furi_hal_nfc.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727
  1. #include <limits.h>
  2. #include "furi_hal_nfc.h"
  3. #include <st25r3916.h>
  4. #include <st25r3916_irq.h>
  5. #include <rfal_rf.h>
  6. #include <furi.h>
  7. #include <m-string.h>
  8. #include <lib/digital_signal/digital_signal.h>
  9. #include <furi_hal_spi.h>
  10. #include <furi_hal_gpio.h>
  11. #include <furi_hal_cortex.h>
  12. #include <furi_hal_resources.h>
  13. #define TAG "FuriHalNfc"
  14. static const uint32_t clocks_in_ms = 64 * 1000;
  15. FuriEventFlag* event = NULL;
  16. #define EVENT_FLAG_INTERRUPT (1UL << 0)
  17. #define EVENT_FLAG_STATE_CHANGED (1UL << 1)
  18. #define EVENT_FLAG_STOP (1UL << 2)
  19. #define EVENT_FLAG_ALL (EVENT_FLAG_INTERRUPT | EVENT_FLAG_STATE_CHANGED | EVENT_FLAG_STOP)
  20. #define FURI_HAL_NFC_UID_INCOMPLETE (0x04)
  21. void furi_hal_nfc_init() {
  22. ReturnCode ret = rfalNfcInitialize();
  23. if(ret == ERR_NONE) {
  24. furi_hal_nfc_start_sleep();
  25. event = furi_event_flag_alloc();
  26. FURI_LOG_I(TAG, "Init OK");
  27. } else {
  28. FURI_LOG_W(TAG, "Initialization failed, RFAL returned: %d", ret);
  29. }
  30. }
  31. bool furi_hal_nfc_is_busy() {
  32. return rfalNfcGetState() != RFAL_NFC_STATE_IDLE;
  33. }
  34. void furi_hal_nfc_field_on() {
  35. furi_hal_nfc_exit_sleep();
  36. st25r3916TxRxOn();
  37. }
  38. void furi_hal_nfc_field_off() {
  39. st25r3916TxRxOff();
  40. furi_hal_nfc_start_sleep();
  41. }
  42. void furi_hal_nfc_start_sleep() {
  43. rfalLowPowerModeStart();
  44. }
  45. void furi_hal_nfc_exit_sleep() {
  46. rfalLowPowerModeStop();
  47. }
  48. bool furi_hal_nfc_detect(FuriHalNfcDevData* nfc_data, uint32_t timeout) {
  49. furi_assert(nfc_data);
  50. rfalNfcDevice* dev_list = NULL;
  51. uint8_t dev_cnt = 0;
  52. bool detected = false;
  53. rfalLowPowerModeStop();
  54. rfalNfcState state = rfalNfcGetState();
  55. rfalNfcState state_old = 0;
  56. if(state == RFAL_NFC_STATE_NOTINIT) {
  57. rfalNfcInitialize();
  58. }
  59. rfalNfcDiscoverParam params;
  60. params.compMode = RFAL_COMPLIANCE_MODE_EMV;
  61. params.techs2Find = RFAL_NFC_POLL_TECH_A | RFAL_NFC_POLL_TECH_B | RFAL_NFC_POLL_TECH_F |
  62. RFAL_NFC_POLL_TECH_V | RFAL_NFC_POLL_TECH_AP2P | RFAL_NFC_POLL_TECH_ST25TB;
  63. params.totalDuration = 1000;
  64. params.devLimit = 3;
  65. params.wakeupEnabled = false;
  66. params.wakeupConfigDefault = true;
  67. params.nfcfBR = RFAL_BR_212;
  68. params.ap2pBR = RFAL_BR_424;
  69. params.maxBR = RFAL_BR_KEEP;
  70. params.GBLen = RFAL_NFCDEP_GB_MAX_LEN;
  71. params.notifyCb = NULL;
  72. uint32_t start = DWT->CYCCNT;
  73. rfalNfcDiscover(&params);
  74. while(true) {
  75. rfalNfcWorker();
  76. state = rfalNfcGetState();
  77. if(state != state_old) {
  78. FURI_LOG_T(TAG, "State change %d -> %d", state_old, state);
  79. }
  80. state_old = state;
  81. if(state == RFAL_NFC_STATE_ACTIVATED) {
  82. detected = true;
  83. break;
  84. }
  85. if(state == RFAL_NFC_STATE_POLL_ACTIVATION) {
  86. start = DWT->CYCCNT;
  87. continue;
  88. }
  89. if(state == RFAL_NFC_STATE_POLL_SELECT) {
  90. rfalNfcSelect(0);
  91. }
  92. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  93. rfalNfcDeactivate(true);
  94. FURI_LOG_T(TAG, "Timeout");
  95. break;
  96. }
  97. furi_delay_tick(1);
  98. }
  99. rfalNfcGetDevicesFound(&dev_list, &dev_cnt);
  100. if(detected) {
  101. if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCA) {
  102. nfc_data->type = FuriHalNfcTypeA;
  103. nfc_data->atqa[0] = dev_list[0].dev.nfca.sensRes.anticollisionInfo;
  104. nfc_data->atqa[1] = dev_list[0].dev.nfca.sensRes.platformInfo;
  105. nfc_data->sak = dev_list[0].dev.nfca.selRes.sak;
  106. uint8_t* cuid_start = dev_list[0].nfcid;
  107. if(dev_list[0].nfcidLen == 7) {
  108. cuid_start = &dev_list[0].nfcid[3];
  109. }
  110. nfc_data->cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) |
  111. (cuid_start[3]);
  112. } else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCB) {
  113. nfc_data->type = FuriHalNfcTypeB;
  114. } else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCF) {
  115. nfc_data->type = FuriHalNfcTypeF;
  116. } else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCV) {
  117. nfc_data->type = FuriHalNfcTypeV;
  118. }
  119. if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_RF) {
  120. nfc_data->interface = FuriHalNfcInterfaceRf;
  121. } else if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_ISODEP) {
  122. nfc_data->interface = FuriHalNfcInterfaceIsoDep;
  123. } else if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_NFCDEP) {
  124. nfc_data->interface = FuriHalNfcInterfaceNfcDep;
  125. }
  126. nfc_data->uid_len = dev_list[0].nfcidLen;
  127. memcpy(nfc_data->uid, dev_list[0].nfcid, nfc_data->uid_len);
  128. }
  129. return detected;
  130. }
  131. bool furi_hal_nfc_activate_nfca(uint32_t timeout, uint32_t* cuid) {
  132. rfalNfcDevice* dev_list;
  133. uint8_t dev_cnt = 0;
  134. rfalLowPowerModeStop();
  135. rfalNfcState state = rfalNfcGetState();
  136. if(state == RFAL_NFC_STATE_NOTINIT) {
  137. rfalNfcInitialize();
  138. }
  139. rfalNfcDiscoverParam params = {
  140. .compMode = RFAL_COMPLIANCE_MODE_NFC,
  141. .techs2Find = RFAL_NFC_POLL_TECH_A,
  142. .totalDuration = 1000,
  143. .devLimit = 3,
  144. .wakeupEnabled = false,
  145. .wakeupConfigDefault = true,
  146. .nfcfBR = RFAL_BR_212,
  147. .ap2pBR = RFAL_BR_424,
  148. .maxBR = RFAL_BR_KEEP,
  149. .GBLen = RFAL_NFCDEP_GB_MAX_LEN,
  150. .notifyCb = NULL,
  151. };
  152. uint32_t start = DWT->CYCCNT;
  153. rfalNfcDiscover(&params);
  154. while(state != RFAL_NFC_STATE_ACTIVATED) {
  155. rfalNfcWorker();
  156. state = rfalNfcGetState();
  157. FURI_LOG_T(TAG, "Current state %d", state);
  158. if(state == RFAL_NFC_STATE_POLL_ACTIVATION) {
  159. start = DWT->CYCCNT;
  160. continue;
  161. }
  162. if(state == RFAL_NFC_STATE_POLL_SELECT) {
  163. rfalNfcSelect(0);
  164. }
  165. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  166. rfalNfcDeactivate(true);
  167. FURI_LOG_T(TAG, "Timeout");
  168. return false;
  169. }
  170. furi_thread_yield();
  171. }
  172. rfalNfcGetDevicesFound(&dev_list, &dev_cnt);
  173. // Take first device and set cuid
  174. if(cuid) {
  175. uint8_t* cuid_start = dev_list[0].nfcid;
  176. if(dev_list[0].nfcidLen == 7) {
  177. cuid_start = &dev_list[0].nfcid[3];
  178. }
  179. *cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) |
  180. (cuid_start[3]);
  181. FURI_LOG_T(TAG, "Activated tag with cuid: %lX", *cuid);
  182. }
  183. return true;
  184. }
  185. bool furi_hal_nfc_listen(
  186. uint8_t* uid,
  187. uint8_t uid_len,
  188. uint8_t* atqa,
  189. uint8_t sak,
  190. bool activate_after_sak,
  191. uint32_t timeout) {
  192. rfalNfcState state = rfalNfcGetState();
  193. if(state == RFAL_NFC_STATE_NOTINIT) {
  194. rfalNfcInitialize();
  195. } else if(state >= RFAL_NFC_STATE_ACTIVATED) {
  196. rfalNfcDeactivate(false);
  197. }
  198. rfalLowPowerModeStop();
  199. rfalNfcDiscoverParam params = {
  200. .compMode = RFAL_COMPLIANCE_MODE_NFC,
  201. .techs2Find = RFAL_NFC_LISTEN_TECH_A,
  202. .totalDuration = 1000,
  203. .devLimit = 1,
  204. .wakeupEnabled = false,
  205. .wakeupConfigDefault = true,
  206. .nfcfBR = RFAL_BR_212,
  207. .ap2pBR = RFAL_BR_424,
  208. .maxBR = RFAL_BR_KEEP,
  209. .GBLen = RFAL_NFCDEP_GB_MAX_LEN,
  210. .notifyCb = NULL,
  211. .activate_after_sak = activate_after_sak,
  212. };
  213. params.lmConfigPA.nfcidLen = uid_len;
  214. memcpy(params.lmConfigPA.nfcid, uid, uid_len);
  215. params.lmConfigPA.SENS_RES[0] = atqa[0];
  216. params.lmConfigPA.SENS_RES[1] = atqa[1];
  217. params.lmConfigPA.SEL_RES = sak;
  218. rfalNfcDiscover(&params);
  219. uint32_t start = DWT->CYCCNT;
  220. while(state != RFAL_NFC_STATE_ACTIVATED) {
  221. rfalNfcWorker();
  222. state = rfalNfcGetState();
  223. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  224. rfalNfcDeactivate(true);
  225. return false;
  226. }
  227. furi_delay_tick(1);
  228. }
  229. return true;
  230. }
  231. static void furi_hal_nfc_read_fifo(uint8_t* data, uint16_t* bits) {
  232. uint8_t fifo_status[2];
  233. uint8_t rx_buff[64];
  234. st25r3916ReadMultipleRegisters(
  235. ST25R3916_REG_FIFO_STATUS1, fifo_status, ST25R3916_FIFO_STATUS_LEN);
  236. uint16_t rx_bytes =
  237. ((((uint16_t)fifo_status[1] & ST25R3916_REG_FIFO_STATUS2_fifo_b_mask) >>
  238. ST25R3916_REG_FIFO_STATUS2_fifo_b_shift)
  239. << 8);
  240. rx_bytes |= (((uint16_t)fifo_status[0]) & 0x00FFU);
  241. st25r3916ReadFifo(rx_buff, rx_bytes);
  242. memcpy(data, rx_buff, rx_bytes);
  243. *bits = rx_bytes * 8;
  244. }
  245. void furi_hal_nfc_listen_sleep() {
  246. st25r3916ExecuteCommand(ST25R3916_CMD_GOTO_SLEEP);
  247. }
  248. bool furi_hal_nfc_listen_rx(FuriHalNfcTxRxContext* tx_rx, uint32_t timeout_ms) {
  249. furi_assert(tx_rx);
  250. // Wait for interrupts
  251. uint32_t start = furi_get_tick();
  252. bool data_received = false;
  253. while(true) {
  254. if(furi_hal_gpio_read(&gpio_nfc_irq_rfid_pull) == true) {
  255. st25r3916CheckForReceivedInterrupts();
  256. if(st25r3916GetInterrupt(ST25R3916_IRQ_MASK_RXE)) {
  257. furi_hal_nfc_read_fifo(tx_rx->rx_data, &tx_rx->rx_bits);
  258. data_received = true;
  259. break;
  260. }
  261. continue;
  262. }
  263. if(furi_get_tick() - start > timeout_ms) {
  264. FURI_LOG_T(TAG, "Interrupt waiting timeout");
  265. furi_delay_tick(1);
  266. break;
  267. }
  268. }
  269. return data_received;
  270. }
  271. void furi_hal_nfc_listen_start(FuriHalNfcDevData* nfc_data) {
  272. furi_assert(nfc_data);
  273. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeInput, GpioPullDown, GpioSpeedVeryHigh);
  274. // Clear interrupts
  275. st25r3916ClearInterrupts();
  276. // Mask all interrupts
  277. st25r3916DisableInterrupts(ST25R3916_IRQ_MASK_ALL);
  278. // RESET
  279. st25r3916ExecuteCommand(ST25R3916_CMD_STOP);
  280. // Setup registers
  281. st25r3916WriteRegister(
  282. ST25R3916_REG_OP_CONTROL,
  283. ST25R3916_REG_OP_CONTROL_en | ST25R3916_REG_OP_CONTROL_rx_en |
  284. ST25R3916_REG_OP_CONTROL_en_fd_auto_efd);
  285. st25r3916WriteRegister(
  286. ST25R3916_REG_MODE,
  287. ST25R3916_REG_MODE_targ_targ | ST25R3916_REG_MODE_om3 | ST25R3916_REG_MODE_om0);
  288. st25r3916WriteRegister(
  289. ST25R3916_REG_PASSIVE_TARGET,
  290. ST25R3916_REG_PASSIVE_TARGET_fdel_2 | ST25R3916_REG_PASSIVE_TARGET_fdel_0 |
  291. ST25R3916_REG_PASSIVE_TARGET_d_ac_ap2p | ST25R3916_REG_PASSIVE_TARGET_d_212_424_1r);
  292. st25r3916WriteRegister(ST25R3916_REG_MASK_RX_TIMER, 0x02);
  293. // Mask interrupts
  294. uint32_t clear_irq_mask =
  295. (ST25R3916_IRQ_MASK_RXE | ST25R3916_IRQ_MASK_RXE_PTA | ST25R3916_IRQ_MASK_WU_A_X |
  296. ST25R3916_IRQ_MASK_WU_A);
  297. st25r3916EnableInterrupts(clear_irq_mask);
  298. // Set 4 or 7 bytes UID
  299. if(nfc_data->uid_len == 4) {
  300. st25r3916ChangeRegisterBits(
  301. ST25R3916_REG_AUX, ST25R3916_REG_AUX_nfc_id_mask, ST25R3916_REG_AUX_nfc_id_4bytes);
  302. } else {
  303. st25r3916ChangeRegisterBits(
  304. ST25R3916_REG_AUX, ST25R3916_REG_AUX_nfc_id_mask, ST25R3916_REG_AUX_nfc_id_7bytes);
  305. }
  306. // Write PT Memory
  307. uint8_t pt_memory[15] = {};
  308. memcpy(pt_memory, nfc_data->uid, nfc_data->uid_len);
  309. pt_memory[10] = nfc_data->atqa[0];
  310. pt_memory[11] = nfc_data->atqa[1];
  311. if(nfc_data->uid_len == 4) {
  312. pt_memory[12] = nfc_data->sak & ~FURI_HAL_NFC_UID_INCOMPLETE;
  313. } else {
  314. pt_memory[12] = FURI_HAL_NFC_UID_INCOMPLETE;
  315. }
  316. pt_memory[13] = nfc_data->sak & ~FURI_HAL_NFC_UID_INCOMPLETE;
  317. pt_memory[14] = nfc_data->sak & ~FURI_HAL_NFC_UID_INCOMPLETE;
  318. st25r3916WritePTMem(pt_memory, sizeof(pt_memory));
  319. // Go to sense
  320. st25r3916ExecuteCommand(ST25R3916_CMD_GOTO_SENSE);
  321. }
  322. void rfal_interrupt_callback_handler() {
  323. furi_event_flag_set(event, EVENT_FLAG_INTERRUPT);
  324. }
  325. void rfal_state_changed_callback(void* context) {
  326. UNUSED(context);
  327. furi_event_flag_set(event, EVENT_FLAG_STATE_CHANGED);
  328. }
  329. void furi_hal_nfc_stop() {
  330. if(event) {
  331. furi_event_flag_set(event, EVENT_FLAG_STOP);
  332. }
  333. }
  334. bool furi_hal_nfc_emulate_nfca(
  335. uint8_t* uid,
  336. uint8_t uid_len,
  337. uint8_t* atqa,
  338. uint8_t sak,
  339. FuriHalNfcEmulateCallback callback,
  340. void* context,
  341. uint32_t timeout) {
  342. rfalSetUpperLayerCallback(rfal_interrupt_callback_handler);
  343. rfal_set_state_changed_callback(rfal_state_changed_callback);
  344. rfalLmConfPA config;
  345. config.nfcidLen = uid_len;
  346. memcpy(config.nfcid, uid, uid_len);
  347. memcpy(config.SENS_RES, atqa, RFAL_LM_SENS_RES_LEN);
  348. config.SEL_RES = sak;
  349. uint8_t buff_rx[256];
  350. uint16_t buff_rx_size = 256;
  351. uint16_t buff_rx_len = 0;
  352. uint8_t buff_tx[1040];
  353. uint16_t buff_tx_len = 0;
  354. uint32_t data_type = FURI_HAL_NFC_TXRX_DEFAULT;
  355. rfalLowPowerModeStop();
  356. if(rfalListenStart(
  357. RFAL_LM_MASK_NFCA,
  358. &config,
  359. NULL,
  360. NULL,
  361. buff_rx,
  362. rfalConvBytesToBits(buff_rx_size),
  363. &buff_rx_len)) {
  364. rfalListenStop();
  365. FURI_LOG_E(TAG, "Failed to start listen mode");
  366. return false;
  367. }
  368. while(true) {
  369. buff_rx_len = 0;
  370. buff_tx_len = 0;
  371. uint32_t flag = furi_event_flag_wait(event, EVENT_FLAG_ALL, FuriFlagWaitAny, timeout);
  372. if(flag == FuriFlagErrorTimeout || flag == EVENT_FLAG_STOP) {
  373. break;
  374. }
  375. bool data_received = false;
  376. buff_rx_len = 0;
  377. rfalWorker();
  378. rfalLmState state = rfalListenGetState(&data_received, NULL);
  379. if(data_received) {
  380. rfalTransceiveBlockingRx();
  381. if(nfca_emulation_handler(buff_rx, buff_rx_len, buff_tx, &buff_tx_len)) {
  382. if(rfalListenSleepStart(
  383. RFAL_LM_STATE_SLEEP_A,
  384. buff_rx,
  385. rfalConvBytesToBits(buff_rx_size),
  386. &buff_rx_len)) {
  387. FURI_LOG_E(TAG, "Failed to enter sleep mode");
  388. break;
  389. } else {
  390. continue;
  391. }
  392. }
  393. if(buff_tx_len) {
  394. ReturnCode ret = rfalTransceiveBitsBlockingTx(
  395. buff_tx,
  396. buff_tx_len,
  397. buff_rx,
  398. sizeof(buff_rx),
  399. &buff_rx_len,
  400. data_type,
  401. RFAL_FWT_NONE);
  402. if(ret) {
  403. FURI_LOG_E(TAG, "Tranceive failed with status %d", ret);
  404. break;
  405. }
  406. continue;
  407. }
  408. if((state == RFAL_LM_STATE_ACTIVE_A || state == RFAL_LM_STATE_ACTIVE_Ax)) {
  409. if(callback) {
  410. callback(buff_rx, buff_rx_len, buff_tx, &buff_tx_len, &data_type, context);
  411. }
  412. if(!rfalIsExtFieldOn()) {
  413. break;
  414. }
  415. if(buff_tx_len) {
  416. if(buff_tx_len == UINT16_MAX) buff_tx_len = 0;
  417. ReturnCode ret = rfalTransceiveBitsBlockingTx(
  418. buff_tx,
  419. buff_tx_len,
  420. buff_rx,
  421. sizeof(buff_rx),
  422. &buff_rx_len,
  423. data_type,
  424. RFAL_FWT_NONE);
  425. if(ret) {
  426. FURI_LOG_E(TAG, "Tranceive failed with status %d", ret);
  427. continue;
  428. }
  429. } else {
  430. break;
  431. }
  432. }
  433. }
  434. }
  435. rfalListenStop();
  436. return true;
  437. }
  438. static bool furi_hal_nfc_transparent_tx_rx(FuriHalNfcTxRxContext* tx_rx, uint16_t timeout_ms) {
  439. furi_assert(tx_rx->nfca_signal);
  440. bool ret = false;
  441. // Start transparent mode
  442. st25r3916ExecuteCommand(ST25R3916_CMD_TRANSPARENT_MODE);
  443. // Reconfigure gpio for Transparent mode
  444. furi_hal_spi_bus_handle_deinit(&furi_hal_spi_bus_handle_nfc);
  445. // Send signal
  446. FURI_CRITICAL_ENTER();
  447. nfca_signal_encode(tx_rx->nfca_signal, tx_rx->tx_data, tx_rx->tx_bits, tx_rx->tx_parity);
  448. digital_signal_send(tx_rx->nfca_signal->tx_signal, &gpio_spi_r_mosi);
  449. FURI_CRITICAL_EXIT();
  450. furi_hal_gpio_write(&gpio_spi_r_mosi, false);
  451. // Configure gpio back to SPI and exit transparent
  452. furi_hal_spi_bus_handle_init(&furi_hal_spi_bus_handle_nfc);
  453. st25r3916ExecuteCommand(ST25R3916_CMD_UNMASK_RECEIVE_DATA);
  454. if(tx_rx->sniff_tx) {
  455. tx_rx->sniff_tx(tx_rx->tx_data, tx_rx->tx_bits, false, tx_rx->sniff_context);
  456. }
  457. // Manually wait for interrupt
  458. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeInput, GpioPullDown, GpioSpeedVeryHigh);
  459. st25r3916ClearAndEnableInterrupts(ST25R3916_IRQ_MASK_RXE);
  460. uint32_t irq = 0;
  461. uint8_t rxe = 0;
  462. uint32_t start = DWT->CYCCNT;
  463. while(true) {
  464. if(!rfalIsExtFieldOn()) {
  465. return false;
  466. }
  467. if(furi_hal_gpio_read(&gpio_nfc_irq_rfid_pull) == true) {
  468. st25r3916ReadRegister(ST25R3916_REG_IRQ_MAIN, &rxe);
  469. if(rxe & (1 << 4)) {
  470. irq = 1;
  471. break;
  472. }
  473. }
  474. uint32_t timeout = DWT->CYCCNT - start;
  475. if(timeout / furi_hal_cortex_instructions_per_microsecond() > timeout_ms * 1000) {
  476. FURI_LOG_D(TAG, "Interrupt waiting timeout");
  477. break;
  478. }
  479. }
  480. if(irq) {
  481. uint8_t fifo_stat[2];
  482. st25r3916ReadMultipleRegisters(
  483. ST25R3916_REG_FIFO_STATUS1, fifo_stat, ST25R3916_FIFO_STATUS_LEN);
  484. uint16_t len =
  485. ((((uint16_t)fifo_stat[1] & ST25R3916_REG_FIFO_STATUS2_fifo_b_mask) >>
  486. ST25R3916_REG_FIFO_STATUS2_fifo_b_shift)
  487. << RFAL_BITS_IN_BYTE);
  488. len |= (((uint16_t)fifo_stat[0]) & 0x00FFU);
  489. uint8_t rx[100];
  490. st25r3916ReadFifo(rx, len);
  491. tx_rx->rx_bits = len * 8;
  492. memcpy(tx_rx->rx_data, rx, len);
  493. if(tx_rx->sniff_rx) {
  494. tx_rx->sniff_rx(tx_rx->rx_data, tx_rx->rx_bits, false, tx_rx->sniff_context);
  495. }
  496. ret = true;
  497. } else {
  498. FURI_LOG_E(TAG, "Timeout error");
  499. ret = false;
  500. }
  501. st25r3916ClearInterrupts();
  502. return ret;
  503. }
  504. static uint32_t furi_hal_nfc_tx_rx_get_flag(FuriHalNfcTxRxType type) {
  505. uint32_t flags = 0;
  506. if(type == FuriHalNfcTxRxTypeRxNoCrc) {
  507. flags = RFAL_TXRX_FLAGS_CRC_RX_KEEP;
  508. } else if(type == FuriHalNfcTxRxTypeRxKeepPar) {
  509. flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
  510. RFAL_TXRX_FLAGS_PAR_RX_KEEP;
  511. } else if(type == FuriHalNfcTxRxTypeRaw) {
  512. flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
  513. RFAL_TXRX_FLAGS_PAR_RX_KEEP | RFAL_TXRX_FLAGS_PAR_TX_NONE;
  514. } else if(type == FuriHalNfcTxRxTypeRxRaw) {
  515. flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
  516. RFAL_TXRX_FLAGS_PAR_RX_KEEP | RFAL_TXRX_FLAGS_PAR_TX_NONE;
  517. }
  518. return flags;
  519. }
  520. static uint16_t furi_hal_nfc_data_and_parity_to_bitstream(
  521. uint8_t* data,
  522. uint16_t len,
  523. uint8_t* parity,
  524. uint8_t* out) {
  525. furi_assert(data);
  526. furi_assert(out);
  527. uint8_t next_par_bit = 0;
  528. uint16_t curr_bit_pos = 0;
  529. for(uint16_t i = 0; i < len; i++) {
  530. next_par_bit = FURI_BIT(parity[i / 8], 7 - (i % 8));
  531. if(curr_bit_pos % 8 == 0) {
  532. out[curr_bit_pos / 8] = data[i];
  533. curr_bit_pos += 8;
  534. out[curr_bit_pos / 8] = next_par_bit;
  535. curr_bit_pos++;
  536. } else {
  537. out[curr_bit_pos / 8] |= data[i] << curr_bit_pos % 8;
  538. out[curr_bit_pos / 8 + 1] = data[i] >> (8 - curr_bit_pos % 8);
  539. out[curr_bit_pos / 8 + 1] |= next_par_bit << curr_bit_pos % 8;
  540. curr_bit_pos += 9;
  541. }
  542. }
  543. return curr_bit_pos;
  544. }
  545. uint16_t furi_hal_nfc_bitstream_to_data_and_parity(
  546. uint8_t* in_buff,
  547. uint16_t in_buff_bits,
  548. uint8_t* out_data,
  549. uint8_t* out_parity) {
  550. if(in_buff_bits % 9 != 0) {
  551. return 0;
  552. }
  553. uint8_t curr_byte = 0;
  554. uint16_t bit_processed = 0;
  555. memset(out_parity, 0, in_buff_bits / 9);
  556. while(bit_processed < in_buff_bits) {
  557. out_data[curr_byte] = in_buff[bit_processed / 8] >> bit_processed % 8;
  558. out_data[curr_byte] |= in_buff[bit_processed / 8 + 1] << (8 - bit_processed % 8);
  559. out_parity[curr_byte / 8] |= FURI_BIT(in_buff[bit_processed / 8 + 1], bit_processed % 8)
  560. << (7 - curr_byte % 8);
  561. bit_processed += 9;
  562. curr_byte++;
  563. }
  564. return curr_byte;
  565. }
  566. bool furi_hal_nfc_tx_rx(FuriHalNfcTxRxContext* tx_rx, uint16_t timeout_ms) {
  567. furi_assert(tx_rx);
  568. ReturnCode ret;
  569. rfalNfcState state = RFAL_NFC_STATE_ACTIVATED;
  570. uint8_t temp_tx_buff[FURI_HAL_NFC_DATA_BUFF_SIZE] = {};
  571. uint16_t temp_tx_bits = 0;
  572. uint8_t* temp_rx_buff = NULL;
  573. uint16_t* temp_rx_bits = NULL;
  574. if(tx_rx->tx_rx_type == FuriHalNfcTxRxTransparent) {
  575. return furi_hal_nfc_transparent_tx_rx(tx_rx, timeout_ms);
  576. }
  577. // Prepare data for FIFO if necessary
  578. uint32_t flags = furi_hal_nfc_tx_rx_get_flag(tx_rx->tx_rx_type);
  579. if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw) {
  580. temp_tx_bits = furi_hal_nfc_data_and_parity_to_bitstream(
  581. tx_rx->tx_data, tx_rx->tx_bits / 8, tx_rx->tx_parity, temp_tx_buff);
  582. ret = rfalNfcDataExchangeCustomStart(
  583. temp_tx_buff, temp_tx_bits, &temp_rx_buff, &temp_rx_bits, RFAL_FWT_NONE, flags);
  584. } else {
  585. ret = rfalNfcDataExchangeCustomStart(
  586. tx_rx->tx_data, tx_rx->tx_bits, &temp_rx_buff, &temp_rx_bits, RFAL_FWT_NONE, flags);
  587. }
  588. if(ret != ERR_NONE) {
  589. FURI_LOG_E(TAG, "Failed to start data exchange");
  590. return false;
  591. }
  592. if(tx_rx->sniff_tx) {
  593. bool crc_dropped = !(flags & RFAL_TXRX_FLAGS_CRC_TX_MANUAL);
  594. tx_rx->sniff_tx(tx_rx->tx_data, tx_rx->tx_bits, crc_dropped, tx_rx->sniff_context);
  595. }
  596. uint32_t start = DWT->CYCCNT;
  597. while(state != RFAL_NFC_STATE_DATAEXCHANGE_DONE) {
  598. rfalNfcWorker();
  599. state = rfalNfcGetState();
  600. ret = rfalNfcDataExchangeGetStatus();
  601. if(ret == ERR_BUSY) {
  602. if(DWT->CYCCNT - start > timeout_ms * clocks_in_ms) {
  603. FURI_LOG_D(TAG, "Timeout during data exchange");
  604. return false;
  605. }
  606. continue;
  607. } else {
  608. start = DWT->CYCCNT;
  609. }
  610. furi_delay_tick(1);
  611. }
  612. if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw ||
  613. tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRxRaw) {
  614. tx_rx->rx_bits = 8 * furi_hal_nfc_bitstream_to_data_and_parity(
  615. temp_rx_buff, *temp_rx_bits, tx_rx->rx_data, tx_rx->rx_parity);
  616. } else {
  617. memcpy(tx_rx->rx_data, temp_rx_buff, MIN(*temp_rx_bits / 8, FURI_HAL_NFC_DATA_BUFF_SIZE));
  618. tx_rx->rx_bits = *temp_rx_bits;
  619. }
  620. if(tx_rx->sniff_rx) {
  621. bool crc_dropped = !(flags & RFAL_TXRX_FLAGS_CRC_RX_KEEP);
  622. tx_rx->sniff_rx(tx_rx->rx_data, tx_rx->rx_bits, crc_dropped, tx_rx->sniff_context);
  623. }
  624. return true;
  625. }
  626. bool furi_hal_nfc_tx_rx_full(FuriHalNfcTxRxContext* tx_rx) {
  627. uint16_t part_len_bytes;
  628. if(!furi_hal_nfc_tx_rx(tx_rx, 1000)) {
  629. return false;
  630. }
  631. while(tx_rx->rx_bits && tx_rx->rx_data[0] == 0xAF) {
  632. FuriHalNfcTxRxContext tmp = *tx_rx;
  633. tmp.tx_data[0] = 0xAF;
  634. tmp.tx_bits = 8;
  635. if(!furi_hal_nfc_tx_rx(&tmp, 1000)) {
  636. return false;
  637. }
  638. part_len_bytes = tmp.rx_bits / 8;
  639. if(part_len_bytes > FURI_HAL_NFC_DATA_BUFF_SIZE - tx_rx->rx_bits / 8) {
  640. FURI_LOG_W(TAG, "Overrun rx buf");
  641. return false;
  642. }
  643. if(part_len_bytes == 0) {
  644. FURI_LOG_W(TAG, "Empty 0xAF response");
  645. return false;
  646. }
  647. memcpy(tx_rx->rx_data + tx_rx->rx_bits / 8, tmp.rx_data + 1, part_len_bytes - 1);
  648. tx_rx->rx_data[0] = tmp.rx_data[0];
  649. tx_rx->rx_bits += 8 * (part_len_bytes - 1);
  650. }
  651. return true;
  652. }
  653. void furi_hal_nfc_sleep() {
  654. rfalNfcDeactivate(false);
  655. rfalLowPowerModeStart();
  656. }