uhf_module.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371
  1. #include "uhf_module.h"
  2. #include "uhf_module_cmd.h"
  3. #define DELAY_MS 100
  4. #define WAIT_TICK 4000 // max wait time in between each byte
  5. static M100ResponseType setup_and_send_rx(M100Module* module, uint8_t* cmd, size_t cmd_length) {
  6. UHFUart* uart = module->uart;
  7. Buffer* buffer = uart->buffer;
  8. // clear buffer
  9. uhf_buffer_reset(buffer);
  10. // send cmd
  11. uhf_uart_send_wait(uart, cmd, cmd_length);
  12. // wait for response by polling
  13. while(!uhf_is_buffer_closed(buffer) && !uhf_uart_tick(uart)) {}
  14. // reset tick
  15. uhf_uart_tick_reset(uart);
  16. // Validation Checks
  17. uint8_t* data = uhf_buffer_get_data(buffer);
  18. size_t length = uhf_buffer_get_size(buffer);
  19. // check if size > 0
  20. if(!length) return M100EmptyResponse;
  21. // check if data is valid
  22. if(data[0] != FRAME_START || data[length - 1] != FRAME_END) return M100ValidationFail;
  23. // check if checksum is correct
  24. if(checksum(data + 1, length - 3) != data[length - 2]) return M100ChecksumFail;
  25. return M100SuccessResponse;
  26. }
  27. M100ModuleInfo* m100_module_info_alloc() {
  28. M100ModuleInfo* module_info = (M100ModuleInfo*)malloc(sizeof(M100ModuleInfo));
  29. return module_info;
  30. }
  31. void m100_module_info_free(M100ModuleInfo* module_info) {
  32. if(module_info->hw_version != NULL) free(module_info->hw_version);
  33. if(module_info->sw_version != NULL) free(module_info->sw_version);
  34. if(module_info->manufacturer != NULL) free(module_info->manufacturer);
  35. free(module_info);
  36. }
  37. M100Module* m100_module_alloc() {
  38. M100Module* module = (M100Module*)malloc(sizeof(M100Module));
  39. module->transmitting_power = DEFAULT_TRANSMITTING_POWER;
  40. module->region = DEFAULT_WORKING_REGION;
  41. module->info = m100_module_info_alloc();
  42. module->uart = uhf_uart_alloc();
  43. return module;
  44. }
  45. void m100_module_free(M100Module* module) {
  46. m100_module_info_free(module->info);
  47. uhf_uart_free(module->uart);
  48. free(module);
  49. }
  50. uint8_t checksum(const uint8_t* data, size_t length) {
  51. // CheckSum8 Modulo 256
  52. // Sum of Bytes % 256
  53. uint64_t sum_val = 0x00;
  54. for(size_t i = 0; i < length; i++) {
  55. sum_val += data[i];
  56. }
  57. return (uint8_t)(sum_val % 0x100);
  58. }
  59. uint16_t crc16_genibus(const uint8_t* data, size_t length) {
  60. uint16_t crc = 0xFFFF; // Initial value
  61. uint16_t polynomial = 0x1021; // CRC-16/GENIBUS polynomial
  62. for(size_t i = 0; i < length; i++) {
  63. crc ^= (data[i] << 8); // Move byte into MSB of 16bit CRC
  64. for(int j = 0; j < 8; j++) {
  65. if(crc & 0x8000) {
  66. crc = (crc << 1) ^ polynomial;
  67. } else {
  68. crc <<= 1;
  69. }
  70. }
  71. }
  72. return crc ^ 0xFFFF; // Post-inversion
  73. }
  74. char* _m100_info_helper(M100Module* module, char** info) {
  75. if(!uhf_buffer_get_size(module->uart->buffer)) return NULL;
  76. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  77. uint16_t payload_len = data[3];
  78. payload_len = (payload_len << 8) + data[4];
  79. FuriString* temp_str = furi_string_alloc();
  80. for(int i = 0; i < payload_len; i++) {
  81. furi_string_cat_printf(temp_str, "%c", data[6 + i]);
  82. }
  83. if(*info == NULL) {
  84. *info = (char*)malloc(sizeof(char) * payload_len);
  85. } else {
  86. for(size_t i = 0; i < strlen(*info); i++) {
  87. (*info)[i] = 0;
  88. }
  89. }
  90. memcpy(*info, furi_string_get_cstr(temp_str), payload_len);
  91. furi_string_free(temp_str);
  92. return *info;
  93. }
  94. char* m100_get_hardware_version(M100Module* module) {
  95. setup_and_send_rx(module, (uint8_t*)&CMD_HW_VERSION.cmd[0], CMD_HW_VERSION.length);
  96. return _m100_info_helper(module, &module->info->hw_version);
  97. }
  98. char* m100_get_software_version(M100Module* module) {
  99. setup_and_send_rx(module, (uint8_t*)&CMD_SW_VERSION.cmd[0], CMD_SW_VERSION.length);
  100. return _m100_info_helper(module, &module->info->sw_version);
  101. }
  102. char* m100_get_manufacturers(M100Module* module) {
  103. setup_and_send_rx(module, (uint8_t*)&CMD_MANUFACTURERS.cmd[0], CMD_MANUFACTURERS.length);
  104. return _m100_info_helper(module, &module->info->manufacturer);
  105. }
  106. M100ResponseType m100_single_poll(M100Module* module, UHFTag* uhf_tag) {
  107. M100ResponseType rp_type =
  108. setup_and_send_rx(module, (uint8_t*)&CMD_SINGLE_POLLING.cmd[0], CMD_SINGLE_POLLING.length);
  109. if(rp_type != M100SuccessResponse) return rp_type;
  110. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  111. uint16_t pc = data[6];
  112. uint16_t crc = 0;
  113. // mask out epc length from protocol control
  114. size_t epc_len = pc;
  115. epc_len >>= 3;
  116. epc_len *= 2;
  117. // get protocol control
  118. pc <<= 8;
  119. pc += data[7];
  120. // get cyclic redundency check
  121. crc = data[8 + epc_len];
  122. crc <<= 8;
  123. crc += data[8 + epc_len + 1];
  124. // validate crc
  125. if(crc16_genibus(data + 6, epc_len + 2) != crc) return M100ValidationFail;
  126. uhf_tag_set_epc_pc(uhf_tag, pc);
  127. uhf_tag_set_epc_crc(uhf_tag, crc);
  128. uhf_tag_set_epc(uhf_tag, data + 8, epc_len);
  129. return M100SuccessResponse;
  130. }
  131. M100ResponseType m100_set_select(M100Module* module, UHFTag* uhf_tag) {
  132. // Set select
  133. uint8_t cmd[MAX_BUFFER_SIZE];
  134. size_t cmd_length = CMD_SET_SELECT_PARAMETER.length;
  135. size_t mask_length_bytes = uhf_tag->epc->size;
  136. size_t mask_length_bits = mask_length_bytes * 8;
  137. // payload len == sel param len + ptr len + mask len + epc len
  138. size_t payload_len = 7 + mask_length_bytes;
  139. memcpy(cmd, CMD_SET_SELECT_PARAMETER.cmd, cmd_length);
  140. // set new length
  141. cmd_length = 12 + mask_length_bytes + 2;
  142. // set payload length
  143. cmd[3] = (payload_len >> 8) & 0xFF;
  144. cmd[4] = payload_len & 0xFF;
  145. // set select param
  146. cmd[5] = 0x01; // 0x00=rfu, 0x01=epc, 0x10=tid, 0x11=user
  147. // set ptr
  148. cmd[9] = 0x20; // epc data begins after 0x20
  149. // set mask length
  150. cmd[10] = mask_length_bits;
  151. // truncate
  152. cmd[11] = false;
  153. // set mask
  154. memcpy((void*)&cmd[12], uhf_tag->epc->data, mask_length_bytes);
  155. // set checksum
  156. cmd[cmd_length - 2] = checksum(cmd + 1, 11 + mask_length_bytes);
  157. // end frame
  158. cmd[cmd_length - 1] = FRAME_END;
  159. M100ResponseType rp_type = setup_and_send_rx(module, cmd, 12 + mask_length_bytes + 3);
  160. if(rp_type != M100SuccessResponse) return rp_type;
  161. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  162. if(data[5] != 0x00) return M100ValidationFail; // error if not 0
  163. return M100SuccessResponse;
  164. }
  165. UHFTag* m100_get_select_param(M100Module* module) {
  166. uhf_buffer_reset(module->uart->buffer);
  167. // furi_hal_uart_set_irq_cb(FuriHalUartIdLPUART1, rx_callback, module->uart->buffer);
  168. // furi_hal_uart_tx(
  169. // FuriHalUartIdUSART1,
  170. // (uint8_t*)&CMD_GET_SELECT_PARAMETER.cmd,
  171. // CMD_GET_SELECT_PARAMETER.length);
  172. // furi_delay_ms(DELAY_MS);
  173. // UHFTag* uhf_tag = uhf_tag_alloc();
  174. // uint8_t* data = buffer_get_data(module->uart->buffer);
  175. // size_t mask_length =
  176. // uhf_tag_set_epc(uhf_tag, data + 12, )
  177. // TODO : implement
  178. return NULL;
  179. }
  180. M100ResponseType m100_read_label_data_storage(
  181. M100Module* module,
  182. UHFTag* uhf_tag,
  183. BankType bank,
  184. uint32_t access_pwd,
  185. uint16_t word_count) {
  186. /*
  187. Will probably remove UHFTag as param and get it from get selected tag
  188. */
  189. if(bank == EPCBank) return M100SuccessResponse;
  190. uint8_t cmd[MAX_BUFFER_SIZE];
  191. size_t cmd_length = CMD_READ_LABEL_DATA_STORAGE_AREA.length;
  192. memcpy(cmd, CMD_READ_LABEL_DATA_STORAGE_AREA.cmd, cmd_length);
  193. // set access password
  194. cmd[5] = (access_pwd >> 24) & 0xFF;
  195. cmd[6] = (access_pwd >> 16) & 0xFF;
  196. cmd[7] = (access_pwd >> 8) & 0xFF;
  197. cmd[8] = access_pwd & 0xFF;
  198. // set mem bank
  199. cmd[9] = (uint8_t)bank;
  200. // set word counter
  201. cmd[12] = (word_count >> 8) & 0xFF;
  202. cmd[13] = word_count & 0xFF;
  203. // calc checksum
  204. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  205. M100ResponseType rp_type = setup_and_send_rx(module, cmd, cmd_length);
  206. if(rp_type != M100SuccessResponse) return rp_type;
  207. uint8_t* data = uhf_buffer_get_data(module->uart->buffer);
  208. uint8_t rtn_command = data[2];
  209. uint16_t payload_len = data[3];
  210. payload_len = (payload_len << 8) + data[4];
  211. if(rtn_command == 0xFF) {
  212. if(payload_len == 0x01) return M100NoTagResponse;
  213. return M100MemoryOverrun;
  214. }
  215. size_t ptr_offset = 5 /*<-ptr offset*/ + uhf_tag_get_epc_size(uhf_tag) + 3 /*<-pc + ul*/;
  216. size_t bank_data_length = payload_len - (ptr_offset - 5 /*dont include the offset*/);
  217. if(bank == TIDBank) {
  218. uhf_tag_set_tid(uhf_tag, data + ptr_offset, bank_data_length);
  219. } else if(bank == UserBank) {
  220. uhf_tag_set_user(uhf_tag, data + ptr_offset, bank_data_length);
  221. }
  222. return M100SuccessResponse;
  223. }
  224. M100ResponseType m100_write_label_data_storage(
  225. M100Module* module,
  226. UHFTag* saved_tag,
  227. UHFTag* selected_tag,
  228. BankType bank,
  229. uint16_t source_address,
  230. uint32_t access_pwd) {
  231. uint8_t cmd[MAX_BUFFER_SIZE];
  232. size_t cmd_length = CMD_WRITE_LABEL_DATA_STORE.length;
  233. memcpy(cmd, CMD_WRITE_LABEL_DATA_STORE.cmd, cmd_length);
  234. uint16_t payload_len = 9;
  235. uint16_t data_length = 0;
  236. if(bank == ReservedBank) {
  237. // access pwd len + kill pwd len
  238. payload_len += 4;
  239. data_length = 4;
  240. } else if(bank == EPCBank) {
  241. // epc len + pc len
  242. payload_len += 4 + uhf_tag_get_epc_size(saved_tag);
  243. data_length = 4 + uhf_tag_get_epc_size(saved_tag);
  244. // set data
  245. uint8_t tmp_arr[4];
  246. tmp_arr[0] = (uint8_t)((uhf_tag_get_epc_crc(selected_tag) >> 8) & 0xFF);
  247. tmp_arr[1] = (uint8_t)(uhf_tag_get_epc_crc(selected_tag) & 0xFF);
  248. tmp_arr[2] = (uint8_t)((uhf_tag_get_epc_pc(saved_tag) >> 8) & 0xFF);
  249. tmp_arr[3] = (uint8_t)(uhf_tag_get_epc_pc(saved_tag) & 0xFF);
  250. memcpy(cmd + 14, tmp_arr, 4);
  251. memcpy(cmd + 18, uhf_tag_get_epc(saved_tag), uhf_tag_get_epc_size(saved_tag));
  252. } else if(bank == UserBank) {
  253. payload_len += uhf_tag_get_user_size(saved_tag);
  254. data_length = uhf_tag_get_user_size(saved_tag);
  255. // set data
  256. memcpy(cmd + 14, uhf_tag_get_user(saved_tag), uhf_tag_get_user_size(saved_tag));
  257. }
  258. // set payload length
  259. cmd[3] = (payload_len >> 8) & 0xFF;
  260. cmd[4] = payload_len & 0xFF;
  261. // set access password
  262. cmd[5] = (access_pwd >> 24) & 0xFF;
  263. cmd[6] = (access_pwd >> 16) & 0xFF;
  264. cmd[7] = (access_pwd >> 8) & 0xFF;
  265. cmd[8] = access_pwd & 0xFF;
  266. // set membank
  267. cmd[9] = (uint8_t)bank;
  268. // set source address
  269. cmd[10] = (source_address >> 8) & 0xFF;
  270. cmd[11] = source_address & 0xFF;
  271. // set data length
  272. size_t data_length_words = data_length / 2;
  273. cmd[12] = (data_length_words >> 8) & 0xFF;
  274. cmd[13] = data_length_words & 0xFF;
  275. // update cmd len
  276. cmd_length = 7 + payload_len;
  277. // calculate checksum
  278. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  279. cmd[cmd_length - 1] = FRAME_END;
  280. // send cmd
  281. M100ResponseType rp_type = setup_and_send_rx(module, cmd, cmd_length);
  282. if(rp_type != M100SuccessResponse) return rp_type;
  283. uint8_t* buff_data = uhf_buffer_get_data(module->uart->buffer);
  284. size_t buff_length = uhf_buffer_get_size(module->uart->buffer);
  285. if(buff_data[2] == 0xFF && buff_length == 8)
  286. return M100NoTagResponse;
  287. else if(buff_data[2] == 0xFF)
  288. return M100ValidationFail;
  289. return M100SuccessResponse;
  290. }
  291. void m100_set_baudrate(M100Module* module, uint32_t baudrate) {
  292. size_t length = CMD_SET_COMMUNICATION_BAUD_RATE.length;
  293. uint8_t cmd[length];
  294. memcpy(cmd, CMD_SET_COMMUNICATION_BAUD_RATE.cmd, length);
  295. uint16_t br_mod = baudrate / 100; // module format
  296. cmd[6] = 0xFF & br_mod; // pow LSB
  297. cmd[5] = 0xFF & (br_mod >> 8); // pow MSB
  298. cmd[length - 2] = checksum(cmd + 1, length - 3);
  299. // setup_and_send_rx(module, cmd, length);
  300. uhf_uart_send_wait(module->uart, cmd, length);
  301. uhf_uart_set_baudrate(module->uart, baudrate);
  302. module->uart->baudrate = baudrate;
  303. }
  304. bool m100_set_working_region(M100Module* module, WorkingRegion region) {
  305. size_t length = CMD_SET_WORK_AREA.length;
  306. uint8_t cmd[length];
  307. memcpy(cmd, CMD_SET_WORK_AREA.cmd, length);
  308. cmd[5] = (uint8_t)region;
  309. cmd[length - 2] = checksum(cmd + 1, length - 3);
  310. setup_and_send_rx(module, cmd, length);
  311. module->region = region;
  312. return true;
  313. }
  314. bool m100_set_transmitting_power(M100Module* module, uint16_t power) {
  315. size_t length = CMD_SET_TRANSMITTING_POWER.length;
  316. uint8_t cmd[length];
  317. memcpy(cmd, CMD_SET_TRANSMITTING_POWER.cmd, length);
  318. cmd[5] = (power >> 8) & 0xFF;
  319. cmd[6] = power & 0xFF;
  320. cmd[length - 2] = checksum(cmd + 1, length - 3);
  321. setup_and_send_rx(module, cmd, length);
  322. module->transmitting_power = power;
  323. return true;
  324. }
  325. bool m100_set_freq_hopping(M100Module* module, bool hopping) {
  326. UNUSED(module);
  327. UNUSED(hopping);
  328. return true;
  329. }
  330. bool m100_set_power(M100Module* module, uint8_t* power) {
  331. UNUSED(module);
  332. UNUSED(power);
  333. return true;
  334. }
  335. uint32_t m100_get_baudrate(M100Module* module) {
  336. return module->uart->baudrate;
  337. }