint8_t cmd[MAX_BUFFER_SIZE];
  201. size_t cmd_length = CMD_READ_LABEL_DATA_STORAGE_AREA.length;
  202. memcpy(cmd, CMD_READ_LABEL_DATA_STORAGE_AREA.cmd, cmd_length);
  203. // set access password
  204. cmd[5] = (access_pwd >> 24) & 0xFF;
  205. cmd[6] = (access_pwd >> 16) & 0xFF;
  206. cmd[7] = (access_pwd >> 8) & 0xFF;
  207. cmd[8] = access_pwd & 0xFF;
  208. // set mem bank
  209. cmd[9] = (uint8_t)bank;
  210. // set word counter
  211. cmd[12] = (word_count >> 8) & 0xFF;
  212. cmd[13] = word_count & 0xFF;
  213. // calc checksum
  214. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  215. M100ResponseType rp_type = setup_and_send_rx(module, cmd, cmd_length);
  216. if(rp_type != M100SuccessResponse) return rp_type;
  217. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  218. uint8_t rtn_command = data[2];
  219. uint16_t payload_len = data[3];
  220. payload_len = (payload_len << 8) + data[4];
  221. if(rtn_command == 0xFF) {
  222. if(payload_len == 0x01) return M100NoTagResponse;
  223. return M100MemoryOverrun;
  224. }
  225. size_t ptr_offset = 5 /*<-ptr offset*/ + uhf_tag_get_epc_size(uhf_tag) + 3 /*<-pc + ul*/;
  226. size_t bank_data_length = payload_len - (ptr_offset - 5 /*dont include the offset*/);
  227. if(bank == TIDBank) {
  228. uhf_tag_set_tid(uhf_tag, data + ptr_offset, bank_data_length);
  229. } else if(bank == UserBank) {
  230. uhf_tag_set_user(uhf_tag, data + ptr_offset, bank_data_length);
  231. }
  232. return M100SuccessResponse;
  233. }
  234. M100ResponseType m100_write_label_data_storage(
  235. M100Module* module,
  236. UHFTag* saved_tag,
  237. UHFTag* selected_tag,
  238. BankType bank,
  239. uint16_t source_address,
  240. uint32_t access_pwd) {
  241. uint8_t cmd[MAX_BUFFER_SIZE];
  242. size_t cmd_length = CMD_WRITE_LABEL_DATA_STORE.length;
  243. memcpy(cmd, CMD_WRITE_LABEL_DATA_STORE.cmd, cmd_length);
  244. uint16_t payload_len = 9;
  245. uint16_t data_length = 0;
  246. if(bank == ReservedBank) {
  247. // access pwd len + kill pwd len
  248. payload_len += 4;
  249. data_length = 4;
  250. } else if(bank == EPCBank) {
  251. // epc len + pc len
  252. payload_len += 4 + uhf_tag_get_epc_size(saved_tag);
  253. data_length = 4 + uhf_tag_get_epc_size(saved_tag);
  254. // set data
  255. uint8_t tmp_arr[4];
  256. tmp_arr[0] = (uint8_t)((uhf_tag_get_epc_crc(selected_tag) >> 8) & 0xFF);
  257. tmp_arr[1] = (uint8_t)(uhf_tag_get_epc_crc(selected_tag) & 0xFF);
  258. tmp_arr[2] = (uint8_t)((uhf_tag_get_epc_pc(saved_tag) >> 8) & 0xFF);
  259. tmp_arr[3] = (uint8_t)(uhf_tag_get_epc_pc(saved_tag) & 0xFF);
  260. memcpy(cmd + 14, tmp_arr, 4);
  261. memcpy(cmd + 18, uhf_tag_get_epc(saved_tag), uhf_tag_get_epc_size(saved_tag));
  262. } else if(bank == UserBank) {
  263. payload_len += uhf_tag_get_user_size(saved_tag);
  264. data_length = uhf_tag_get_user_size(saved_tag);
  265. // set data
  266. memcpy(cmd + 14, uhf_tag_get_user(saved_tag), uhf_tag_get_user_size(saved_tag));
  267. }
  268. // set payload length
  269. cmd[3] = (payload_len >> 8) & 0xFF;
  270. cmd[4] = payload_len & 0xFF;
  271. // set access password
  272. cmd[5] = (access_pwd >> 24) & 0xFF;
  273. cmd[6] = (access_pwd >> 16) & 0xFF;
  274. cmd[7] = (access_pwd >> 8) & 0xFF;
  275. cmd[8] = access_pwd & 0xFF;
  276. // set membank
  277. cmd[9] = (uint8_t)bank;
  278. // set source address
  279. cmd[10] = (source_address >> 8) & 0xFF;
  280. cmd[11] = source_address & 0xFF;
  281. // set data length
  282. size_t data_length_words = data_length / 2;
  283. cmd[12] = (data_length_words >> 8) & 0xFF;
  284. cmd[13] = data_length_words & 0xFF;
  285. // update cmd len
  286. cmd_length = 7 + payload_len;
  287. // calculate checksum
  288. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  289. cmd[cmd_length - 1] = FRAME_END;
  290. // send cmd
  291. M100ResponseType rp_type = setup_and_send_rx(module, cmd, cmd_length);
  292. if(rp_type != M100SuccessResponse) return rp_type;
  293. uint8_t* buff_data = uhf_buffer_get_data(module->uart->buffer);
  294. size_t buff_length = uhf_buffer_get_size(module->uart->buffer);
  295. if(buff_data[2] == 0xFF && buff_length == 8)
  296. return M100NoTagResponse;
  297. else if(buff_data[2] == 0xFF)
  298. return M100ValidationFail;
  299. return M100SuccessResponse;
  300. }
  301. void m100_set_baudrate(M100Module* module, uint32_t baudrate) {
  302. size_t length = CMD_SET_COMMUNICATION_BAUD_RATE.length;
  303. uint8_t cmd[length];
  304. memcpy(cmd, CMD_SET_COMMUNICATION_BAUD_RATE.cmd, length);
  305. uint16_t br_mod = baudrate / 100; // module format
  306. cmd[6] = 0xFF & br_mod; // pow LSB
  307. cmd[5] = 0xFF & (br_mod >> 8); // pow MSB
  308. cmd[length - 2] = checksum(cmd + 1, length - 3);
  309. // setup_and_send_rx(module, cmd, length);
  310. uhf_uart_send_wait(module->uart, cmd, length);
  311. uhf_uart_set_baudrate(module->uart, baudrate);
  312. module->uart->baudrate = baudrate;
  313. }
  314. bool m100_set_working_region(M100Module* module, WorkingRegion region) {
  315. size_t length = CMD_SET_WORK_AREA.length;
  316. uint8_t cmd[length];
  317. memcpy(cmd, CMD_SET_WORK_AREA.cmd, length);
  318. cmd[5] = (uint8_t)region;
  319. cmd[length - 2] = checksum(cmd + 1, length - 3);
  320. setup_and_send_rx(module, cmd, length);
  321. module->region = region;
  322. return true;
  323. }
  324. bool m100_set_transmitting_power(M100Module* module, uint16_t power) {
  325. size_t length = CMD_SET_TRANSMITTING_POWER.length;
  326. uint8_t cmd[length];
  327. memcpy(cmd, CMD_SET_TRANSMITTING_POWER.cmd, length);
  328. cmd[5] = (power >> 8) & 0xFF;
  329. cmd[6] = power & 0xFF;
  330. cmd[length - 2] = checksum(cmd + 1, length - 3);
  331. setup_and_send_rx(module, cmd, length);
  332. module->transmitting_power = power;
  333. return true;
  334. }
  335. bool m100_set_freq_hopping(M100Module* module, bool hopping) {
  336. UNUSED(module);
  337. UNUSED(hopping);
  338. return true;
  339. }
  340. bool m100_set_power(M100Module* module, uint8_t* power) {
  341. UNUSED(module);
  342. UNUSED(power);
  343. return true;
  344. }
  345. uint32_t m100_get_baudrate(M100Module* module) {
  346. return module->uart->baudrate;
  347. }