encoder-hid.cpp 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. #include "encoder-hid.h"
  2. #include <furi.h>
  3. void EncoderHID::init(const uint8_t* data, const uint8_t data_size) {
  4. furi_check(data_size == 3);
  5. card_data[0] = 0;
  6. card_data[1] = 0;
  7. card_data[2] = 0;
  8. uint32_t fc_cn = (data[0] << 16) | (data[1] << 8) | data[2];
  9. // even parity sum calculation (high 12 bits of data)
  10. uint8_t even_parity_sum = 0;
  11. for(int8_t i = 12; i < 24; i++) {
  12. if(((fc_cn >> i) & 1) == 1) {
  13. even_parity_sum++;
  14. }
  15. }
  16. // odd parity sum calculation (low 12 bits of data)
  17. uint8_t odd_parity_sum = 1;
  18. for(int8_t i = 0; i < 12; i++) {
  19. if(((fc_cn >> i) & 1) == 1) {
  20. odd_parity_sum++;
  21. }
  22. }
  23. // 0x1D preamble
  24. write_raw_bit(0, 0);
  25. write_raw_bit(0, 1);
  26. write_raw_bit(0, 2);
  27. write_raw_bit(1, 3);
  28. write_raw_bit(1, 4);
  29. write_raw_bit(1, 5);
  30. write_raw_bit(0, 6);
  31. write_raw_bit(1, 7);
  32. // company / OEM code 1
  33. write_bit(0, 8);
  34. write_bit(0, 10);
  35. write_bit(0, 12);
  36. write_bit(0, 14);
  37. write_bit(0, 16);
  38. write_bit(0, 18);
  39. write_bit(1, 20);
  40. // card format / length 1
  41. write_bit(0, 22);
  42. write_bit(0, 24);
  43. write_bit(0, 26);
  44. write_bit(0, 28);
  45. write_bit(0, 30);
  46. write_bit(0, 32);
  47. write_bit(0, 34);
  48. write_bit(0, 36);
  49. write_bit(0, 38);
  50. write_bit(0, 40);
  51. write_bit(1, 42);
  52. // even parity bit
  53. write_bit((even_parity_sum % 2), 44);
  54. // data
  55. for(uint8_t i = 0; i < 24; i++) {
  56. write_bit((fc_cn >> (23 - i)) & 1, 46 + (i * 2));
  57. }
  58. // odd parity bit
  59. write_bit((odd_parity_sum % 2), 94);
  60. card_data_index = 0;
  61. bit_index = 0;
  62. }
  63. void EncoderHID::write_bit(bool bit, uint8_t position) {
  64. write_raw_bit(bit, position + 0);
  65. write_raw_bit(!bit, position + 1);
  66. }
  67. void EncoderHID::write_raw_bit(bool bit, uint8_t position) {
  68. if(bit) {
  69. card_data[position / 32] |= 1UL << (31 - (position % 32));
  70. } else {
  71. card_data[position / 32] &= ~(1UL << (31 - (position % 32)));
  72. }
  73. }
  74. void EncoderHID::get_next(bool* polarity, uint16_t* period, uint16_t* pulse) {
  75. // hid 0 is 6 cycles by 8 clocks
  76. const uint8_t hid_0_period = 8;
  77. const uint8_t hid_0_count = 6;
  78. // hid 1 is 5 cycles by 10 clocks
  79. const uint8_t hid_1_period = 10;
  80. const uint8_t hid_1_count = 5;
  81. bool bit = (card_data[card_data_index / 32] >> (31 - (card_data_index % 32))) & 1;
  82. *polarity = true;
  83. if(bit) {
  84. *period = hid_1_period;
  85. *pulse = hid_1_period / 2;
  86. bit_index++;
  87. if(bit_index >= hid_1_count) {
  88. bit_index = 0;
  89. card_data_index++;
  90. if(card_data_index >= (32 * card_data_max)) {
  91. card_data_index = 0;
  92. }
  93. }
  94. } else {
  95. *period = hid_0_period;
  96. *pulse = hid_0_period / 2;
  97. bit_index++;
  98. if(bit_index >= hid_0_count) {
  99. bit_index = 0;
  100. card_data_index++;
  101. if(card_data_index >= (32 * card_data_max)) {
  102. card_data_index = 0;
  103. }
  104. }
  105. }
  106. }