BMP280.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239
  1. #include "BMP280.h"
  2. const SensorType BMP280 = {
  3. .typename = "BMP280",
  4. .interface = &I2C,
  5. .datatype = UT_DATA_TYPE_TEMP_PRESS,
  6. .pollingInterval = 500,
  7. .allocator = unitemp_BMP280_alloc,
  8. .mem_releaser = unitemp_BMP280_free,
  9. .initializer = unitemp_BMP280_init,
  10. .deinitializer = unitemp_BMP280_deinit,
  11. .updater = unitemp_BMP280_update};
  12. //Интервал обновления калибровочных значений
  13. #define BMP280_CAL_UPDATE_INTERVAL 60000
  14. #define TEMP_CAL_START_ADDR 0x88
  15. #define PRESS_CAL_START_ADDR 0x8E
  16. #define BMP280_ID 0x58
  17. #define BMP280_REG_STATUS 0xF3
  18. #define BMP280_REG_CTRL_MEAS 0xF4
  19. #define BMP280_REG_CONFIG 0xF5
  20. //Преддескретизация температуры
  21. #define BMP280_TEMP_OVERSAMPLING_SKIP 0b00000000
  22. #define BMP280_TEMP_OVERSAMPLING_1 0b00100000
  23. #define BMP280_TEMP_OVERSAMPLING_2 0b01000000
  24. #define BMP280_TEMP_OVERSAMPLING_4 0b01100000
  25. #define BMP280_TEMP_OVERSAMPLING_8 0b10000000
  26. #define BMP280_TEMP_OVERSAMPLING_16 0b10100000
  27. //Преддескретизация давления
  28. #define BMP280_PRESS_OVERSAMPLING_SKIP 0b00000000
  29. #define BMP280_PRESS_OVERSAMPLING_1 0b00000100
  30. #define BMP280_PRESS_OVERSAMPLING_2 0b00001000
  31. #define BMP280_PRESS_OVERSAMPLING_4 0b00001100
  32. #define BMP280_PRESS_OVERSAMPLING_8 0b00010000
  33. #define BMP280_PRESS_OVERSAMPLING_16 0b00010100
  34. //Режимы работы датчика
  35. #define BMP280_MODE_SLEEP 0b00000000 //Спит и мало кушает
  36. #define BMP280_MODE_FORCED 0b00000001 //Обновляет значения 1 раз, после чего уходит в сон
  37. #define BMP280_MODE_NORMAL 0b00000011 //Регулярно обновляет значения
  38. //Период обновления в нормальном режиме
  39. #define BMP280_STANDBY_TIME_0_5 0b00000000
  40. #define BMP280_STANDBY_TIME_62_5 0b00100000
  41. #define BMP280_STANDBY_TIME_125 0b01000000
  42. #define BMP280_STANDBY_TIME_250 0b01100000
  43. #define BMP280_STANDBY_TIME_500 0b10000000
  44. #define BMP280_STANDBY_TIME_1000 0b10100000
  45. #define BMP280_STANDBY_TIME_2000 0b11000000
  46. #define BMP280_STANDBY_TIME_4000 0b11100000
  47. //Коэффициент фильтрации значений
  48. #define BMP280_FILTER_COEFF_1 0b00000000
  49. #define BMP280_FILTER_COEFF_2 0b00000100
  50. #define BMP280_FILTER_COEFF_4 0b00001000
  51. #define BMP280_FILTER_COEFF_8 0b00001100
  52. #define BMP280_FILTER_COEFF_16 0b00010000
  53. //Разрешить работу по SPI
  54. #define BMP280_SPI_3W_ENABLE 0b00000001
  55. #define BMP280_SPI_3W_DISABLE 0b00000000
  56. static double bmp280_compensate_T_double(I2CSensor* i2c_sensor, int32_t adc_T) {
  57. BMP280_instance* bmp280_instance = (BMP280_instance*)i2c_sensor->sensorInstance;
  58. double var1, var2, T;
  59. var1 = (((double)adc_T) / (double)16384.0 -
  60. ((double)bmp280_instance->temp_cal.dig_T1) / (double)1024.0) *
  61. ((double)bmp280_instance->temp_cal.dig_T2);
  62. var2 = ((((double)adc_T) / (double)131072.0 -
  63. ((double)bmp280_instance->temp_cal.dig_T1) / (double)8192.0) *
  64. (((double)adc_T) / (double)131072.0 -
  65. ((double)bmp280_instance->temp_cal.dig_T1) / (double)8192.0)) *
  66. ((double)bmp280_instance->temp_cal.dig_T3);
  67. bmp280_instance->t_fine = var1 + var2;
  68. T = (var1 + var2) / (double)5120.0;
  69. return T;
  70. }
  71. static double bmp280_compensate_P_double(I2CSensor* i2c_sensor, int32_t adc_P) {
  72. BMP280_instance* bmp280_instance = (BMP280_instance*)i2c_sensor->sensorInstance;
  73. // double var1, var2, p;
  74. // var1 = ((double)bmp280_instance->t_fine / (double)2.0) - (double)64000.0;
  75. // var2 = var1 * var1 * ((double)bmp280_instance->press_cal.dig_P6) / (double)32768.0;
  76. // var2 = var2 + var1 * ((double)bmp280_instance->press_cal.dig_P5) * (double)2.0;
  77. // var2 = (var2 / (double)4.0) + (((double)bmp280_instance->press_cal.dig_P4) * (double)65536.0);
  78. // var1 = (((double)bmp280_instance->press_cal.dig_P3) * var1 * var1 / (double)524288.0 +
  79. // ((double)bmp280_instance->press_cal.dig_P2) * var1) /
  80. // (double)524288.0;
  81. // var1 = ((double)1.0 + var1 / (double)32768.0) * ((double)bmp280_instance->press_cal.dig_P1);
  82. // if(var1 == (double)0.0) {
  83. // return 0; // avoid exception caused by division by zero
  84. // }
  85. // p = (double)1048576.0 - (double)adc_P;
  86. // p = (p - (var2 / (double)4096.0)) * (double)6250.0 / var1;
  87. // var1 = ((double)bmp280_instance->press_cal.dig_P9) * p * p / (double)2147483648.0;
  88. // var2 = p * ((double)bmp280_instance->press_cal.dig_P8) / (double)32768.0;
  89. // p = p + (var1 + var2 + ((double)bmp280_instance->press_cal.dig_P7)) / (double)16.0;
  90. int64_t value_1 = (bmp280_instance->t_fine) - 128000;
  91. int64_t value_2 = value_1 * value_1 * (int64_t)bmp280_instance->press_cal.dig_P6;
  92. value_2 = value_2 + ((value_1 * (int64_t)bmp280_instance->press_cal.dig_P5) << 17);
  93. value_2 = value_2 + (((int64_t)bmp280_instance->press_cal.dig_P4) << 35);
  94. value_1 = ((value_1 * value_1 * (int64_t)bmp280_instance->press_cal.dig_P3) >> 8) +
  95. ((value_1 * (int64_t)bmp280_instance->press_cal.dig_P2) << 12);
  96. value_1 = (((((int64_t)1) << 47) + value_1)) * ((int64_t)bmp280_instance->press_cal.dig_P1) >>
  97. 33;
  98. if(!value_1) return 0; // Avoid division by zero
  99. int64_t p = 1048576 - adc_P;
  100. p = (((p << 31) - value_2) * 3125) / value_1;
  101. value_1 = (((int64_t)bmp280_instance->press_cal.dig_P9) * (p >> 13) * (p >> 13)) >> 25;
  102. value_2 = (((int64_t)bmp280_instance->press_cal.dig_P8) * p) >> 19;
  103. p = ((p + value_1 + value_2) >> 8) + (((int64_t)bmp280_instance->press_cal.dig_P7) << 4);
  104. return p / 256.0;
  105. }
  106. static bool bmp280_readCalValues(I2CSensor* i2c_sensor) {
  107. BMP280_instance* bmp280_instance = (BMP280_instance*)i2c_sensor->sensorInstance;
  108. if(!unitemp_i2c_readRegArray(
  109. i2c_sensor, TEMP_CAL_START_ADDR, 6, (uint8_t*)&bmp280_instance->temp_cal))
  110. return false;
  111. FURI_LOG_D(
  112. APP_NAME,
  113. "Sensor BMP280 (0x%02X) calibration values: T1: %d, T2: %d, T3: %d",
  114. i2c_sensor->currentI2CAdr,
  115. bmp280_instance->temp_cal.dig_T1,
  116. bmp280_instance->temp_cal.dig_T2,
  117. bmp280_instance->temp_cal.dig_T3);
  118. if(!unitemp_i2c_readRegArray(
  119. i2c_sensor, PRESS_CAL_START_ADDR, 18, (uint8_t*)&bmp280_instance->press_cal))
  120. return false;
  121. FURI_LOG_D(
  122. APP_NAME,
  123. "Sensor BMP280 (0x%02X): P1-9: %d, %d, %d, %d, %d, %d, %d, %d, %d",
  124. i2c_sensor->currentI2CAdr,
  125. bmp280_instance->press_cal.dig_P1,
  126. bmp280_instance->press_cal.dig_P2,
  127. bmp280_instance->press_cal.dig_P3,
  128. bmp280_instance->press_cal.dig_P4,
  129. bmp280_instance->press_cal.dig_P5,
  130. bmp280_instance->press_cal.dig_P6,
  131. bmp280_instance->press_cal.dig_P7,
  132. bmp280_instance->press_cal.dig_P8,
  133. bmp280_instance->press_cal.dig_P9);
  134. bmp280_instance->last_cal_update_time = furi_get_tick();
  135. return true;
  136. }
  137. static bool bmp280_isMeasuring(Sensor* sensor) {
  138. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  139. return (bool)((unitemp_i2c_readReg(i2c_sensor, BMP280_REG_STATUS) & 0x08) >> 3);
  140. }
  141. bool unitemp_BMP280_alloc(Sensor* sensor, char* args) {
  142. UNUSED(args);
  143. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  144. BMP280_instance* bmp280_instance = malloc(sizeof(BMP280_instance));
  145. if(bmp280_instance == NULL) {
  146. FURI_LOG_E(APP_NAME, "Failed to allocation sensor %s instance", sensor->name);
  147. return false;
  148. }
  149. i2c_sensor->sensorInstance = bmp280_instance;
  150. i2c_sensor->minI2CAdr = 0x76;
  151. i2c_sensor->maxI2CAdr = 0x77;
  152. return true;
  153. }
  154. bool unitemp_BMP280_init(Sensor* sensor) {
  155. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  156. //Перезагрузка
  157. unitemp_i2c_writeReg(i2c_sensor, 0xE0, 0xB6);
  158. //Чтение ID датчика
  159. uint8_t id = unitemp_i2c_readReg(i2c_sensor, 0xD0);
  160. if(id != BMP280_ID) {
  161. FURI_LOG_E(
  162. APP_NAME,
  163. "Sensor %s returned wrong ID 0x%02X, expected 0x%02X",
  164. sensor->name,
  165. id,
  166. BMP280_ID);
  167. return false;
  168. }
  169. //Чтение калибровочных значений
  170. if(!bmp280_readCalValues(i2c_sensor)) {
  171. FURI_LOG_E(APP_NAME, "Failed to read calibration values sensor %s", sensor->name);
  172. return false;
  173. }
  174. //Настройка режимов работы
  175. unitemp_i2c_writeReg(
  176. i2c_sensor,
  177. BMP280_REG_CTRL_MEAS,
  178. BMP280_TEMP_OVERSAMPLING_2 | BMP280_PRESS_OVERSAMPLING_4 | BMP280_MODE_NORMAL);
  179. //Настройка периода опроса и фильтрации значений
  180. unitemp_i2c_writeReg(
  181. i2c_sensor,
  182. BMP280_REG_CONFIG,
  183. BMP280_STANDBY_TIME_500 | BMP280_FILTER_COEFF_16 | BMP280_SPI_3W_DISABLE);
  184. return true;
  185. }
  186. bool unitemp_BMP280_deinit(Sensor* sensor) {
  187. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  188. //Перевод в сон
  189. unitemp_i2c_writeReg(i2c_sensor, BMP280_REG_CTRL_MEAS, BMP280_MODE_SLEEP);
  190. return true;
  191. }
  192. UnitempStatus unitemp_BMP280_update(Sensor* sensor) {
  193. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  194. BMP280_instance* instance = i2c_sensor->sensorInstance;
  195. uint32_t t = furi_get_tick();
  196. if(furi_get_tick() - instance->last_cal_update_time > BMP280_CAL_UPDATE_INTERVAL) {
  197. bmp280_readCalValues(i2c_sensor);
  198. }
  199. while(bmp280_isMeasuring(sensor)) {
  200. if(furi_get_tick() - t > 100) {
  201. return UT_TIMEOUT;
  202. }
  203. }
  204. uint8_t buff[3];
  205. if(!unitemp_i2c_readRegArray(i2c_sensor, 0xFA, 3, buff)) return UT_TIMEOUT;
  206. int32_t adc_T = ((int32_t)buff[0] << 12) | ((int32_t)buff[1] << 4) | ((int32_t)buff[2] >> 4);
  207. if(!unitemp_i2c_readRegArray(i2c_sensor, 0xF7, 3, buff)) return UT_TIMEOUT;
  208. int32_t adc_P = ((int32_t)buff[0] << 12) | ((int32_t)buff[1] << 4) | ((int32_t)buff[2] >> 4);
  209. sensor->temp = bmp280_compensate_T_double(i2c_sensor, adc_T);
  210. sensor->pressure = bmp280_compensate_P_double(i2c_sensor, adc_P);
  211. FURI_LOG_D(APP_NAME, "pressure: %d pa ", (int)sensor->pressure);
  212. return UT_OK;
  213. }
  214. bool unitemp_BMP280_free(Sensor* sensor) {
  215. I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
  216. free(i2c_sensor->sensorInstance);
  217. return true;
  218. }