| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534 |
- /* Copyright (C) 2022-2023 Salvatore Sanfilippo -- All Rights Reserved
- * See the LICENSE file for information about the license. */
- #include <furi.h>
- #include <furi_hal.h>
- #include <lib/flipper_format/flipper_format.h>
- #include <input/input.h>
- #include <gui/gui.h>
- #include <stdlib.h>
- #include "app.h"
- #include "app_buffer.h"
- RawSamplesBuffer *RawSamples, *DetectedSamples;
- extern const SubGhzProtocolRegistry protoview_protocol_registry;
- /* Render the received signal.
- *
- * The screen of the flipper is 128 x 64. Even using 4 pixels per line
- * (where low level signal is one pixel high, high level is 4 pixels
- * high) and 4 pixels of spacing between the different lines, we can
- * plot comfortably 8 lines.
- *
- * The 'idx' argument is the first sample to render in the circular
- * buffer. */
- void render_signal(ProtoViewApp *app, Canvas *const canvas, RawSamplesBuffer *buf, uint32_t idx) {
- canvas_set_color(canvas, ColorBlack);
- int rows = 8;
- uint32_t time_per_pixel = app->us_scale;
- uint32_t start_idx = idx;
- bool level = 0;
- uint32_t dur = 0, sample_num = 0;
- for (int row = 0; row < rows ; row++) {
- for (int x = 0; x < 128; x++) {
- int y = 3 + row*8;
- if (dur < time_per_pixel/2) {
- /* Get more data. */
- raw_samples_get(buf, idx++, &level, &dur);
- sample_num++;
- }
- canvas_draw_line(canvas, x,y,x,y-(level*3));
- /* Write a small triangle under the last sample detected. */
- if (app->signal_bestlen != 0 &&
- sample_num+start_idx == app->signal_bestlen+1)
- {
- canvas_draw_dot(canvas,x,y+2);
- canvas_draw_dot(canvas,x-1,y+3);
- canvas_draw_dot(canvas,x,y+3);
- canvas_draw_dot(canvas,x+1,y+3);
- sample_num++; /* Make sure we don't mark the next, too. */
- }
- /* Remove from the current level duration the time we
- * just plot. */
- if (dur > time_per_pixel)
- dur -= time_per_pixel;
- else
- dur = 0;
- }
- }
- }
- /* Return the time difference between a and b, always >= 0 since
- * the absolute value is returned. */
- uint32_t duration_delta(uint32_t a, uint32_t b) {
- return a > b ? a - b : b - a;
- }
- /* This function starts scanning samples at offset idx looking for the
- * longest run of pulses, either high or low, that are among 10%
- * of each other, for a maximum of three classes. The classes are
- * counted separtely for high and low signals (RF on / off) because
- * many devices tend to have different pulse lenghts depending on
- * the level of the pulse.
- *
- * For instance Oregon2 sensors, in the case of protocol 2.1 will send
- * pulses of ~400us (RF on) VS ~580us (RF off). */
- #define SEARCH_CLASSES 3
- uint32_t search_coherent_signal(RawSamplesBuffer *s, uint32_t idx) {
- struct {
- uint32_t dur[2]; /* dur[0] = low, dur[1] = high */
- uint32_t count[2]; /* Associated observed frequency. */
- } classes[SEARCH_CLASSES];
- memset(classes,0,sizeof(classes));
- uint32_t minlen = 40, maxlen = 4000; /* Depends on data rate, here we
- allow for high and low. */
- uint32_t len = 0; /* Observed len of coherent samples. */
- s->short_pulse_dur = 0;
- for (uint32_t j = idx; j < idx+500; j++) {
- bool level;
- uint32_t dur;
- raw_samples_get(s, j, &level, &dur);
- if (dur < minlen || dur > maxlen) break; /* return. */
- /* Let's see if it matches a class we already have or if we
- * can populate a new (yet empty) class. */
- uint32_t k;
- for (k = 0; k < SEARCH_CLASSES; k++) {
- if (classes[k].count[level] == 0) {
- classes[k].dur[level] = dur;
- classes[k].count[level] = 1;
- break; /* Sample accepted. */
- } else {
- uint32_t classavg = classes[k].dur[level];
- uint32_t count = classes[k].count[level];
- uint32_t delta = duration_delta(dur,classavg);
- if (delta < classavg/10) {
- /* It is useful to compute the average of the class
- * we are observing. We know how many samples we got so
- * far, so we can recompute the average easily.
- * By always having a better estimate of the pulse len
- * we can avoid missing next samples in case the first
- * observed samples are too off. */
- classavg = ((classavg * count) + dur) / (count+1);
- classes[k].dur[level] = classavg;
- classes[k].count[level]++;
- break; /* Sample accepted. */
- }
- }
- }
- if (k == SEARCH_CLASSES) break; /* No match, return. */
- /* If we are here, we accepted this sample. Try with the next
- * one. */
- len++;
- }
- /* Update the buffer setting the shortest pulse we found
- * among the three classes. This will be used when scaling
- * for visualization. */
- for (int j = 0; j < SEARCH_CLASSES; j++) {
- for (int level = 0; level < 2; level++) {
- if (classes[j].dur[level] == 0) continue;
- if (classes[j].count[level] < 3) continue;
- if (s->short_pulse_dur == 0 ||
- s->short_pulse_dur > classes[j].dur[level])
- {
- s->short_pulse_dur = classes[j].dur[level];
- }
- }
- }
- return len;
- }
- /* Search the buffer with the stored signal (last N samples received)
- * in order to find a coherent signal. If a signal that does not appear to
- * be just noise is found, it is set in DetectedSamples global signal
- * buffer, that is what is rendered on the screen. */
- void scan_for_signal(ProtoViewApp *app) {
- /* We need to work on a copy: the RawSamples buffer is populated
- * by the background thread receiving data. */
- RawSamplesBuffer *copy = raw_samples_alloc();
- raw_samples_copy(copy,RawSamples);
- /* Try to seek on data that looks to have a regular high low high low
- * pattern. */
- uint32_t minlen = 13; /* Min run of coherent samples. Up to
- 12 samples it's very easy to mistake
- noise for signal. */
- uint32_t i = 0;
- while (i < copy->total-1) {
- uint32_t thislen = search_coherent_signal(copy,i);
- if (thislen > minlen && thislen > app->signal_bestlen) {
- app->signal_bestlen = thislen;
- raw_samples_copy(DetectedSamples,copy);
- DetectedSamples->idx = (DetectedSamples->idx+i)%
- DetectedSamples->total;
- FURI_LOG_E(TAG, "Displayed sample updated (%d samples)",
- (int)thislen);
- }
- i += thislen ? thislen : 1;
- }
- raw_samples_free(copy);
- }
- /* Draw some text with a border. If the outside color is black and the inside
- * color is white, it just writes the border of the text, but the function can
- * also be used to write a bold variation of the font setting both the
- * colors to black, or alternatively to write a black text with a white
- * border so that it is visible if there are black stuff on the background. */
- void canvas_draw_str_with_border(Canvas* canvas, uint8_t x, uint8_t y, const char* str, Color text_color, Color border_color)
- {
- struct {
- uint8_t x; uint8_t y;
- } dir[8] = {
- {-1,-1},
- {0,-1},
- {1,-1},
- {1,0},
- {1,1},
- {0,1},
- {-1,1},
- {-1,0}
- };
- /* Rotate in all the directions writing the same string to create a
- * border, then write the actual string in the other color in the
- * middle. */
- canvas_set_color(canvas, border_color);
- for (int j = 0; j < 8; j++)
- canvas_draw_str(canvas,x+dir[j].x,y+dir[j].y,str);
- canvas_set_color(canvas, text_color);
- canvas_draw_str(canvas,x,y,str);
- canvas_set_color(canvas, ColorBlack);
- }
- /* Raw pulses rendering. This is our default view. */
- void render_view_raw_pulses(Canvas *const canvas, ProtoViewApp *app) {
- /* Show signal. */
- render_signal(app, canvas, DetectedSamples, app->signal_offset);
- /* Show signal information. */
- char buf[64];
- snprintf(buf,sizeof(buf),"%luus",
- (unsigned long)DetectedSamples->short_pulse_dur);
- canvas_set_font(canvas, FontSecondary);
- canvas_draw_str_with_border(canvas, 97, 63, buf, ColorWhite, ColorBlack);
- }
- /* Renders a single view with frequency and modulation setting. However
- * this are logically two different views, and only one of the settings
- * will be highlighted. */
- void render_view_settings(Canvas *const canvas, ProtoViewApp *app) {
- UNUSED(app);
- canvas_set_font(canvas, FontPrimary);
- if (app->current_view == ViewFrequencySettings)
- canvas_draw_str_with_border(canvas,1,10,"Frequency",ColorWhite,ColorBlack);
- else
- canvas_draw_str(canvas,1,10,"Frequency");
- if (app->current_view == ViewModulationSettings)
- canvas_draw_str_with_border(canvas,70,10,"Modulation",ColorWhite,ColorBlack);
- else
- canvas_draw_str(canvas,70,10,"Modulation");
- canvas_set_font(canvas, FontSecondary);
- canvas_draw_str(canvas,10,61,"Use up and down to modify");
- /* Show frequency. We can use big numbers font since it's just a number. */
- if (app->current_view == ViewFrequencySettings) {
- char buf[16];
- snprintf(buf,sizeof(buf),"%.2f",(double)app->frequency/1000000);
- canvas_set_font(canvas, FontBigNumbers);
- canvas_draw_str(canvas, 30, 40, buf);
- } else if (app->current_view == ViewModulationSettings) {
- int current = app->modulation;
- canvas_set_font(canvas, FontPrimary);
- canvas_draw_str(canvas, 33, 39, ProtoViewModulations[current].name);
- }
- }
- /* The callback actually just passes the control to the actual active
- * view callback, after setting up basic stuff like cleaning the screen
- * and setting color to black. */
- static void render_callback(Canvas *const canvas, void *ctx) {
- ProtoViewApp *app = ctx;
- /* Clear screen. */
- canvas_set_color(canvas, ColorWhite);
- canvas_draw_box(canvas, 0, 0, 127, 63);
- canvas_set_color(canvas, ColorBlack);
- canvas_set_font(canvas, FontPrimary);
- /* Call who is in charge right now. */
- switch(app->current_view) {
- case ViewRawPulses: render_view_raw_pulses(canvas,app); break;
- case ViewFrequencySettings:
- case ViewModulationSettings:
- render_view_settings(canvas,app); break;
- case ViewLast: furi_crash(TAG " ViewLast selected"); break;
- }
- }
- /* Here all we do is putting the events into the queue that will be handled
- * in the while() loop of the app entry point function. */
- static void input_callback(InputEvent* input_event, void* ctx)
- {
- ProtoViewApp *app = ctx;
- furi_message_queue_put(app->event_queue,input_event,FuriWaitForever);
- FURI_LOG_E(TAG, "INPUT CALLBACK %d", (int)input_event->key);
- }
- /* Allocate the application state and initialize a number of stuff.
- * This is called in the entry point to create the application state. */
- ProtoViewApp* protoview_app_alloc() {
- ProtoViewApp *app = malloc(sizeof(ProtoViewApp));
- // Init shared data structures
- RawSamples = raw_samples_alloc();
- DetectedSamples = raw_samples_alloc();
- //init setting
- app->setting = subghz_setting_alloc();
- subghz_setting_load(app->setting, EXT_PATH("subghz/assets/setting_user"));
- // GUI
- app->gui = furi_record_open(RECORD_GUI);
- app->view_port = view_port_alloc();
- view_port_draw_callback_set(app->view_port, render_callback, app);
- view_port_input_callback_set(app->view_port, input_callback, app);
- gui_add_view_port(app->gui, app->view_port, GuiLayerFullscreen);
- app->event_queue = furi_message_queue_alloc(8, sizeof(InputEvent));
- app->current_view = ViewRawPulses;
- // Signal found and visualization defaults
- app->signal_bestlen = 0;
- app->us_scale = 100;
- app->signal_offset = 0;
- //init Worker & Protocol
- app->txrx = malloc(sizeof(ProtoViewTxRx));
- /* Setup rx worker and environment. */
- app->txrx->worker = subghz_worker_alloc();
- app->txrx->environment = subghz_environment_alloc();
- subghz_environment_set_protocol_registry(
- app->txrx->environment, (void*)&protoview_protocol_registry);
- app->txrx->receiver = subghz_receiver_alloc_init(app->txrx->environment);
- subghz_receiver_set_filter(app->txrx->receiver, SubGhzProtocolFlag_Decodable);
- subghz_worker_set_overrun_callback(
- app->txrx->worker, (SubGhzWorkerOverrunCallback)subghz_receiver_reset);
- subghz_worker_set_pair_callback(
- app->txrx->worker, (SubGhzWorkerPairCallback)subghz_receiver_decode);
- subghz_worker_set_context(app->txrx->worker, app->txrx->receiver);
-
- app->frequency = subghz_setting_get_default_frequency(app->setting);
- app->modulation = 0; /* Defaults to ProtoViewModulations[0]. */
- furi_hal_power_suppress_charge_enter();
- app->running = 1;
- return app;
- }
- /* Free what the application allocated. It is not clear to me if the
- * Flipper OS, once the application exits, will be able to reclaim space
- * even if we forget to free something here. */
- void protoview_app_free(ProtoViewApp *app) {
- furi_assert(app);
- // Put CC1101 on sleep.
- radio_sleep(app);
- // View related.
- view_port_enabled_set(app->view_port, false);
- gui_remove_view_port(app->gui, app->view_port);
- view_port_free(app->view_port);
- furi_record_close(RECORD_GUI);
- furi_message_queue_free(app->event_queue);
- app->gui = NULL;
- // Frequency setting.
- subghz_setting_free(app->setting);
- // Worker stuff.
- subghz_receiver_free(app->txrx->receiver);
- subghz_environment_free(app->txrx->environment);
- subghz_worker_free(app->txrx->worker);
- free(app->txrx);
- // Raw samples buffers.
- raw_samples_free(RawSamples);
- raw_samples_free(DetectedSamples);
- furi_hal_power_suppress_charge_exit();
- free(app);
- }
- /* Called periodically. Do signal processing here. Data we process here
- * will be later displayed by the render callback. The side effect of this
- * function is to scan for signals and set DetectedSamples. */
- static void timer_callback(void *ctx) {
- ProtoViewApp *app = ctx;
- scan_for_signal(app);
- }
- /* Handle input for the raw pulses view. */
- void process_input_raw_pulses(ProtoViewApp *app, InputEvent input) {
- if (input.type == InputTypeRepeat) {
- /* Handle panning of the signal window. Long pressing
- * right will show successive samples, long pressing left
- * previous samples. */
- if (input.key == InputKeyRight) app->signal_offset++;
- else if (input.key == InputKeyLeft) app->signal_offset--;
- } else if (input.type == InputTypeShort) {
- if (input.key == InputKeyOk) {
- /* Reset the current sample to capture the next. */
- app->signal_bestlen = 0;
- app->signal_offset = 0;
- raw_samples_reset(DetectedSamples);
- raw_samples_reset(RawSamples);
- } else if (input.key == InputKeyDown) {
- /* Rescaling. The set becomes finer under 50us per pixel. */
- uint32_t scale_step = app->us_scale >= 50 ? 50 : 10;
- if (app->us_scale < 500) app->us_scale += scale_step;
- } else if (input.key == InputKeyUp) {
- uint32_t scale_step = app->us_scale > 50 ? 50 : 10;
- if (app->us_scale > 10) app->us_scale -= scale_step;
- }
- }
- }
- /* Handle input for the settings view. */
- void process_input_settings(ProtoViewApp *app, InputEvent input) {
- /* Here we handle only up and down. Avoid any work if the user
- * pressed something else. */
- if (input.key != InputKeyDown && input.key != InputKeyUp) return;
- if (app->current_view == ViewFrequencySettings) {
- size_t curidx = 0, i;
- size_t count = subghz_setting_get_frequency_count(app->setting);
- /* Scan the list of frequencies to check for the index of the
- * currently set frequency. */
- for(i = 0; i < count; i++) {
- uint32_t freq = subghz_setting_get_frequency(app->setting,i);
- if (freq == app->frequency) {
- curidx = i;
- break;
- }
- }
- if (i == count) return; /* Should never happen. */
- if (input.key == InputKeyUp) {
- curidx = (curidx+1) % count;
- } else if (input.key == InputKeyDown) {
- curidx = curidx == 0 ? count-1 : curidx-1;
- }
- app->frequency = subghz_setting_get_frequency(app->setting,curidx);
- } else if (app->current_view == ViewModulationSettings) {
- uint32_t count = 0;
- uint32_t modid = app->modulation;
- while(ProtoViewModulations[count].name != NULL) count++;
- if (input.key == InputKeyUp) {
- modid = (modid+1) % count;
- } else if (input.key == InputKeyDown) {
- modid = modid == 0 ? count-1 : modid-1;
- }
- app->modulation = modid;
- }
- /* Apply changes. */
- FURI_LOG_E(TAG, "Setting view, setting frequency/modulation to %lu %s", app->frequency, ProtoViewModulations[app->modulation].name);
- radio_rx_end(app);
- radio_begin(app);
- radio_rx(app);
- }
- int32_t protoview_app_entry(void* p) {
- UNUSED(p);
- ProtoViewApp *app = protoview_app_alloc();
- /* Create a timer. We do data analysis in the callback. */
- FuriTimer *timer = furi_timer_alloc(timer_callback, FuriTimerTypePeriodic, app);
- furi_timer_start(timer, furi_kernel_get_tick_frequency() / 4);
- /* Start listening to signals immediately. */
- radio_begin(app);
- radio_rx(app);
- /* This is the main event loop: here we get the events that are pushed
- * in the queue by input_callback(), and process them one after the
- * other. The timeout is 100 milliseconds, so if not input is received
- * before such time, we exit the queue_get() function and call
- * view_port_update() in order to refresh our screen content. */
- InputEvent input;
- while(app->running) {
- FuriStatus qstat = furi_message_queue_get(app->event_queue, &input, 100);
- if (qstat == FuriStatusOk) {
- FURI_LOG_E(TAG, "Main Loop - Input: type %d key %u",
- input.type, input.key);
- /* Handle navigation here. Then handle view-specific inputs
- * in the view specific handling function. */
- if (input.type == InputTypeShort &&
- input.key == InputKeyBack)
- {
- /* Exit the app. */
- app->running = 0;
- } else if (input.type == InputTypeShort &&
- input.key == InputKeyRight)
- {
- /* Go to the next view. */
- app->current_view++;
- if (app->current_view == ViewLast) app->current_view = 0;
- } else if (input.type == InputTypeShort &&
- input.key == InputKeyLeft)
- {
- /* Go to the previous view. */
- if (app->current_view == 0)
- app->current_view = ViewLast-1;
- else
- app->current_view--;
- } else {
- /* This is where we pass the control to the currently
- * active view input processing. */
- switch(app->current_view) {
- case ViewRawPulses:
- process_input_raw_pulses(app,input);
- break;
- case ViewFrequencySettings:
- case ViewModulationSettings:
- process_input_settings(app,input);
- break;
- case ViewLast: furi_crash(TAG " ViewLast selected"); break;
- }
- }
- } else {
- /* Useful to understand if the app is still alive when it
- * does not respond because of bugs. */
- static int c = 0; c++;
- if (!(c % 20)) FURI_LOG_E(TAG, "Loop timeout");
- }
- view_port_update(app->view_port);
- }
- /* App no longer running. Shut down and free. */
- if (app->txrx->txrx_state == TxRxStateRx) {
- FURI_LOG_E(TAG, "Putting CC1101 to sleep before exiting.");
- radio_rx_end(app);
- radio_sleep(app);
- }
- furi_timer_free(timer);
- protoview_app_free(app);
- return 0;
- }
|