seader_worker.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938
  1. #include "seader_worker_i.h"
  2. #include <flipper_format/flipper_format.h>
  3. #include <lib/lfrfid/tools/bit_lib.h>
  4. #define TAG "SeaderWorker"
  5. #define APDU_HEADER_LEN 5
  6. #define ASN1_PREFIX 6
  7. #define ASN1_DEBUG true
  8. #define RFAL_PICOPASS_TXRX_FLAGS \
  9. (FURI_HAL_NFC_LL_TXRX_FLAGS_CRC_TX_MANUAL | FURI_HAL_NFC_LL_TXRX_FLAGS_AGC_ON | \
  10. FURI_HAL_NFC_LL_TXRX_FLAGS_PAR_RX_REMV | FURI_HAL_NFC_LL_TXRX_FLAGS_CRC_RX_KEEP)
  11. // TODO: const
  12. uint8_t GET_RESPONSE[] = {0x00, 0xc0, 0x00, 0x00, 0xff};
  13. #ifdef ASN1_DEBUG
  14. char payloadDebug[384] = {0};
  15. #endif
  16. char display[SEADER_UART_RX_BUF_SIZE * 2 + 1] = {0};
  17. char asn1_log[SEADER_UART_RX_BUF_SIZE] = {0};
  18. bool requestPacs = true;
  19. // Forward declaration
  20. void seader_send_card_detected(SeaderUartBridge* seader_uart, CardDetails_t* cardDetails);
  21. /***************************** Seader Worker API *******************************/
  22. SeaderWorker* seader_worker_alloc() {
  23. SeaderWorker* seader_worker = malloc(sizeof(SeaderWorker));
  24. // Worker thread attributes
  25. seader_worker->thread =
  26. furi_thread_alloc_ex("SeaderWorker", 8192, seader_worker_task, seader_worker);
  27. seader_worker->messages = furi_message_queue_alloc(3, sizeof(SeaderAPDU));
  28. seader_worker->mq_mutex = furi_mutex_alloc(FuriMutexTypeNormal);
  29. seader_worker->callback = NULL;
  30. seader_worker->context = NULL;
  31. seader_worker->storage = furi_record_open(RECORD_STORAGE);
  32. memset(seader_worker->sam_version, 0, sizeof(seader_worker->sam_version));
  33. seader_worker_change_state(seader_worker, SeaderWorkerStateReady);
  34. return seader_worker;
  35. }
  36. void seader_worker_free(SeaderWorker* seader_worker) {
  37. furi_assert(seader_worker);
  38. furi_thread_free(seader_worker->thread);
  39. furi_message_queue_free(seader_worker->messages);
  40. furi_mutex_free(seader_worker->mq_mutex);
  41. furi_record_close(RECORD_STORAGE);
  42. free(seader_worker);
  43. }
  44. SeaderWorkerState seader_worker_get_state(SeaderWorker* seader_worker) {
  45. return seader_worker->state;
  46. }
  47. void seader_worker_start(
  48. SeaderWorker* seader_worker,
  49. SeaderWorkerState state,
  50. SeaderUartBridge* uart,
  51. SeaderWorkerCallback callback,
  52. void* context) {
  53. furi_assert(seader_worker);
  54. furi_assert(uart);
  55. seader_worker->stage = SeaderPollerEventTypeCardDetect;
  56. seader_worker->callback = callback;
  57. seader_worker->context = context;
  58. seader_worker->uart = uart;
  59. seader_worker_change_state(seader_worker, state);
  60. furi_thread_start(seader_worker->thread);
  61. }
  62. void seader_worker_stop(SeaderWorker* seader_worker) {
  63. furi_assert(seader_worker);
  64. if(seader_worker->state == SeaderWorkerStateBroken ||
  65. seader_worker->state == SeaderWorkerStateReady) {
  66. return;
  67. }
  68. seader_worker_change_state(seader_worker, SeaderWorkerStateStop);
  69. furi_thread_join(seader_worker->thread);
  70. }
  71. void seader_worker_change_state(SeaderWorker* seader_worker, SeaderWorkerState state) {
  72. seader_worker->state = state;
  73. }
  74. /***************************** Seader Worker Thread *******************************/
  75. void* calloc(size_t count, size_t size) {
  76. return malloc(count * size);
  77. }
  78. bool seader_send_apdu(
  79. SeaderUartBridge* seader_uart,
  80. uint8_t CLA,
  81. uint8_t INS,
  82. uint8_t P1,
  83. uint8_t P2,
  84. uint8_t* payload,
  85. uint8_t length) {
  86. if(APDU_HEADER_LEN + length > SEADER_UART_RX_BUF_SIZE) {
  87. FURI_LOG_E(TAG, "Cannot send message, too long: %d", APDU_HEADER_LEN + length);
  88. return false;
  89. }
  90. uint8_t* apdu = malloc(APDU_HEADER_LEN + length);
  91. apdu[0] = CLA;
  92. apdu[1] = INS;
  93. apdu[2] = P1;
  94. apdu[3] = P2;
  95. apdu[4] = length;
  96. memcpy(apdu + APDU_HEADER_LEN, payload, length);
  97. seader_ccid_XfrBlock(seader_uart, apdu, APDU_HEADER_LEN + length);
  98. free(apdu);
  99. return true;
  100. }
  101. static int seader_asn_to_string(const void* buffer, size_t size, void* app_key) {
  102. if(app_key) {
  103. char* str = (char*)app_key;
  104. size_t next = strlen(str);
  105. strncpy(str + next, buffer, size);
  106. } else {
  107. uint8_t next = strlen(asn1_log);
  108. strncpy(asn1_log + next, buffer, size);
  109. }
  110. return 0;
  111. }
  112. void seader_send_payload(
  113. SeaderUartBridge* seader_uart,
  114. Payload_t* payload,
  115. uint8_t to,
  116. uint8_t from,
  117. uint8_t replyTo) {
  118. uint8_t rBuffer[SEADER_UART_RX_BUF_SIZE] = {0};
  119. asn_enc_rval_t er = der_encode_to_buffer(
  120. &asn_DEF_Payload, payload, rBuffer + ASN1_PREFIX, sizeof(rBuffer) - ASN1_PREFIX);
  121. #ifdef ASN1_DEBUG
  122. if(er.encoded > -1) {
  123. memset(payloadDebug, 0, sizeof(payloadDebug));
  124. (&asn_DEF_Payload)
  125. ->op->print_struct(&asn_DEF_Payload, payload, 1, seader_asn_to_string, payloadDebug);
  126. if(strlen(payloadDebug) > 0) {
  127. FURI_LOG_D(TAG, "Sending payload[%d %d %d]: %s", to, from, replyTo, payloadDebug);
  128. }
  129. }
  130. #endif
  131. //0xa0, 0xda, 0x02, 0x63, 0x00, 0x00, 0x0a,
  132. //0x44, 0x0a, 0x44, 0x00, 0x00, 0x00, 0xa0, 0x02, 0x96, 0x00
  133. rBuffer[0] = to;
  134. rBuffer[1] = from;
  135. rBuffer[2] = replyTo;
  136. seader_send_apdu(seader_uart, 0xA0, 0xDA, 0x02, 0x63, rBuffer, 6 + er.encoded);
  137. }
  138. void seader_send_response(
  139. SeaderUartBridge* seader_uart,
  140. Response_t* response,
  141. uint8_t to,
  142. uint8_t from,
  143. uint8_t replyTo) {
  144. Payload_t* payload = 0;
  145. payload = calloc(1, sizeof *payload);
  146. assert(payload);
  147. payload->present = Payload_PR_response;
  148. payload->choice.response = *response;
  149. seader_send_payload(seader_uart, payload, to, from, replyTo);
  150. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  151. }
  152. void sendRequestPacs(SeaderUartBridge* seader_uart) {
  153. RequestPacs_t* requestPacs = 0;
  154. requestPacs = calloc(1, sizeof *requestPacs);
  155. assert(requestPacs);
  156. requestPacs->contentElementTag = ContentElementTag_implicitFormatPhysicalAccessBits;
  157. SamCommand_t* samCommand = 0;
  158. samCommand = calloc(1, sizeof *samCommand);
  159. assert(samCommand);
  160. samCommand->present = SamCommand_PR_requestPacs;
  161. samCommand->choice.requestPacs = *requestPacs;
  162. Payload_t* payload = 0;
  163. payload = calloc(1, sizeof *payload);
  164. assert(payload);
  165. payload->present = Payload_PR_samCommand;
  166. payload->choice.samCommand = *samCommand;
  167. seader_send_payload(seader_uart, payload, 0x44, 0x0a, 0x44);
  168. ASN_STRUCT_FREE(asn_DEF_RequestPacs, requestPacs);
  169. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  170. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  171. }
  172. void seader_worker_send_version(SeaderWorker* seader_worker) {
  173. SeaderUartBridge* seader_uart = seader_worker->uart;
  174. SamCommand_t* samCommand = 0;
  175. samCommand = calloc(1, sizeof *samCommand);
  176. assert(samCommand);
  177. samCommand->present = SamCommand_PR_version;
  178. Payload_t* payload = 0;
  179. payload = calloc(1, sizeof *payload);
  180. assert(payload);
  181. payload->present = Payload_PR_samCommand;
  182. payload->choice.samCommand = *samCommand;
  183. seader_send_payload(seader_uart, payload, 0x44, 0x0a, 0x44);
  184. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  185. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  186. }
  187. void seader_send_card_detected(SeaderUartBridge* seader_uart, CardDetails_t* cardDetails) {
  188. CardDetected_t* cardDetected = 0;
  189. cardDetected = calloc(1, sizeof *cardDetected);
  190. assert(cardDetected);
  191. cardDetected->detectedCardDetails = *cardDetails;
  192. SamCommand_t* samCommand = 0;
  193. samCommand = calloc(1, sizeof *samCommand);
  194. assert(samCommand);
  195. samCommand->present = SamCommand_PR_cardDetected;
  196. samCommand->choice.cardDetected = *cardDetected;
  197. Payload_t* payload = 0;
  198. payload = calloc(1, sizeof *payload);
  199. assert(payload);
  200. payload->present = Payload_PR_samCommand;
  201. payload->choice.samCommand = *samCommand;
  202. seader_send_payload(seader_uart, payload, 0x44, 0x0a, 0x44);
  203. ASN_STRUCT_FREE(asn_DEF_CardDetected, cardDetected);
  204. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  205. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  206. }
  207. bool seader_unpack_pacs(SeaderCredential* seader_credential, uint8_t* buf, size_t size) {
  208. PAC_t* pac = 0;
  209. pac = calloc(1, sizeof *pac);
  210. assert(pac);
  211. bool rtn = false;
  212. asn_dec_rval_t rval = asn_decode(0, ATS_DER, &asn_DEF_PAC, (void**)&pac, buf, size);
  213. if(rval.code == RC_OK) {
  214. char pacDebug[384] = {0};
  215. (&asn_DEF_PAC)->op->print_struct(&asn_DEF_PAC, pac, 1, seader_asn_to_string, pacDebug);
  216. if(strlen(pacDebug) > 0) {
  217. FURI_LOG_D(TAG, "Received pac: %s", pacDebug);
  218. memset(display, 0, sizeof(display));
  219. if(seader_credential->sio[0] == 0x30) {
  220. for(uint8_t i = 0; i < sizeof(seader_credential->sio); i++) {
  221. snprintf(
  222. display + (i * 2), sizeof(display), "%02x", seader_credential->sio[i]);
  223. }
  224. FURI_LOG_D(TAG, "SIO %s", display);
  225. }
  226. }
  227. if(pac->size <= sizeof(seader_credential->credential)) {
  228. // TODO: make credential into a 12 byte array
  229. seader_credential->bit_length = pac->size * 8 - pac->bits_unused;
  230. memcpy(&seader_credential->credential, pac->buf, pac->size);
  231. seader_credential->credential = __builtin_bswap64(seader_credential->credential);
  232. seader_credential->credential = seader_credential->credential >>
  233. (64 - seader_credential->bit_length);
  234. rtn = true;
  235. } else {
  236. // PACS too big (probably bad data)
  237. }
  238. }
  239. ASN_STRUCT_FREE(asn_DEF_PAC, pac);
  240. return rtn;
  241. }
  242. // 800201298106683d052026b6820101
  243. //300F800201298106683D052026B6820101
  244. bool seader_parse_version(SeaderWorker* seader_worker, uint8_t* buf, size_t size) {
  245. SamVersion_t* version = 0;
  246. version = calloc(1, sizeof *version);
  247. assert(version);
  248. bool rtn = false;
  249. if(size > 30) {
  250. // Too large to handle now
  251. FURI_LOG_W(TAG, "Version of %d is to long to parse", size);
  252. return false;
  253. }
  254. // Add sequence prefix
  255. uint8_t seq[32] = {0x30};
  256. seq[1] = (uint8_t)size;
  257. memcpy(seq + 2, buf, size);
  258. asn_dec_rval_t rval =
  259. asn_decode(0, ATS_DER, &asn_DEF_SamVersion, (void**)&version, seq, size + 2);
  260. if(rval.code == RC_OK) {
  261. char versionDebug[128] = {0};
  262. (&asn_DEF_SamVersion)
  263. ->op->print_struct(
  264. &asn_DEF_SamVersion, version, 1, seader_asn_to_string, versionDebug);
  265. if(strlen(versionDebug) > 0) {
  266. // FURI_LOG_D(TAG, "Received version: %s", versionDebug);
  267. }
  268. if(version->version.size == 2) {
  269. memcpy(seader_worker->sam_version, version->version.buf, version->version.size);
  270. }
  271. rtn = true;
  272. }
  273. ASN_STRUCT_FREE(asn_DEF_SamVersion, version);
  274. return rtn;
  275. }
  276. bool seader_parse_sam_response(Seader* seader, SamResponse_t* samResponse) {
  277. SeaderWorker* seader_worker = seader->worker;
  278. SeaderUartBridge* seader_uart = seader_worker->uart;
  279. SeaderCredential* credential = seader->credential;
  280. if(samResponse->size == 0) {
  281. if(requestPacs) {
  282. FURI_LOG_D(TAG, "samResponse %d => requesting PACS", samResponse->size);
  283. sendRequestPacs(seader_uart);
  284. requestPacs = false;
  285. } else {
  286. FURI_LOG_D(TAG, "samResponse %d, no action", samResponse->size);
  287. }
  288. } else if(seader_parse_version(seader_worker, samResponse->buf, samResponse->size)) {
  289. // no-op
  290. } else if(seader_unpack_pacs(credential, samResponse->buf, samResponse->size)) {
  291. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventWorkerExit);
  292. } else {
  293. memset(display, 0, sizeof(display));
  294. for(uint8_t i = 0; i < samResponse->size; i++) {
  295. snprintf(display + (i * 2), sizeof(display), "%02x", samResponse->buf[i]);
  296. }
  297. FURI_LOG_D(TAG, "Unknown samResponse %d: %s", samResponse->size, display);
  298. }
  299. return false;
  300. }
  301. bool seader_parse_response(Seader* seader, Response_t* response) {
  302. switch(response->present) {
  303. case Response_PR_samResponse:
  304. seader_parse_sam_response(seader, &response->choice.samResponse);
  305. break;
  306. default:
  307. break;
  308. };
  309. return false;
  310. }
  311. void seader_send_nfc_rx(SeaderUartBridge* seader_uart, uint8_t* buffer, size_t len) {
  312. OCTET_STRING_t rxData = {.buf = buffer, .size = len};
  313. uint8_t status[] = {0x00, 0x00};
  314. RfStatus_t rfStatus = {.buf = status, .size = 2};
  315. NFCRx_t* nfcRx = 0;
  316. nfcRx = calloc(1, sizeof *nfcRx);
  317. assert(nfcRx);
  318. nfcRx->rfStatus = rfStatus;
  319. nfcRx->data = &rxData;
  320. NFCResponse_t* nfcResponse = 0;
  321. nfcResponse = calloc(1, sizeof *nfcResponse);
  322. assert(nfcResponse);
  323. nfcResponse->present = NFCResponse_PR_nfcRx;
  324. nfcResponse->choice.nfcRx = *nfcRx;
  325. Response_t* response = 0;
  326. response = calloc(1, sizeof *response);
  327. assert(response);
  328. response->present = Response_PR_nfcResponse;
  329. response->choice.nfcResponse = *nfcResponse;
  330. seader_send_response(seader_uart, response, 0x14, 0x0a, 0x0);
  331. ASN_STRUCT_FREE(asn_DEF_NFCRx, nfcRx);
  332. ASN_STRUCT_FREE(asn_DEF_NFCResponse, nfcResponse);
  333. ASN_STRUCT_FREE(asn_DEF_Response, response);
  334. }
  335. static uint16_t seader_worker_picopass_update_ccitt(uint16_t crcSeed, uint8_t dataByte) {
  336. uint16_t crc = crcSeed;
  337. uint8_t dat = dataByte;
  338. dat ^= (uint8_t)(crc & 0xFFU);
  339. dat ^= (dat << 4);
  340. crc = (crc >> 8) ^ (((uint16_t)dat) << 8) ^ (((uint16_t)dat) << 3) ^ (((uint16_t)dat) >> 4);
  341. return crc;
  342. }
  343. static uint16_t seader_worker_picopass_calculate_ccitt(
  344. uint16_t preloadValue,
  345. const uint8_t* buf,
  346. uint16_t length) {
  347. uint16_t crc = preloadValue;
  348. uint16_t index;
  349. for(index = 0; index < length; index++) {
  350. crc = seader_worker_picopass_update_ccitt(crc, buf[index]);
  351. }
  352. return crc;
  353. }
  354. uint8_t read4Block6[] = {0x06, 0x06, 0x45, 0x56};
  355. uint8_t read4Block9[] = {0x06, 0x09, 0xB2, 0xAE};
  356. uint8_t read4Block10[] = {0x06, 0x0A, 0x29, 0x9C};
  357. uint8_t read4Block13[] = {0x06, 0x0D, 0x96, 0xE8};
  358. uint8_t updateBlock2[] = {0x87, 0x02}; // TODO
  359. void seader_capture_sio(BitBuffer* tx_buffer, BitBuffer* rx_buffer, SeaderCredential* credential) {
  360. const uint8_t* buffer = bit_buffer_get_data(tx_buffer);
  361. size_t len = bit_buffer_get_size_bytes(tx_buffer);
  362. const uint8_t* rxBuffer = bit_buffer_get_data(rx_buffer);
  363. if(memcmp(buffer, read4Block6, len) == 0 && rxBuffer[0] == 0x30) {
  364. memcpy(credential->sio, rxBuffer, 32);
  365. } else if(memcmp(buffer, read4Block10, len) == 0 && rxBuffer[0] == 0x30) {
  366. memcpy(credential->sio, rxBuffer, 32);
  367. } else if(memcmp(buffer, read4Block9, len) == 0) {
  368. memcpy(credential->sio + 32, rxBuffer + 8, 24);
  369. } else if(memcmp(buffer, read4Block13, len) == 0) {
  370. memcpy(credential->sio + 32, rxBuffer + 8, 24);
  371. }
  372. }
  373. PicopassError seader_worker_fake_epurse_update(BitBuffer* tx_buffer, BitBuffer* rx_buffer) {
  374. const uint8_t* buffer = bit_buffer_get_data(tx_buffer);
  375. uint8_t fake_response[10];
  376. memset(fake_response, 0, sizeof(fake_response));
  377. memcpy(fake_response + 0, buffer + 6, 4);
  378. memcpy(fake_response + 4, buffer + 2, 4);
  379. uint16_t crc = seader_worker_picopass_calculate_ccitt(0xE012, fake_response, 8);
  380. memcpy(fake_response + 8, &crc, sizeof(uint16_t));
  381. bit_buffer_append_bytes(rx_buffer, fake_response, sizeof(fake_response));
  382. memset(display, 0, sizeof(display));
  383. for(uint8_t i = 0; i < sizeof(fake_response); i++) {
  384. snprintf(display + (i * 2), sizeof(display), "%02x", fake_response[i]);
  385. }
  386. FURI_LOG_I(TAG, "Fake update E-Purse response: %s", display);
  387. return PicopassErrorNone;
  388. }
  389. void seader_iso15693_transmit(Seader* seader, uint8_t* buffer, size_t len) {
  390. UNUSED(seader);
  391. UNUSED(buffer);
  392. UNUSED(len);
  393. SeaderWorker* seader_worker = seader->worker;
  394. SeaderUartBridge* seader_uart = seader_worker->uart;
  395. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  396. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  397. PicopassError error = PicopassErrorNone;
  398. do {
  399. bit_buffer_append_bytes(tx_buffer, buffer, len);
  400. if(memcmp(buffer, updateBlock2, sizeof(updateBlock2)) == 0) {
  401. error = seader_worker_fake_epurse_update(tx_buffer, rx_buffer);
  402. } else {
  403. error = picopass_poller_send_frame(
  404. seader->picopass_poller, tx_buffer, rx_buffer, SEADER_POLLER_MAX_FWT);
  405. }
  406. if(error == PicopassErrorIncorrectCrc) {
  407. error = PicopassErrorNone;
  408. }
  409. if(error != PicopassErrorNone) {
  410. seader_worker->stage = SeaderPollerEventTypeFail;
  411. break;
  412. }
  413. seader_capture_sio(tx_buffer, rx_buffer, seader->credential);
  414. seader_send_nfc_rx(
  415. seader_uart,
  416. (uint8_t*)bit_buffer_get_data(rx_buffer),
  417. bit_buffer_get_size_bytes(rx_buffer));
  418. } while(false);
  419. bit_buffer_free(tx_buffer);
  420. bit_buffer_free(rx_buffer);
  421. }
  422. /* Assumes this is called in the context of the NFC API callback */
  423. void seader_iso14443a_transmit(
  424. Seader* seader,
  425. uint8_t* buffer,
  426. size_t len,
  427. uint16_t timeout,
  428. uint8_t format[3],
  429. const Iso14443_4aPoller* iso14443_4a_poller) {
  430. UNUSED(timeout);
  431. UNUSED(format);
  432. furi_assert(seader);
  433. furi_assert(buffer);
  434. furi_assert(iso14443_4a_poller);
  435. SeaderWorker* seader_worker = seader->worker;
  436. SeaderUartBridge* seader_uart = seader_worker->uart;
  437. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  438. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  439. do {
  440. bit_buffer_append_bytes(tx_buffer, buffer, len);
  441. Iso14443_4aError error = iso14443_4a_poller_send_block(
  442. (Iso14443_4aPoller*)iso14443_4a_poller, tx_buffer, rx_buffer);
  443. if(error != Iso14443_4aErrorNone) {
  444. FURI_LOG_W(TAG, "iso14443_4a_poller_send_block error %d", error);
  445. seader_worker->stage = SeaderPollerEventTypeFail;
  446. break;
  447. }
  448. seader_send_nfc_rx(
  449. seader_uart,
  450. (uint8_t*)bit_buffer_get_data(rx_buffer),
  451. bit_buffer_get_size_bytes(rx_buffer));
  452. } while(false);
  453. bit_buffer_free(tx_buffer);
  454. bit_buffer_free(rx_buffer);
  455. }
  456. void seader_parse_nfc_command_transmit(
  457. Seader* seader,
  458. NFCSend_t* nfcSend,
  459. const Iso14443_4aPoller* iso14443_4a_poller) {
  460. long timeOut = nfcSend->timeOut;
  461. Protocol_t protocol = nfcSend->protocol;
  462. FrameProtocol_t frameProtocol = protocol.buf[1];
  463. #ifdef ASN1_DEBUG
  464. memset(display, 0, sizeof(display));
  465. for(uint8_t i = 0; i < nfcSend->data.size; i++) {
  466. snprintf(display + (i * 2), sizeof(display), "%02x", nfcSend->data.buf[i]);
  467. }
  468. FURI_LOG_D(
  469. TAG,
  470. "Transmit (%ld timeout) %d bytes [%s] via %lx",
  471. timeOut,
  472. nfcSend->data.size,
  473. display,
  474. frameProtocol);
  475. #endif
  476. if(frameProtocol == FrameProtocol_iclass) {
  477. seader_iso15693_transmit(seader, nfcSend->data.buf, nfcSend->data.size);
  478. } else if(frameProtocol == FrameProtocol_nfc) {
  479. seader_iso14443a_transmit(
  480. seader,
  481. nfcSend->data.buf,
  482. nfcSend->data.size,
  483. (uint16_t)timeOut,
  484. nfcSend->format->buf,
  485. iso14443_4a_poller);
  486. } else {
  487. FURI_LOG_W(TAG, "unknown frame protocol %lx", frameProtocol);
  488. }
  489. }
  490. void seader_parse_nfc_off(SeaderUartBridge* seader_uart) {
  491. FURI_LOG_D(TAG, "Set Field Off");
  492. NFCResponse_t* nfcResponse = 0;
  493. nfcResponse = calloc(1, sizeof *nfcResponse);
  494. assert(nfcResponse);
  495. nfcResponse->present = NFCResponse_PR_nfcAck;
  496. Response_t* response = 0;
  497. response = calloc(1, sizeof *response);
  498. assert(response);
  499. response->present = Response_PR_nfcResponse;
  500. response->choice.nfcResponse = *nfcResponse;
  501. seader_send_response(seader_uart, response, 0x44, 0x0a, 0);
  502. ASN_STRUCT_FREE(asn_DEF_Response, response);
  503. ASN_STRUCT_FREE(asn_DEF_NFCResponse, nfcResponse);
  504. }
  505. void seader_parse_nfc_command(
  506. Seader* seader,
  507. NFCCommand_t* nfcCommand,
  508. const Iso14443_4aPoller* iso14443_4a_poller) {
  509. SeaderWorker* seader_worker = seader->worker;
  510. SeaderUartBridge* seader_uart = seader_worker->uart;
  511. switch(nfcCommand->present) {
  512. case NFCCommand_PR_nfcSend:
  513. seader_parse_nfc_command_transmit(seader, &nfcCommand->choice.nfcSend, iso14443_4a_poller);
  514. break;
  515. case NFCCommand_PR_nfcOff:
  516. seader_parse_nfc_off(seader_uart);
  517. seader->worker->stage = SeaderPollerEventTypeComplete;
  518. break;
  519. default:
  520. FURI_LOG_W(TAG, "unparsed NFCCommand");
  521. break;
  522. };
  523. }
  524. bool seader_worker_state_machine(
  525. Seader* seader,
  526. Payload_t* payload,
  527. bool online,
  528. const Iso14443_4aPoller* iso14443_4a_poller) {
  529. bool processed = false;
  530. switch(payload->present) {
  531. case Payload_PR_response:
  532. seader_parse_response(seader, &payload->choice.response);
  533. processed = true;
  534. break;
  535. case Payload_PR_nfcCommand:
  536. if(online) {
  537. seader_parse_nfc_command(seader, &payload->choice.nfcCommand, iso14443_4a_poller);
  538. processed = true;
  539. }
  540. break;
  541. case Payload_PR_errorResponse:
  542. FURI_LOG_W(TAG, "Error Response");
  543. processed = true;
  544. break;
  545. default:
  546. FURI_LOG_W(TAG, "unhandled payload");
  547. break;
  548. };
  549. return processed;
  550. }
  551. bool seader_process_success_response_i(
  552. Seader* seader,
  553. uint8_t* apdu,
  554. size_t len,
  555. bool online,
  556. const Iso14443_4aPoller* iso14443_4a_poller) {
  557. Payload_t* payload = 0;
  558. payload = calloc(1, sizeof *payload);
  559. assert(payload);
  560. bool processed = false;
  561. asn_dec_rval_t rval =
  562. asn_decode(0, ATS_DER, &asn_DEF_Payload, (void**)&payload, apdu + 6, len - 6);
  563. if(rval.code == RC_OK) {
  564. processed = seader_worker_state_machine(seader, payload, online, iso14443_4a_poller);
  565. #ifdef ASN1_DEBUG
  566. if(processed) {
  567. memset(payloadDebug, 0, sizeof(payloadDebug));
  568. (&asn_DEF_Payload)
  569. ->op->print_struct(
  570. &asn_DEF_Payload, payload, 1, seader_asn_to_string, payloadDebug);
  571. if(strlen(payloadDebug) > 0) {
  572. FURI_LOG_D(TAG, "Received payload: %s", payloadDebug);
  573. }
  574. }
  575. #endif
  576. } else {
  577. FURI_LOG_D(TAG, "Failed to decode APDU payload");
  578. }
  579. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  580. return processed;
  581. }
  582. bool seader_process_success_response(Seader* seader, uint8_t* apdu, size_t len) {
  583. SeaderWorker* seader_worker = seader->worker;
  584. if(seader_process_success_response_i(seader, apdu, len, false, NULL)) {
  585. // no-op, message was processed
  586. } else {
  587. FURI_LOG_I(TAG, "Queue New SAM Message, %d bytes", len);
  588. uint32_t space = furi_message_queue_get_space(seader_worker->messages);
  589. if(space > 0) {
  590. SeaderAPDU seaderApdu = {};
  591. seaderApdu.len = len;
  592. memcpy(seaderApdu.buf, apdu, len);
  593. if(furi_mutex_acquire(seader_worker->mq_mutex, FuriWaitForever) == FuriStatusOk) {
  594. furi_message_queue_put(seader_worker->messages, &seaderApdu, FuriWaitForever);
  595. furi_mutex_release(seader_worker->mq_mutex);
  596. }
  597. }
  598. }
  599. return true;
  600. }
  601. bool seader_process_apdu(Seader* seader, uint8_t* apdu, size_t len) {
  602. SeaderWorker* seader_worker = seader->worker;
  603. SeaderUartBridge* seader_uart = seader_worker->uart;
  604. if(len < 2) {
  605. return false;
  606. }
  607. memset(display, 0, sizeof(display));
  608. for(uint8_t i = 0; i < len; i++) {
  609. snprintf(display + (i * 2), sizeof(display), "%02x", apdu[i]);
  610. }
  611. // FURI_LOG_I(TAG, "APDU: %s", display);
  612. uint8_t SW1 = apdu[len - 2];
  613. uint8_t SW2 = apdu[len - 1];
  614. switch(SW1) {
  615. case 0x61:
  616. // FURI_LOG_I(TAG, "Request %d bytes", SW2);
  617. GET_RESPONSE[4] = SW2;
  618. seader_ccid_XfrBlock(seader_uart, GET_RESPONSE, sizeof(GET_RESPONSE));
  619. return true;
  620. break;
  621. case 0x90:
  622. if(SW2 == 0x00) {
  623. if(len > 2) {
  624. return seader_process_success_response(seader, apdu, len - 2);
  625. }
  626. }
  627. break;
  628. }
  629. return false;
  630. }
  631. void seader_worker_process_sam_message(Seader* seader, CCID_Message* message) {
  632. // TODO: inline seader_process_apdu
  633. seader_process_apdu(seader, message->payload, message->dwLength);
  634. }
  635. int32_t seader_worker_task(void* context) {
  636. SeaderWorker* seader_worker = context;
  637. SeaderUartBridge* seader_uart = seader_worker->uart;
  638. if(seader_worker->state == SeaderWorkerStateCheckSam) {
  639. FURI_LOG_D(TAG, "Check for SAM");
  640. seader_ccid_check_for_sam(seader_uart);
  641. }
  642. seader_worker_change_state(seader_worker, SeaderWorkerStateReady);
  643. return 0;
  644. }
  645. NfcCommand seader_worker_card_detect(
  646. Seader* seader,
  647. uint8_t sak,
  648. uint8_t* atqa,
  649. const uint8_t* uid,
  650. uint8_t uid_len,
  651. uint8_t* ats,
  652. uint8_t ats_len) {
  653. UNUSED(ats);
  654. UNUSED(ats_len);
  655. // We're telling the SAM we've seen a new card, so reset out requestPacs check
  656. requestPacs = true;
  657. SeaderWorker* seader_worker = seader->worker;
  658. SeaderUartBridge* seader_uart = seader_worker->uart;
  659. CardDetails_t* cardDetails = 0;
  660. cardDetails = calloc(1, sizeof *cardDetails);
  661. assert(cardDetails);
  662. OCTET_STRING_fromBuf(&cardDetails->csn, (const char*)uid, uid_len);
  663. if(sak != 0 && atqa != NULL) {
  664. uint8_t protocol_bytes[] = {0x00, FrameProtocol_nfc};
  665. OCTET_STRING_fromBuf(
  666. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  667. OCTET_STRING_t sak_string = {.buf = &sak, .size = 1};
  668. cardDetails->sak = &sak_string;
  669. OCTET_STRING_t atqa_string = {.buf = atqa, .size = 2};
  670. cardDetails->atqa = &atqa_string;
  671. } else {
  672. uint8_t protocol_bytes[] = {0x00, FrameProtocol_iclass};
  673. OCTET_STRING_fromBuf(
  674. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  675. }
  676. seader_send_card_detected(seader_uart, cardDetails);
  677. ASN_STRUCT_FREE(asn_DEF_CardDetails, cardDetails);
  678. return NfcCommandContinue;
  679. }
  680. void seader_worker_poller_conversation(Seader* seader, const Iso14443_4aPoller* iso14443_4a_poller) {
  681. SeaderWorker* seader_worker = seader->worker;
  682. if(furi_mutex_acquire(seader_worker->mq_mutex, 0) == FuriStatusOk) {
  683. furi_thread_set_current_priority(FuriThreadPriorityHighest);
  684. uint32_t count = furi_message_queue_get_count(seader_worker->messages);
  685. if(count > 0) {
  686. FURI_LOG_D(TAG, "MessageQueue: %ld messages", count);
  687. SeaderAPDU seaderApdu = {};
  688. FuriStatus status =
  689. furi_message_queue_get(seader_worker->messages, &seaderApdu, FuriWaitForever);
  690. if(status != FuriStatusOk) {
  691. FURI_LOG_W(TAG, "furi_message_queue_get fail %d", status);
  692. seader_worker->stage = SeaderPollerEventTypeComplete;
  693. }
  694. if(seader_process_success_response_i(
  695. seader, seaderApdu.buf, seaderApdu.len, true, iso14443_4a_poller)) {
  696. // no-op
  697. } else {
  698. FURI_LOG_I(TAG, "Response false");
  699. seader_worker->stage = SeaderPollerEventTypeComplete;
  700. }
  701. }
  702. furi_mutex_release(seader_worker->mq_mutex);
  703. } else {
  704. furi_thread_set_current_priority(FuriThreadPriorityLowest);
  705. }
  706. }
  707. NfcCommand seader_worker_poller_callback_iso14443_4a(NfcGenericEvent event, void* context) {
  708. furi_assert(event.protocol == NfcProtocolIso14443_4a);
  709. NfcCommand ret = NfcCommandContinue;
  710. Seader* seader = context;
  711. SeaderWorker* seader_worker = seader->worker;
  712. const Iso14443_4aPollerEvent* iso14443_4a_event = event.event_data;
  713. const Iso14443_4aPoller* iso14443_4a_poller = event.instance;
  714. if(iso14443_4a_event->type == Iso14443_4aPollerEventTypeReady) {
  715. if(seader_worker->stage == SeaderPollerEventTypeCardDetect) {
  716. nfc_device_set_data(
  717. seader->nfc_device, NfcProtocolIso14443_4a, nfc_poller_get_data(seader->poller));
  718. size_t uid_len;
  719. const uint8_t* uid = nfc_device_get_uid(seader->nfc_device, &uid_len);
  720. const Iso14443_3aData* iso14443_3a_data =
  721. nfc_device_get_data(seader->nfc_device, NfcProtocolIso14443_3a);
  722. uint8_t sak = iso14443_3a_get_sak(iso14443_3a_data);
  723. seader_worker_card_detect(
  724. seader, sak, (uint8_t*)iso14443_3a_data->atqa, uid, uid_len, NULL, 0);
  725. // nfc_set_fdt_poll_fc(event.instance, SEADER_POLLER_MAX_FWT);
  726. furi_thread_set_current_priority(FuriThreadPriorityLowest);
  727. seader_worker->stage = SeaderPollerEventTypeConversation;
  728. } else if(seader_worker->stage == SeaderPollerEventTypeConversation) {
  729. seader_worker_poller_conversation(seader, iso14443_4a_poller);
  730. } else if(seader_worker->stage == SeaderPollerEventTypeComplete) {
  731. ret = NfcCommandStop;
  732. }
  733. } else {
  734. // add failure callback if failure type
  735. FURI_LOG_D(TAG, "14a event type %x", iso14443_4a_event->type);
  736. }
  737. return ret;
  738. }
  739. NfcCommand seader_worker_poller_callback_picopass(PicopassPollerEvent event, void* context) {
  740. furi_assert(context);
  741. NfcCommand ret = NfcCommandContinue;
  742. Seader* seader = context;
  743. SeaderWorker* seader_worker = seader->worker;
  744. PicopassPoller* instance = seader->picopass_poller;
  745. if(event.type == PicopassPollerEventTypeSuccess) {
  746. if(seader_worker->stage == SeaderPollerEventTypeCardDetect) {
  747. uint8_t* csn = picopass_poller_get_csn(instance);
  748. seader_worker_card_detect(seader, 0, NULL, csn, sizeof(PicopassSerialNum), NULL, 0);
  749. furi_thread_set_current_priority(FuriThreadPriorityLowest);
  750. seader_worker->stage = SeaderPollerEventTypeConversation;
  751. } else if(seader_worker->stage == SeaderPollerEventTypeConversation) {
  752. seader_worker_poller_conversation(seader, NULL);
  753. } else if(seader_worker->stage == SeaderPollerEventTypeComplete) {
  754. ret = NfcCommandStop;
  755. }
  756. } else if(event.type == PicopassPollerEventTypeFail) {
  757. ret = NfcCommandStop;
  758. } else {
  759. FURI_LOG_D(TAG, "picopass event type %x", event.type);
  760. }
  761. return ret;
  762. }