sam_api.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811
  1. #include "sam_api.h"
  2. #define TAG "SAMAPI"
  3. #define APDU_HEADER_LEN 5
  4. #define ASN1_PREFIX 6
  5. #define ASN1_DEBUG true
  6. #define SEADER_ICLASS_SR_SIO_BASE_BLOCK 10
  7. const uint8_t picopass_iclass_key[] = {0xaf, 0xa7, 0x85, 0xa7, 0xda, 0xb3, 0x33, 0x78};
  8. static char display[SEADER_UART_RX_BUF_SIZE * 2 + 1] = {0};
  9. char asn1_log[SEADER_UART_RX_BUF_SIZE] = {0};
  10. bool requestPacs = true;
  11. uint8_t read4Block6[] = {RFAL_PICOPASS_CMD_READ4, 0x06, 0x45, 0x56};
  12. uint8_t read4Block9[] = {RFAL_PICOPASS_CMD_READ4, 0x09, 0xB2, 0xAE};
  13. uint8_t read4Block10[] = {RFAL_PICOPASS_CMD_READ4, 0x0A, 0x29, 0x9C};
  14. uint8_t read4Block13[] = {RFAL_PICOPASS_CMD_READ4, 0x0D, 0x96, 0xE8};
  15. //uint8_t read4Block14[] = {RFAL_PICOPASS_CMD_READ4, 0x0E, 0x0d, 0xda};
  16. uint8_t updateBlock2[] = {RFAL_PICOPASS_CMD_UPDATE, 0x02};
  17. uint8_t ev2_request[] =
  18. {0x00, 0xa4, 0x04, 0x00, 0x0a, 0xa0, 0x00, 0x00, 0x04, 0x40, 0x00, 0x01, 0x01, 0x00, 0x01, 0x00};
  19. uint8_t FILE_NOT_FOUND[] = {0x6a, 0x82};
  20. void* calloc(size_t count, size_t size) {
  21. return malloc(count * size);
  22. }
  23. // Forward declarations
  24. void seader_send_nfc_rx(SeaderUartBridge* seader_uart, uint8_t* buffer, size_t len);
  25. PicopassError seader_worker_fake_epurse_update(BitBuffer* tx_buffer, BitBuffer* rx_buffer) {
  26. const uint8_t* buffer = bit_buffer_get_data(tx_buffer);
  27. uint8_t fake_response[8];
  28. memset(fake_response, 0, sizeof(fake_response));
  29. memcpy(fake_response + 0, buffer + 6, 4);
  30. memcpy(fake_response + 4, buffer + 2, 4);
  31. bit_buffer_append_bytes(rx_buffer, fake_response, sizeof(fake_response));
  32. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  33. memset(display, 0, sizeof(display));
  34. for(uint8_t i = 0; i < bit_buffer_get_size_bytes(rx_buffer); i++) {
  35. snprintf(display + (i * 2), sizeof(display), "%02x", bit_buffer_get_data(rx_buffer)[i]);
  36. }
  37. FURI_LOG_I(TAG, "Fake update E-Purse response: %s", display);
  38. return PicopassErrorNone;
  39. }
  40. void seader_picopass_state_machine(Seader* seader, uint8_t* buffer, size_t len) {
  41. SeaderWorker* seader_worker = seader->worker;
  42. SeaderUartBridge* seader_uart = seader_worker->uart;
  43. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  44. bit_buffer_append_bytes(tx_buffer, buffer, len);
  45. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  46. uint8_t config[PICOPASS_BLOCK_LEN] = {0x12, 0xff, 0xff, 0xff, 0x7f, 0x1f, 0xff, 0x3c};
  47. uint8_t sr_aia[PICOPASS_BLOCK_LEN] = {0xFF, 0xff, 0xff, 0xff, 0xFF, 0xFf, 0xff, 0xFF};
  48. uint8_t epurse[PICOPASS_BLOCK_LEN] = {0xff, 0xff, 0xff, 0xff, 0xe3, 0xff, 0xff, 0xff};
  49. uint8_t pacs_sr_cfg[PICOPASS_BLOCK_LEN] = {0xA3, 0x03, 0x03, 0x03, 0x00, 0x03, 0xe0, 0x14};
  50. uint8_t zeroes[PICOPASS_BLOCK_LEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
  51. uint8_t tmac[4] = {};
  52. uint8_t cc_p[12] = {};
  53. uint8_t div_key[PICOPASS_BLOCK_LEN] = {};
  54. uint8_t offset; // for READ4
  55. do {
  56. switch(buffer[0]) {
  57. case RFAL_PICOPASS_CMD_READ_OR_IDENTIFY:
  58. if(buffer[1] == AIA_INDEX) {
  59. bit_buffer_append_bytes(rx_buffer, sr_aia, sizeof(sr_aia));
  60. } else if(buffer[1] == PACS_CFG_INDEX) {
  61. bit_buffer_append_bytes(rx_buffer, pacs_sr_cfg, sizeof(pacs_sr_cfg));
  62. } else { // What i've seen is 0c 12
  63. offset = buffer[1] - SEADER_ICLASS_SR_SIO_BASE_BLOCK;
  64. bit_buffer_append_bytes(
  65. rx_buffer,
  66. seader->credential->sio + (PICOPASS_BLOCK_LEN * offset),
  67. PICOPASS_BLOCK_LEN);
  68. }
  69. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  70. break;
  71. case RFAL_PICOPASS_CMD_UPDATE:
  72. seader_worker_fake_epurse_update(tx_buffer, rx_buffer);
  73. break;
  74. case RFAL_PICOPASS_CMD_READCHECK_KD:
  75. if(buffer[1] == EPURSE_INDEX) {
  76. bit_buffer_append_bytes(rx_buffer, epurse, sizeof(epurse));
  77. }
  78. break;
  79. case RFAL_PICOPASS_CMD_CHECK:
  80. loclass_iclass_calc_div_key(
  81. seader->credential->diversifier, picopass_iclass_key, div_key, false);
  82. memcpy(cc_p, epurse, PICOPASS_BLOCK_LEN);
  83. memcpy(cc_p + 8, buffer + 1, PICOPASS_MAC_LEN);
  84. loclass_opt_doTagMAC(cc_p, div_key, tmac);
  85. bit_buffer_append_bytes(rx_buffer, tmac, sizeof(tmac));
  86. break;
  87. case RFAL_PICOPASS_CMD_READ4:
  88. if(buffer[1] < SEADER_ICLASS_SR_SIO_BASE_BLOCK) {
  89. if(buffer[1] == PACS_CFG_INDEX) {
  90. bit_buffer_append_bytes(rx_buffer, pacs_sr_cfg, sizeof(pacs_sr_cfg));
  91. bit_buffer_append_bytes(rx_buffer, zeroes, sizeof(zeroes));
  92. bit_buffer_append_bytes(rx_buffer, zeroes, sizeof(zeroes));
  93. bit_buffer_append_bytes(rx_buffer, zeroes, sizeof(zeroes));
  94. }
  95. } else {
  96. offset = buffer[1] - SEADER_ICLASS_SR_SIO_BASE_BLOCK;
  97. bit_buffer_append_bytes(
  98. rx_buffer,
  99. seader->credential->sio + (PICOPASS_BLOCK_LEN * offset),
  100. PICOPASS_BLOCK_LEN * 4);
  101. }
  102. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  103. break;
  104. case RFAL_PICOPASS_CMD_PAGESEL:
  105. // this should be considered an attempt, but realisticly not working
  106. bit_buffer_append_bytes(rx_buffer, config, sizeof(config));
  107. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  108. break;
  109. }
  110. seader_send_nfc_rx(
  111. seader_uart,
  112. (uint8_t*)bit_buffer_get_data(rx_buffer),
  113. bit_buffer_get_size_bytes(rx_buffer));
  114. } while(false);
  115. bit_buffer_free(tx_buffer);
  116. bit_buffer_free(rx_buffer);
  117. }
  118. bool seader_send_apdu(
  119. SeaderUartBridge* seader_uart,
  120. uint8_t CLA,
  121. uint8_t INS,
  122. uint8_t P1,
  123. uint8_t P2,
  124. uint8_t* payload,
  125. uint8_t length) {
  126. if(APDU_HEADER_LEN + length > SEADER_UART_RX_BUF_SIZE) {
  127. FURI_LOG_E(TAG, "Cannot send message, too long: %d", APDU_HEADER_LEN + length);
  128. return false;
  129. }
  130. uint8_t apdu[SEADER_UART_RX_BUF_SIZE];
  131. apdu[0] = CLA;
  132. apdu[1] = INS;
  133. apdu[2] = P1;
  134. apdu[3] = P2;
  135. apdu[4] = length;
  136. memcpy(apdu + APDU_HEADER_LEN, payload, length);
  137. memset(display, 0, sizeof(display));
  138. for(uint8_t i = 0; i < APDU_HEADER_LEN + length; i++) {
  139. snprintf(display + (i * 2), sizeof(display), "%02x", apdu[i]);
  140. }
  141. FURI_LOG_D(TAG, "seader_send_apdu %s", display);
  142. seader_ccid_XfrBlock(seader_uart, apdu, APDU_HEADER_LEN + length);
  143. return true;
  144. }
  145. static int seader_print_struct_callback(const void* buffer, size_t size, void* app_key) {
  146. if(app_key) {
  147. char* str = (char*)app_key;
  148. size_t next = strlen(str);
  149. strncpy(str + next, buffer, size);
  150. } else {
  151. uint8_t next = strlen(asn1_log);
  152. strncpy(asn1_log + next, buffer, size);
  153. }
  154. return 0;
  155. }
  156. void seader_send_payload(
  157. SeaderUartBridge* seader_uart,
  158. Payload_t* payload,
  159. uint8_t to,
  160. uint8_t from,
  161. uint8_t replyTo) {
  162. uint8_t rBuffer[SEADER_UART_RX_BUF_SIZE] = {0};
  163. asn_enc_rval_t er = der_encode_to_buffer(
  164. &asn_DEF_Payload, payload, rBuffer + ASN1_PREFIX, sizeof(rBuffer) - ASN1_PREFIX);
  165. #ifdef ASN1_DEBUG
  166. if(er.encoded > -1) {
  167. char payloadDebug[384] = {0};
  168. memset(payloadDebug, 0, sizeof(payloadDebug));
  169. (&asn_DEF_Payload)
  170. ->op->print_struct(
  171. &asn_DEF_Payload, payload, 1, seader_print_struct_callback, payloadDebug);
  172. if(strlen(payloadDebug) > 0) {
  173. FURI_LOG_D(TAG, "Sending payload[%d %d %d]: %s", to, from, replyTo, payloadDebug);
  174. }
  175. }
  176. #endif
  177. //0xa0, 0xda, 0x02, 0x63, 0x00, 0x00, 0x0a,
  178. //0x44, 0x0a, 0x44, 0x00, 0x00, 0x00, 0xa0, 0x02, 0x96, 0x00
  179. rBuffer[0] = to;
  180. rBuffer[1] = from;
  181. rBuffer[2] = replyTo;
  182. seader_send_apdu(seader_uart, 0xA0, 0xDA, 0x02, 0x63, rBuffer, 6 + er.encoded);
  183. }
  184. void seader_send_response(
  185. SeaderUartBridge* seader_uart,
  186. Response_t* response,
  187. uint8_t to,
  188. uint8_t from,
  189. uint8_t replyTo) {
  190. Payload_t* payload = 0;
  191. payload = calloc(1, sizeof *payload);
  192. assert(payload);
  193. payload->present = Payload_PR_response;
  194. payload->choice.response = *response;
  195. seader_send_payload(seader_uart, payload, to, from, replyTo);
  196. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  197. }
  198. void sendRequestPacs(SeaderUartBridge* seader_uart) {
  199. RequestPacs_t* requestPacs = 0;
  200. requestPacs = calloc(1, sizeof *requestPacs);
  201. assert(requestPacs);
  202. requestPacs->contentElementTag = ContentElementTag_implicitFormatPhysicalAccessBits;
  203. SamCommand_t* samCommand = 0;
  204. samCommand = calloc(1, sizeof *samCommand);
  205. assert(samCommand);
  206. samCommand->present = SamCommand_PR_requestPacs;
  207. samCommand->choice.requestPacs = *requestPacs;
  208. Payload_t* payload = 0;
  209. payload = calloc(1, sizeof *payload);
  210. assert(payload);
  211. payload->present = Payload_PR_samCommand;
  212. payload->choice.samCommand = *samCommand;
  213. seader_send_payload(seader_uart, payload, 0x44, 0x0a, 0x44);
  214. ASN_STRUCT_FREE(asn_DEF_RequestPacs, requestPacs);
  215. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  216. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  217. }
  218. void seader_worker_send_version(SeaderWorker* seader_worker) {
  219. SeaderUartBridge* seader_uart = seader_worker->uart;
  220. SamCommand_t* samCommand = 0;
  221. samCommand = calloc(1, sizeof *samCommand);
  222. assert(samCommand);
  223. samCommand->present = SamCommand_PR_version;
  224. Payload_t* payload = 0;
  225. payload = calloc(1, sizeof *payload);
  226. assert(payload);
  227. payload->present = Payload_PR_samCommand;
  228. payload->choice.samCommand = *samCommand;
  229. seader_send_payload(seader_uart, payload, 0x44, 0x0a, 0x44);
  230. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  231. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  232. }
  233. void seader_send_card_detected(SeaderUartBridge* seader_uart, CardDetails_t* cardDetails) {
  234. CardDetected_t* cardDetected = 0;
  235. cardDetected = calloc(1, sizeof *cardDetected);
  236. assert(cardDetected);
  237. cardDetected->detectedCardDetails = *cardDetails;
  238. SamCommand_t* samCommand = 0;
  239. samCommand = calloc(1, sizeof *samCommand);
  240. assert(samCommand);
  241. samCommand->present = SamCommand_PR_cardDetected;
  242. samCommand->choice.cardDetected = *cardDetected;
  243. Payload_t* payload = 0;
  244. payload = calloc(1, sizeof *payload);
  245. assert(payload);
  246. payload->present = Payload_PR_samCommand;
  247. payload->choice.samCommand = *samCommand;
  248. seader_send_payload(seader_uart, payload, 0x44, 0x0a, 0x44);
  249. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  250. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  251. ASN_STRUCT_FREE(asn_DEF_CardDetected, cardDetected);
  252. }
  253. bool seader_unpack_pacs(Seader* seader, uint8_t* buf, size_t size) {
  254. SeaderCredential* seader_credential = seader->credential;
  255. PAC_t* pac = 0;
  256. pac = calloc(1, sizeof *pac);
  257. assert(pac);
  258. bool rtn = false;
  259. asn_dec_rval_t rval = asn_decode(0, ATS_DER, &asn_DEF_PAC, (void**)&pac, buf, size);
  260. if(rval.code == RC_OK) {
  261. char pacDebug[384] = {0};
  262. (&asn_DEF_PAC)
  263. ->op->print_struct(&asn_DEF_PAC, pac, 1, seader_print_struct_callback, pacDebug);
  264. if(strlen(pacDebug) > 0) {
  265. FURI_LOG_D(TAG, "Received pac: %s", pacDebug);
  266. memset(display, 0, sizeof(display));
  267. if(seader_credential->sio[0] == 0x30) {
  268. for(uint8_t i = 0; i < seader_credential->sio_len; i++) {
  269. snprintf(
  270. display + (i * 2), sizeof(display), "%02x", seader_credential->sio[i]);
  271. }
  272. FURI_LOG_D(TAG, "SIO %s", display);
  273. }
  274. }
  275. if(pac->size <= sizeof(seader_credential->credential)) {
  276. // TODO: make credential into a 12 byte array
  277. seader_credential->bit_length = pac->size * 8 - pac->bits_unused;
  278. memcpy(&seader_credential->credential, pac->buf, pac->size);
  279. seader_credential->credential = __builtin_bswap64(seader_credential->credential);
  280. seader_credential->credential = seader_credential->credential >>
  281. (64 - seader_credential->bit_length);
  282. FURI_LOG_D(
  283. TAG,
  284. "credential (%d) %016llx",
  285. seader_credential->bit_length,
  286. seader_credential->credential);
  287. rtn = true;
  288. } else {
  289. // PACS too big (probably bad data)
  290. view_dispatcher_send_custom_event(
  291. seader->view_dispatcher, SeaderCustomEventWorkerExit);
  292. }
  293. }
  294. ASN_STRUCT_FREE(asn_DEF_PAC, pac);
  295. return rtn;
  296. }
  297. // 800201298106683d052026b6820101
  298. //300F800201298106683D052026B6820101
  299. bool seader_parse_version(SeaderWorker* seader_worker, uint8_t* buf, size_t size) {
  300. SamVersion_t* version = 0;
  301. version = calloc(1, sizeof *version);
  302. assert(version);
  303. bool rtn = false;
  304. if(size > 30) {
  305. // Too large to handle now
  306. FURI_LOG_W(TAG, "Version of %d is to long to parse", size);
  307. return false;
  308. }
  309. // Add sequence prefix
  310. uint8_t seq[32] = {0x30};
  311. seq[1] = (uint8_t)size;
  312. memcpy(seq + 2, buf, size);
  313. asn_dec_rval_t rval =
  314. asn_decode(0, ATS_DER, &asn_DEF_SamVersion, (void**)&version, seq, size + 2);
  315. if(rval.code == RC_OK) {
  316. char versionDebug[128] = {0};
  317. (&asn_DEF_SamVersion)
  318. ->op->print_struct(
  319. &asn_DEF_SamVersion, version, 1, seader_print_struct_callback, versionDebug);
  320. if(strlen(versionDebug) > 0) {
  321. // FURI_LOG_D(TAG, "Received version: %s", versionDebug);
  322. }
  323. if(version->version.size == 2) {
  324. memcpy(seader_worker->sam_version, version->version.buf, version->version.size);
  325. }
  326. rtn = true;
  327. }
  328. ASN_STRUCT_FREE(asn_DEF_SamVersion, version);
  329. return rtn;
  330. }
  331. bool seader_parse_sam_response(Seader* seader, SamResponse_t* samResponse) {
  332. SeaderWorker* seader_worker = seader->worker;
  333. SeaderUartBridge* seader_uart = seader_worker->uart;
  334. if(samResponse->size == 0) {
  335. if(requestPacs) {
  336. FURI_LOG_D(TAG, "samResponse %d => requesting PACS", samResponse->size);
  337. sendRequestPacs(seader_uart);
  338. requestPacs = false;
  339. } else {
  340. FURI_LOG_D(
  341. TAG, "samResponse %d, PACS already requested, pushing view", samResponse->size);
  342. view_dispatcher_send_custom_event(
  343. seader->view_dispatcher, SeaderCustomEventWorkerExit);
  344. }
  345. } else if(seader_parse_version(seader_worker, samResponse->buf, samResponse->size)) {
  346. // no-op
  347. } else if(seader_unpack_pacs(seader, samResponse->buf, samResponse->size)) {
  348. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventPollerSuccess);
  349. } else {
  350. memset(display, 0, sizeof(display));
  351. for(uint8_t i = 0; i < samResponse->size; i++) {
  352. snprintf(display + (i * 2), sizeof(display), "%02x", samResponse->buf[i]);
  353. }
  354. FURI_LOG_D(TAG, "Unknown samResponse %d: %s", samResponse->size, display);
  355. }
  356. return false;
  357. }
  358. bool seader_parse_response(Seader* seader, Response_t* response) {
  359. switch(response->present) {
  360. case Response_PR_samResponse:
  361. seader_parse_sam_response(seader, &response->choice.samResponse);
  362. break;
  363. default:
  364. FURI_LOG_D(TAG, "non-sam response");
  365. break;
  366. };
  367. return false;
  368. }
  369. void seader_send_nfc_rx(SeaderUartBridge* seader_uart, uint8_t* buffer, size_t len) {
  370. OCTET_STRING_t rxData = {.buf = buffer, .size = len};
  371. uint8_t status[] = {0x00, 0x00};
  372. RfStatus_t rfStatus = {.buf = status, .size = 2};
  373. NFCRx_t* nfcRx = 0;
  374. nfcRx = calloc(1, sizeof *nfcRx);
  375. assert(nfcRx);
  376. nfcRx->rfStatus = rfStatus;
  377. nfcRx->data = &rxData;
  378. NFCResponse_t* nfcResponse = 0;
  379. nfcResponse = calloc(1, sizeof *nfcResponse);
  380. assert(nfcResponse);
  381. nfcResponse->present = NFCResponse_PR_nfcRx;
  382. nfcResponse->choice.nfcRx = *nfcRx;
  383. Response_t* response = 0;
  384. response = calloc(1, sizeof *response);
  385. assert(response);
  386. response->present = Response_PR_nfcResponse;
  387. response->choice.nfcResponse = *nfcResponse;
  388. seader_send_response(seader_uart, response, 0x14, 0x0a, 0x0);
  389. ASN_STRUCT_FREE(asn_DEF_NFCRx, nfcRx);
  390. ASN_STRUCT_FREE(asn_DEF_NFCResponse, nfcResponse);
  391. ASN_STRUCT_FREE(asn_DEF_Response, response);
  392. }
  393. void seader_capture_sio(BitBuffer* tx_buffer, BitBuffer* rx_buffer, SeaderCredential* credential) {
  394. const uint8_t* buffer = bit_buffer_get_data(tx_buffer);
  395. size_t len = bit_buffer_get_size_bytes(tx_buffer);
  396. const uint8_t* rxBuffer = bit_buffer_get_data(rx_buffer);
  397. if(credential->type == SeaderCredentialTypePicopass) {
  398. if(memcmp(buffer, read4Block6, len) == 0 && rxBuffer[0] == 0x30) {
  399. memcpy(credential->sio, rxBuffer, 32);
  400. credential->sio_len += 32;
  401. } else if(memcmp(buffer, read4Block10, len) == 0 && rxBuffer[0] == 0x30) {
  402. memcpy(credential->sio, rxBuffer, 32);
  403. credential->sio_len += 32;
  404. } else if(memcmp(buffer, read4Block9, len) == 0) {
  405. memcpy(credential->sio + 32, rxBuffer + 8, 24);
  406. credential->sio_len += 24;
  407. } else if(memcmp(buffer, read4Block13, len) == 0) {
  408. memcpy(credential->sio + 32, rxBuffer + 8, 24);
  409. credential->sio_len += 24;
  410. }
  411. } else if(credential->type == SeaderCredentialType14A) {
  412. // Desfire EV1 passes SIO in the clear
  413. uint8_t desfire_read[] = {
  414. 0x90, 0xbd, 0x00, 0x00, 0x07, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
  415. if(memcmp(buffer, desfire_read, len) == 0 && rxBuffer[0] == 0x30) {
  416. credential->sio_len =
  417. bit_buffer_get_size_bytes(rx_buffer) - 2; // -2 for the APDU response bytes
  418. memcpy(credential->sio, rxBuffer, credential->sio_len);
  419. }
  420. }
  421. }
  422. void seader_iso15693_transmit(
  423. Seader* seader,
  424. PicopassPoller* picopass_poller,
  425. uint8_t* buffer,
  426. size_t len) {
  427. UNUSED(seader);
  428. UNUSED(buffer);
  429. UNUSED(len);
  430. SeaderWorker* seader_worker = seader->worker;
  431. SeaderUartBridge* seader_uart = seader_worker->uart;
  432. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  433. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  434. PicopassError error = PicopassErrorNone;
  435. do {
  436. bit_buffer_append_bytes(tx_buffer, buffer, len);
  437. if(memcmp(buffer, updateBlock2, sizeof(updateBlock2)) == 0) {
  438. error = seader_worker_fake_epurse_update(tx_buffer, rx_buffer);
  439. } else {
  440. error = picopass_poller_send_frame(
  441. picopass_poller, tx_buffer, rx_buffer, SEADER_POLLER_MAX_FWT);
  442. }
  443. if(error == PicopassErrorIncorrectCrc) {
  444. error = PicopassErrorNone;
  445. }
  446. if(error != PicopassErrorNone) {
  447. seader_worker->stage = SeaderPollerEventTypeFail;
  448. break;
  449. }
  450. seader_capture_sio(tx_buffer, rx_buffer, seader->credential);
  451. seader_send_nfc_rx(
  452. seader_uart,
  453. (uint8_t*)bit_buffer_get_data(rx_buffer),
  454. bit_buffer_get_size_bytes(rx_buffer));
  455. } while(false);
  456. bit_buffer_free(tx_buffer);
  457. bit_buffer_free(rx_buffer);
  458. }
  459. /* Assumes this is called in the context of the NFC API callback */
  460. void seader_iso14443a_transmit(
  461. Seader* seader,
  462. Iso14443_4aPoller* iso14443_4a_poller,
  463. uint8_t* buffer,
  464. size_t len,
  465. uint16_t timeout,
  466. uint8_t format[3]) {
  467. UNUSED(timeout);
  468. UNUSED(format);
  469. furi_assert(seader);
  470. furi_assert(buffer);
  471. furi_assert(iso14443_4a_poller);
  472. SeaderWorker* seader_worker = seader->worker;
  473. SeaderUartBridge* seader_uart = seader_worker->uart;
  474. SeaderCredential* credential = seader->credential;
  475. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  476. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  477. do {
  478. if(credential->isDesfire && memcmp(buffer, ev2_request, len) == 0) {
  479. FURI_LOG_I(TAG, "Intercept Desfire EV2 response and return File Not Found");
  480. bit_buffer_append_bytes(rx_buffer, FILE_NOT_FOUND, sizeof(FILE_NOT_FOUND));
  481. } else {
  482. bit_buffer_append_bytes(tx_buffer, buffer, len);
  483. Iso14443_4aError error =
  484. iso14443_4a_poller_send_block(iso14443_4a_poller, tx_buffer, rx_buffer);
  485. if(error != Iso14443_4aErrorNone) {
  486. FURI_LOG_W(TAG, "iso14443_4a_poller_send_block error %d", error);
  487. seader_worker->stage = SeaderPollerEventTypeFail;
  488. break;
  489. }
  490. }
  491. seader_capture_sio(tx_buffer, rx_buffer, credential);
  492. seader_send_nfc_rx(
  493. seader_uart,
  494. (uint8_t*)bit_buffer_get_data(rx_buffer),
  495. bit_buffer_get_size_bytes(rx_buffer));
  496. } while(false);
  497. bit_buffer_free(tx_buffer);
  498. bit_buffer_free(rx_buffer);
  499. }
  500. void seader_parse_nfc_command_transmit(
  501. Seader* seader,
  502. NFCSend_t* nfcSend,
  503. SeaderPollerContainer* spc) {
  504. long timeOut = nfcSend->timeOut;
  505. Protocol_t protocol = nfcSend->protocol;
  506. FrameProtocol_t frameProtocol = protocol.buf[1];
  507. #ifdef ASN1_DEBUG
  508. memset(display, 0, sizeof(display));
  509. for(uint8_t i = 0; i < nfcSend->data.size; i++) {
  510. snprintf(display + (i * 2), sizeof(display), "%02x", nfcSend->data.buf[i]);
  511. }
  512. FURI_LOG_D(
  513. TAG,
  514. "Transmit (%ld timeout) %d bytes [%s] via %lx",
  515. timeOut,
  516. nfcSend->data.size,
  517. display,
  518. frameProtocol);
  519. #endif
  520. if(seader->credential->type == SeaderCredentialTypeVirtual) {
  521. seader_picopass_state_machine(seader, nfcSend->data.buf, nfcSend->data.size);
  522. } else if(frameProtocol == FrameProtocol_iclass) {
  523. seader_iso15693_transmit(
  524. seader, spc->picopass_poller, nfcSend->data.buf, nfcSend->data.size);
  525. } else if(frameProtocol == FrameProtocol_nfc) {
  526. seader_iso14443a_transmit(
  527. seader,
  528. spc->iso14443_4a_poller,
  529. nfcSend->data.buf,
  530. nfcSend->data.size,
  531. (uint16_t)timeOut,
  532. nfcSend->format->buf);
  533. } else {
  534. FURI_LOG_W(TAG, "unknown frame protocol %lx", frameProtocol);
  535. }
  536. }
  537. void seader_parse_nfc_off(SeaderUartBridge* seader_uart) {
  538. FURI_LOG_D(TAG, "Set Field Off");
  539. NFCResponse_t* nfcResponse = 0;
  540. nfcResponse = calloc(1, sizeof *nfcResponse);
  541. assert(nfcResponse);
  542. nfcResponse->present = NFCResponse_PR_nfcAck;
  543. Response_t* response = 0;
  544. response = calloc(1, sizeof *response);
  545. assert(response);
  546. response->present = Response_PR_nfcResponse;
  547. response->choice.nfcResponse = *nfcResponse;
  548. seader_send_response(seader_uart, response, 0x44, 0x0a, 0);
  549. ASN_STRUCT_FREE(asn_DEF_Response, response);
  550. ASN_STRUCT_FREE(asn_DEF_NFCResponse, nfcResponse);
  551. }
  552. void seader_parse_nfc_command(Seader* seader, NFCCommand_t* nfcCommand, SeaderPollerContainer* spc) {
  553. SeaderWorker* seader_worker = seader->worker;
  554. SeaderUartBridge* seader_uart = seader_worker->uart;
  555. switch(nfcCommand->present) {
  556. case NFCCommand_PR_nfcSend:
  557. seader_parse_nfc_command_transmit(seader, &nfcCommand->choice.nfcSend, spc);
  558. break;
  559. case NFCCommand_PR_nfcOff:
  560. seader_parse_nfc_off(seader_uart);
  561. seader->worker->stage = SeaderPollerEventTypeComplete;
  562. break;
  563. default:
  564. FURI_LOG_W(TAG, "unparsed NFCCommand");
  565. break;
  566. };
  567. }
  568. bool seader_worker_state_machine(
  569. Seader* seader,
  570. Payload_t* payload,
  571. bool online,
  572. SeaderPollerContainer* spc) {
  573. bool processed = false;
  574. switch(payload->present) {
  575. case Payload_PR_response:
  576. seader_parse_response(seader, &payload->choice.response);
  577. processed = true;
  578. break;
  579. case Payload_PR_nfcCommand:
  580. if(online) {
  581. seader_parse_nfc_command(seader, &payload->choice.nfcCommand, spc);
  582. processed = true;
  583. }
  584. break;
  585. case Payload_PR_errorResponse:
  586. FURI_LOG_W(TAG, "Error Response");
  587. processed = true;
  588. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventWorkerExit);
  589. break;
  590. default:
  591. FURI_LOG_W(TAG, "unhandled payload");
  592. break;
  593. };
  594. return processed;
  595. }
  596. bool seader_process_success_response_i(
  597. Seader* seader,
  598. uint8_t* apdu,
  599. size_t len,
  600. bool online,
  601. SeaderPollerContainer* spc) {
  602. Payload_t* payload = 0;
  603. payload = calloc(1, sizeof *payload);
  604. assert(payload);
  605. bool processed = false;
  606. asn_dec_rval_t rval =
  607. asn_decode(0, ATS_DER, &asn_DEF_Payload, (void**)&payload, apdu + 6, len - 6);
  608. if(rval.code == RC_OK) {
  609. #ifdef ASN1_DEBUG
  610. if(online == false) {
  611. char payloadDebug[384] = {0};
  612. memset(payloadDebug, 0, sizeof(payloadDebug));
  613. (&asn_DEF_Payload)
  614. ->op->print_struct(
  615. &asn_DEF_Payload, payload, 1, seader_print_struct_callback, payloadDebug);
  616. if(strlen(payloadDebug) > 0) {
  617. FURI_LOG_D(TAG, "Payload: %s", payloadDebug);
  618. }
  619. }
  620. #endif
  621. processed = seader_worker_state_machine(seader, payload, online, spc);
  622. } else {
  623. memset(display, 0, sizeof(display));
  624. for(uint8_t i = 0; i < len; i++) {
  625. snprintf(display + (i * 2), sizeof(display), "%02x", apdu[i]);
  626. }
  627. FURI_LOG_D(TAG, "Failed to decode APDU payload: [%s]", display);
  628. }
  629. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  630. return processed;
  631. }
  632. bool seader_mf_df_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
  633. return ATQA0 == 0x44 && ATQA1 == 0x03 && SAK == 0x20;
  634. }
  635. NfcCommand seader_worker_card_detect(
  636. Seader* seader,
  637. uint8_t sak,
  638. uint8_t* atqa,
  639. const uint8_t* uid,
  640. uint8_t uid_len,
  641. uint8_t* ats,
  642. uint8_t ats_len) {
  643. UNUSED(ats);
  644. UNUSED(ats_len);
  645. // We're telling the SAM we've seen a new card, so reset out requestPacs check
  646. requestPacs = true;
  647. SeaderWorker* seader_worker = seader->worker;
  648. SeaderUartBridge* seader_uart = seader_worker->uart;
  649. SeaderCredential* credential = seader->credential;
  650. CardDetails_t* cardDetails = 0;
  651. cardDetails = calloc(1, sizeof *cardDetails);
  652. assert(cardDetails);
  653. OCTET_STRING_fromBuf(&cardDetails->csn, (const char*)uid, uid_len);
  654. OCTET_STRING_t sak_string = {.buf = &sak, .size = 1};
  655. OCTET_STRING_t atqa_string = {.buf = atqa, .size = 2};
  656. uint8_t protocol_bytes[] = {0x00, 0x00};
  657. if(sak == 0 && atqa == NULL) {
  658. protocol_bytes[1] = FrameProtocol_iclass;
  659. OCTET_STRING_fromBuf(
  660. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  661. memcpy(credential->diversifier, uid, uid_len);
  662. credential->diversifier_len = uid_len;
  663. credential->isDesfire = false;
  664. } else {
  665. protocol_bytes[1] = FrameProtocol_nfc;
  666. OCTET_STRING_fromBuf(
  667. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  668. cardDetails->sak = &sak_string;
  669. cardDetails->atqa = &atqa_string;
  670. credential->isDesfire = seader_mf_df_check_card_type(atqa[0], atqa[1], sak);
  671. if(credential->isDesfire) {
  672. memcpy(credential->diversifier, uid, uid_len);
  673. credential->diversifier_len = uid_len;
  674. }
  675. }
  676. seader_send_card_detected(seader_uart, cardDetails);
  677. ASN_STRUCT_FREE(asn_DEF_CardDetails, cardDetails);
  678. return NfcCommandContinue;
  679. }