sam_api.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727
  1. #include "sam_api.h"
  2. #define TAG "SAMAPI"
  3. #define APDU_HEADER_LEN 5
  4. #define ASN1_PREFIX 6
  5. #define ASN1_DEBUG true
  6. #define SEADER_ICLASS_SR_SIO_BASE_BLOCK 10
  7. const uint8_t picopass_iclass_key[] = {0xaf, 0xa7, 0x85, 0xa7, 0xda, 0xb3, 0x33, 0x78};
  8. static char display[SEADER_UART_RX_BUF_SIZE * 2 + 1] = {0};
  9. char asn1_log[SEADER_UART_RX_BUF_SIZE] = {0};
  10. bool requestPacs = true;
  11. uint8_t read4Block6[] = {RFAL_PICOPASS_CMD_READ4, 0x06, 0x45, 0x56};
  12. uint8_t read4Block9[] = {RFAL_PICOPASS_CMD_READ4, 0x09, 0xB2, 0xAE};
  13. uint8_t read4Block10[] = {RFAL_PICOPASS_CMD_READ4, 0x0A, 0x29, 0x9C};
  14. uint8_t read4Block13[] = {RFAL_PICOPASS_CMD_READ4, 0x0D, 0x96, 0xE8};
  15. uint8_t updateBlock2[] = {RFAL_PICOPASS_CMD_UPDATE, 0x02};
  16. void* calloc(size_t count, size_t size) {
  17. return malloc(count * size);
  18. }
  19. // Forward declarations
  20. void seader_send_nfc_rx(SeaderUartBridge* seader_uart, uint8_t* buffer, size_t len);
  21. PicopassError seader_worker_fake_epurse_update(BitBuffer* tx_buffer, BitBuffer* rx_buffer) {
  22. const uint8_t* buffer = bit_buffer_get_data(tx_buffer);
  23. uint8_t fake_response[8];
  24. memset(fake_response, 0, sizeof(fake_response));
  25. memcpy(fake_response + 0, buffer + 6, 4);
  26. memcpy(fake_response + 4, buffer + 2, 4);
  27. bit_buffer_append_bytes(rx_buffer, fake_response, sizeof(fake_response));
  28. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  29. memset(display, 0, sizeof(display));
  30. for(uint8_t i = 0; i < bit_buffer_get_size_bytes(rx_buffer); i++) {
  31. snprintf(display + (i * 2), sizeof(display), "%02x", bit_buffer_get_data(rx_buffer)[i]);
  32. }
  33. FURI_LOG_I(TAG, "Fake update E-Purse response: %s", display);
  34. return PicopassErrorNone;
  35. }
  36. void seader_picopass_state_machine(Seader* seader, uint8_t* buffer, size_t len) {
  37. SeaderWorker* seader_worker = seader->worker;
  38. SeaderUartBridge* seader_uart = seader_worker->uart;
  39. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  40. bit_buffer_append_bytes(tx_buffer, buffer, len);
  41. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  42. uint8_t sr_aia[PICOPASS_BLOCK_LEN] = {0xFF, 0xff, 0xff, 0xff, 0xFF, 0xFf, 0xff, 0xFF};
  43. uint8_t epurse[PICOPASS_BLOCK_LEN] = {0xff, 0xff, 0xff, 0xff, 0xe3, 0xff, 0xff, 0xff};
  44. uint8_t pacs_sr_cfg[PICOPASS_BLOCK_LEN] = {0xA3, 0x03, 0x03, 0x03, 0x00, 0x03, 0xe0, 0x14};
  45. uint8_t tmac[4] = {};
  46. uint8_t div_key[PICOPASS_BLOCK_LEN] = {};
  47. uint8_t offset; // for READ4
  48. do {
  49. switch(buffer[0]) {
  50. case RFAL_PICOPASS_CMD_READ_OR_IDENTIFY:
  51. if(buffer[1] == AIA_INDEX) {
  52. bit_buffer_append_bytes(rx_buffer, sr_aia, sizeof(sr_aia));
  53. } else if(buffer[1] == PACS_CFG_INDEX) {
  54. bit_buffer_append_bytes(rx_buffer, pacs_sr_cfg, sizeof(pacs_sr_cfg));
  55. }
  56. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  57. break;
  58. case RFAL_PICOPASS_CMD_UPDATE:
  59. seader_worker_fake_epurse_update(tx_buffer, rx_buffer);
  60. break;
  61. case RFAL_PICOPASS_CMD_READCHECK_KD:
  62. if(buffer[1] == EPURSE_INDEX) {
  63. bit_buffer_append_bytes(rx_buffer, epurse, sizeof(epurse));
  64. }
  65. break;
  66. case RFAL_PICOPASS_CMD_CHECK:
  67. loclass_iclass_calc_div_key(
  68. seader->credential->diversifier, picopass_iclass_key, div_key, false);
  69. LoclassState_t cipher_state = loclass_opt_doTagMAC_1(epurse, div_key);
  70. loclass_opt_doTagMAC_2(cipher_state, buffer + 1, tmac, div_key);
  71. bit_buffer_append_bytes(rx_buffer, tmac, sizeof(tmac));
  72. break;
  73. case RFAL_PICOPASS_CMD_READ4:
  74. offset = buffer[1] - SEADER_ICLASS_SR_SIO_BASE_BLOCK;
  75. bit_buffer_append_bytes(
  76. rx_buffer,
  77. seader->credential->sio + (PICOPASS_BLOCK_LEN * offset),
  78. PICOPASS_BLOCK_LEN * 4);
  79. iso13239_crc_append(Iso13239CrcTypePicopass, rx_buffer);
  80. break;
  81. }
  82. seader_send_nfc_rx(
  83. seader_uart,
  84. (uint8_t*)bit_buffer_get_data(rx_buffer),
  85. bit_buffer_get_size_bytes(rx_buffer));
  86. } while(false);
  87. bit_buffer_free(tx_buffer);
  88. bit_buffer_free(rx_buffer);
  89. }
  90. bool seader_send_apdu(
  91. SeaderUartBridge* seader_uart,
  92. uint8_t CLA,
  93. uint8_t INS,
  94. uint8_t P1,
  95. uint8_t P2,
  96. uint8_t* payload,
  97. uint8_t length) {
  98. if(APDU_HEADER_LEN + length > SEADER_UART_RX_BUF_SIZE) {
  99. FURI_LOG_E(TAG, "Cannot send message, too long: %d", APDU_HEADER_LEN + length);
  100. return false;
  101. }
  102. uint8_t apdu[SEADER_UART_RX_BUF_SIZE];
  103. apdu[0] = CLA;
  104. apdu[1] = INS;
  105. apdu[2] = P1;
  106. apdu[3] = P2;
  107. apdu[4] = length;
  108. memcpy(apdu + APDU_HEADER_LEN, payload, length);
  109. seader_ccid_XfrBlock(seader_uart, apdu, APDU_HEADER_LEN + length);
  110. return true;
  111. }
  112. static int seader_print_struct_callback(const void* buffer, size_t size, void* app_key) {
  113. if(app_key) {
  114. char* str = (char*)app_key;
  115. size_t next = strlen(str);
  116. strncpy(str + next, buffer, size);
  117. } else {
  118. uint8_t next = strlen(asn1_log);
  119. strncpy(asn1_log + next, buffer, size);
  120. }
  121. return 0;
  122. }
  123. void seader_send_payload(
  124. SeaderUartBridge* seader_uart,
  125. Payload_t* payload,
  126. uint8_t to,
  127. uint8_t from,
  128. uint8_t replyTo) {
  129. uint8_t rBuffer[SEADER_UART_RX_BUF_SIZE] = {0};
  130. asn_enc_rval_t er = der_encode_to_buffer(
  131. &asn_DEF_Payload, payload, rBuffer + ASN1_PREFIX, sizeof(rBuffer) - ASN1_PREFIX);
  132. #ifdef ASN1_DEBUG
  133. if(er.encoded > -1) {
  134. char payloadDebug[384] = {0};
  135. memset(payloadDebug, 0, sizeof(payloadDebug));
  136. (&asn_DEF_Payload)
  137. ->op->print_struct(
  138. &asn_DEF_Payload, payload, 1, seader_print_struct_callback, payloadDebug);
  139. if(strlen(payloadDebug) > 0) {
  140. FURI_LOG_D(TAG, "Sending payload[%d %d %d]: %s", to, from, replyTo, payloadDebug);
  141. }
  142. }
  143. #endif
  144. //0xa0, 0xda, 0x02, 0x63, 0x00, 0x00, 0x0a,
  145. //0x44, 0x0a, 0x44, 0x00, 0x00, 0x00, 0xa0, 0x02, 0x96, 0x00
  146. rBuffer[0] = to;
  147. rBuffer[1] = from;
  148. rBuffer[2] = replyTo;
  149. seader_send_apdu(seader_uart, 0xA0, 0xDA, 0x02, 0x63, rBuffer, 6 + er.encoded);
  150. }
  151. void seader_send_response(
  152. SeaderUartBridge* seader_uart,
  153. Response_t* response,
  154. uint8_t to,
  155. uint8_t from,
  156. uint8_t replyTo) {
  157. Payload_t* payload = 0;
  158. payload = calloc(1, sizeof *payload);
  159. assert(payload);
  160. payload->present = Payload_PR_response;
  161. payload->choice.response = *response;
  162. seader_send_payload(seader_uart, payload, to, from, replyTo);
  163. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  164. }
  165. void sendRequestPacs(SeaderUartBridge* seader_uart) {
  166. RequestPacs_t* requestPacs = 0;
  167. requestPacs = calloc(1, sizeof *requestPacs);
  168. assert(requestPacs);
  169. requestPacs->contentElementTag = ContentElementTag_implicitFormatPhysicalAccessBits;
  170. SamCommand_t* samCommand = 0;
  171. samCommand = calloc(1, sizeof *samCommand);
  172. assert(samCommand);
  173. samCommand->present = SamCommand_PR_requestPacs;
  174. samCommand->choice.requestPacs = *requestPacs;
  175. Payload_t* payload = 0;
  176. payload = calloc(1, sizeof *payload);
  177. assert(payload);
  178. payload->present = Payload_PR_samCommand;
  179. payload->choice.samCommand = *samCommand;
  180. seader_send_payload(seader_uart, payload, 0x44, 0x0a, 0x44);
  181. ASN_STRUCT_FREE(asn_DEF_RequestPacs, requestPacs);
  182. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  183. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  184. }
  185. void seader_worker_send_version(SeaderWorker* seader_worker) {
  186. SeaderUartBridge* seader_uart = seader_worker->uart;
  187. SamCommand_t* samCommand = 0;
  188. samCommand = calloc(1, sizeof *samCommand);
  189. assert(samCommand);
  190. samCommand->present = SamCommand_PR_version;
  191. Payload_t* payload = 0;
  192. payload = calloc(1, sizeof *payload);
  193. assert(payload);
  194. payload->present = Payload_PR_samCommand;
  195. payload->choice.samCommand = *samCommand;
  196. seader_send_payload(seader_uart, payload, 0x44, 0x0a, 0x44);
  197. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  198. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  199. }
  200. void seader_send_card_detected(SeaderUartBridge* seader_uart, CardDetails_t* cardDetails) {
  201. CardDetected_t* cardDetected = 0;
  202. cardDetected = calloc(1, sizeof *cardDetected);
  203. assert(cardDetected);
  204. cardDetected->detectedCardDetails = *cardDetails;
  205. SamCommand_t* samCommand = 0;
  206. samCommand = calloc(1, sizeof *samCommand);
  207. assert(samCommand);
  208. samCommand->present = SamCommand_PR_cardDetected;
  209. samCommand->choice.cardDetected = *cardDetected;
  210. Payload_t* payload = 0;
  211. payload = calloc(1, sizeof *payload);
  212. assert(payload);
  213. payload->present = Payload_PR_samCommand;
  214. payload->choice.samCommand = *samCommand;
  215. seader_send_payload(seader_uart, payload, 0x44, 0x0a, 0x44);
  216. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  217. ASN_STRUCT_FREE(asn_DEF_SamCommand, samCommand);
  218. ASN_STRUCT_FREE(asn_DEF_CardDetected, cardDetected);
  219. }
  220. bool seader_unpack_pacs(Seader* seader, uint8_t* buf, size_t size) {
  221. SeaderCredential* seader_credential = seader->credential;
  222. PAC_t* pac = 0;
  223. pac = calloc(1, sizeof *pac);
  224. assert(pac);
  225. bool rtn = false;
  226. asn_dec_rval_t rval = asn_decode(0, ATS_DER, &asn_DEF_PAC, (void**)&pac, buf, size);
  227. if(rval.code == RC_OK) {
  228. char pacDebug[384] = {0};
  229. (&asn_DEF_PAC)
  230. ->op->print_struct(&asn_DEF_PAC, pac, 1, seader_print_struct_callback, pacDebug);
  231. if(strlen(pacDebug) > 0) {
  232. FURI_LOG_D(TAG, "Received pac: %s", pacDebug);
  233. memset(display, 0, sizeof(display));
  234. if(seader_credential->sio[0] == 0x30) {
  235. for(uint8_t i = 0; i < sizeof(seader_credential->sio); i++) {
  236. snprintf(
  237. display + (i * 2), sizeof(display), "%02x", seader_credential->sio[i]);
  238. }
  239. FURI_LOG_D(TAG, "SIO %s", display);
  240. }
  241. }
  242. if(pac->size <= sizeof(seader_credential->credential)) {
  243. // TODO: make credential into a 12 byte array
  244. seader_credential->bit_length = pac->size * 8 - pac->bits_unused;
  245. memcpy(&seader_credential->credential, pac->buf, pac->size);
  246. seader_credential->credential = __builtin_bswap64(seader_credential->credential);
  247. seader_credential->credential = seader_credential->credential >>
  248. (64 - seader_credential->bit_length);
  249. rtn = true;
  250. } else {
  251. // PACS too big (probably bad data)
  252. view_dispatcher_send_custom_event(
  253. seader->view_dispatcher, SeaderCustomEventWorkerExit);
  254. }
  255. }
  256. ASN_STRUCT_FREE(asn_DEF_PAC, pac);
  257. return rtn;
  258. }
  259. // 800201298106683d052026b6820101
  260. //300F800201298106683D052026B6820101
  261. bool seader_parse_version(SeaderWorker* seader_worker, uint8_t* buf, size_t size) {
  262. SamVersion_t* version = 0;
  263. version = calloc(1, sizeof *version);
  264. assert(version);
  265. bool rtn = false;
  266. if(size > 30) {
  267. // Too large to handle now
  268. FURI_LOG_W(TAG, "Version of %d is to long to parse", size);
  269. return false;
  270. }
  271. // Add sequence prefix
  272. uint8_t seq[32] = {0x30};
  273. seq[1] = (uint8_t)size;
  274. memcpy(seq + 2, buf, size);
  275. asn_dec_rval_t rval =
  276. asn_decode(0, ATS_DER, &asn_DEF_SamVersion, (void**)&version, seq, size + 2);
  277. if(rval.code == RC_OK) {
  278. char versionDebug[128] = {0};
  279. (&asn_DEF_SamVersion)
  280. ->op->print_struct(
  281. &asn_DEF_SamVersion, version, 1, seader_print_struct_callback, versionDebug);
  282. if(strlen(versionDebug) > 0) {
  283. // FURI_LOG_D(TAG, "Received version: %s", versionDebug);
  284. }
  285. if(version->version.size == 2) {
  286. memcpy(seader_worker->sam_version, version->version.buf, version->version.size);
  287. }
  288. rtn = true;
  289. }
  290. ASN_STRUCT_FREE(asn_DEF_SamVersion, version);
  291. return rtn;
  292. }
  293. bool seader_parse_sam_response(Seader* seader, SamResponse_t* samResponse) {
  294. SeaderWorker* seader_worker = seader->worker;
  295. SeaderUartBridge* seader_uart = seader_worker->uart;
  296. if(samResponse->size == 0) {
  297. if(requestPacs) {
  298. FURI_LOG_D(TAG, "samResponse %d => requesting PACS", samResponse->size);
  299. sendRequestPacs(seader_uart);
  300. requestPacs = false;
  301. } else {
  302. FURI_LOG_D(
  303. TAG, "samResponse %d, PACS already requested, pushing view", samResponse->size);
  304. view_dispatcher_send_custom_event(
  305. seader->view_dispatcher, SeaderCustomEventWorkerExit);
  306. }
  307. } else if(seader_parse_version(seader_worker, samResponse->buf, samResponse->size)) {
  308. // no-op
  309. } else if(seader_unpack_pacs(seader, samResponse->buf, samResponse->size)) {
  310. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventPollerSuccess);
  311. } else {
  312. memset(display, 0, sizeof(display));
  313. for(uint8_t i = 0; i < samResponse->size; i++) {
  314. snprintf(display + (i * 2), sizeof(display), "%02x", samResponse->buf[i]);
  315. }
  316. FURI_LOG_D(TAG, "Unknown samResponse %d: %s", samResponse->size, display);
  317. }
  318. return false;
  319. }
  320. bool seader_parse_response(Seader* seader, Response_t* response) {
  321. switch(response->present) {
  322. case Response_PR_samResponse:
  323. seader_parse_sam_response(seader, &response->choice.samResponse);
  324. break;
  325. default:
  326. FURI_LOG_D(TAG, "non-sam response");
  327. break;
  328. };
  329. return false;
  330. }
  331. void seader_send_nfc_rx(SeaderUartBridge* seader_uart, uint8_t* buffer, size_t len) {
  332. OCTET_STRING_t rxData = {.buf = buffer, .size = len};
  333. uint8_t status[] = {0x00, 0x00};
  334. RfStatus_t rfStatus = {.buf = status, .size = 2};
  335. NFCRx_t* nfcRx = 0;
  336. nfcRx = calloc(1, sizeof *nfcRx);
  337. assert(nfcRx);
  338. nfcRx->rfStatus = rfStatus;
  339. nfcRx->data = &rxData;
  340. NFCResponse_t* nfcResponse = 0;
  341. nfcResponse = calloc(1, sizeof *nfcResponse);
  342. assert(nfcResponse);
  343. nfcResponse->present = NFCResponse_PR_nfcRx;
  344. nfcResponse->choice.nfcRx = *nfcRx;
  345. Response_t* response = 0;
  346. response = calloc(1, sizeof *response);
  347. assert(response);
  348. response->present = Response_PR_nfcResponse;
  349. response->choice.nfcResponse = *nfcResponse;
  350. seader_send_response(seader_uart, response, 0x14, 0x0a, 0x0);
  351. ASN_STRUCT_FREE(asn_DEF_NFCRx, nfcRx);
  352. ASN_STRUCT_FREE(asn_DEF_NFCResponse, nfcResponse);
  353. ASN_STRUCT_FREE(asn_DEF_Response, response);
  354. }
  355. void seader_capture_sio(BitBuffer* tx_buffer, BitBuffer* rx_buffer, SeaderCredential* credential) {
  356. const uint8_t* buffer = bit_buffer_get_data(tx_buffer);
  357. size_t len = bit_buffer_get_size_bytes(tx_buffer);
  358. const uint8_t* rxBuffer = bit_buffer_get_data(rx_buffer);
  359. if(memcmp(buffer, read4Block6, len) == 0 && rxBuffer[0] == 0x30) {
  360. memcpy(credential->sio, rxBuffer, 32);
  361. } else if(memcmp(buffer, read4Block10, len) == 0 && rxBuffer[0] == 0x30) {
  362. memcpy(credential->sio, rxBuffer, 32);
  363. } else if(memcmp(buffer, read4Block9, len) == 0) {
  364. memcpy(credential->sio + 32, rxBuffer + 8, 24);
  365. } else if(memcmp(buffer, read4Block13, len) == 0) {
  366. memcpy(credential->sio + 32, rxBuffer + 8, 24);
  367. }
  368. }
  369. void seader_iso15693_transmit(
  370. Seader* seader,
  371. PicopassPoller* picopass_poller,
  372. uint8_t* buffer,
  373. size_t len) {
  374. UNUSED(seader);
  375. UNUSED(buffer);
  376. UNUSED(len);
  377. SeaderWorker* seader_worker = seader->worker;
  378. SeaderUartBridge* seader_uart = seader_worker->uart;
  379. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  380. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  381. PicopassError error = PicopassErrorNone;
  382. do {
  383. bit_buffer_append_bytes(tx_buffer, buffer, len);
  384. if(memcmp(buffer, updateBlock2, sizeof(updateBlock2)) == 0) {
  385. error = seader_worker_fake_epurse_update(tx_buffer, rx_buffer);
  386. } else {
  387. error = picopass_poller_send_frame(
  388. picopass_poller, tx_buffer, rx_buffer, SEADER_POLLER_MAX_FWT);
  389. }
  390. if(error == PicopassErrorIncorrectCrc) {
  391. error = PicopassErrorNone;
  392. }
  393. if(error != PicopassErrorNone) {
  394. seader_worker->stage = SeaderPollerEventTypeFail;
  395. break;
  396. }
  397. seader_capture_sio(tx_buffer, rx_buffer, seader->credential);
  398. seader_send_nfc_rx(
  399. seader_uart,
  400. (uint8_t*)bit_buffer_get_data(rx_buffer),
  401. bit_buffer_get_size_bytes(rx_buffer));
  402. } while(false);
  403. bit_buffer_free(tx_buffer);
  404. bit_buffer_free(rx_buffer);
  405. }
  406. /* Assumes this is called in the context of the NFC API callback */
  407. void seader_iso14443a_transmit(
  408. Seader* seader,
  409. Iso14443_4aPoller* iso14443_4a_poller,
  410. uint8_t* buffer,
  411. size_t len,
  412. uint16_t timeout,
  413. uint8_t format[3]) {
  414. UNUSED(timeout);
  415. UNUSED(format);
  416. furi_assert(seader);
  417. furi_assert(buffer);
  418. furi_assert(iso14443_4a_poller);
  419. SeaderWorker* seader_worker = seader->worker;
  420. SeaderUartBridge* seader_uart = seader_worker->uart;
  421. BitBuffer* tx_buffer = bit_buffer_alloc(len);
  422. BitBuffer* rx_buffer = bit_buffer_alloc(SEADER_POLLER_MAX_BUFFER_SIZE);
  423. do {
  424. bit_buffer_append_bytes(tx_buffer, buffer, len);
  425. Iso14443_4aError error =
  426. iso14443_4a_poller_send_block(iso14443_4a_poller, tx_buffer, rx_buffer);
  427. if(error != Iso14443_4aErrorNone) {
  428. FURI_LOG_W(TAG, "iso14443_4a_poller_send_block error %d", error);
  429. seader_worker->stage = SeaderPollerEventTypeFail;
  430. break;
  431. }
  432. seader_send_nfc_rx(
  433. seader_uart,
  434. (uint8_t*)bit_buffer_get_data(rx_buffer),
  435. bit_buffer_get_size_bytes(rx_buffer));
  436. } while(false);
  437. bit_buffer_free(tx_buffer);
  438. bit_buffer_free(rx_buffer);
  439. }
  440. void seader_parse_nfc_command_transmit(
  441. Seader* seader,
  442. NFCSend_t* nfcSend,
  443. SeaderPollerContainer* spc) {
  444. long timeOut = nfcSend->timeOut;
  445. Protocol_t protocol = nfcSend->protocol;
  446. FrameProtocol_t frameProtocol = protocol.buf[1];
  447. #ifdef ASN1_DEBUG
  448. memset(display, 0, sizeof(display));
  449. for(uint8_t i = 0; i < nfcSend->data.size; i++) {
  450. snprintf(display + (i * 2), sizeof(display), "%02x", nfcSend->data.buf[i]);
  451. }
  452. FURI_LOG_D(
  453. TAG,
  454. "Transmit (%ld timeout) %d bytes [%s] via %lx",
  455. timeOut,
  456. nfcSend->data.size,
  457. display,
  458. frameProtocol);
  459. #endif
  460. if(seader->credential->type == SeaderCredentialTypeVirtual) {
  461. seader_picopass_state_machine(seader, nfcSend->data.buf, nfcSend->data.size);
  462. } else if(frameProtocol == FrameProtocol_iclass) {
  463. seader_iso15693_transmit(
  464. seader, spc->picopass_poller, nfcSend->data.buf, nfcSend->data.size);
  465. } else if(frameProtocol == FrameProtocol_nfc) {
  466. seader_iso14443a_transmit(
  467. seader,
  468. spc->iso14443_4a_poller,
  469. nfcSend->data.buf,
  470. nfcSend->data.size,
  471. (uint16_t)timeOut,
  472. nfcSend->format->buf);
  473. } else {
  474. FURI_LOG_W(TAG, "unknown frame protocol %lx", frameProtocol);
  475. }
  476. }
  477. void seader_parse_nfc_off(SeaderUartBridge* seader_uart) {
  478. FURI_LOG_D(TAG, "Set Field Off");
  479. NFCResponse_t* nfcResponse = 0;
  480. nfcResponse = calloc(1, sizeof *nfcResponse);
  481. assert(nfcResponse);
  482. nfcResponse->present = NFCResponse_PR_nfcAck;
  483. Response_t* response = 0;
  484. response = calloc(1, sizeof *response);
  485. assert(response);
  486. response->present = Response_PR_nfcResponse;
  487. response->choice.nfcResponse = *nfcResponse;
  488. seader_send_response(seader_uart, response, 0x44, 0x0a, 0);
  489. ASN_STRUCT_FREE(asn_DEF_Response, response);
  490. ASN_STRUCT_FREE(asn_DEF_NFCResponse, nfcResponse);
  491. }
  492. void seader_parse_nfc_command(Seader* seader, NFCCommand_t* nfcCommand, SeaderPollerContainer* spc) {
  493. SeaderWorker* seader_worker = seader->worker;
  494. SeaderUartBridge* seader_uart = seader_worker->uart;
  495. switch(nfcCommand->present) {
  496. case NFCCommand_PR_nfcSend:
  497. seader_parse_nfc_command_transmit(seader, &nfcCommand->choice.nfcSend, spc);
  498. break;
  499. case NFCCommand_PR_nfcOff:
  500. seader_parse_nfc_off(seader_uart);
  501. seader->worker->stage = SeaderPollerEventTypeComplete;
  502. break;
  503. default:
  504. FURI_LOG_W(TAG, "unparsed NFCCommand");
  505. break;
  506. };
  507. }
  508. bool seader_worker_state_machine(
  509. Seader* seader,
  510. Payload_t* payload,
  511. bool online,
  512. SeaderPollerContainer* spc) {
  513. bool processed = false;
  514. switch(payload->present) {
  515. case Payload_PR_response:
  516. seader_parse_response(seader, &payload->choice.response);
  517. processed = true;
  518. break;
  519. case Payload_PR_nfcCommand:
  520. if(online) {
  521. seader_parse_nfc_command(seader, &payload->choice.nfcCommand, spc);
  522. processed = true;
  523. }
  524. break;
  525. case Payload_PR_errorResponse:
  526. FURI_LOG_W(TAG, "Error Response");
  527. processed = true;
  528. view_dispatcher_send_custom_event(seader->view_dispatcher, SeaderCustomEventWorkerExit);
  529. break;
  530. default:
  531. FURI_LOG_W(TAG, "unhandled payload");
  532. break;
  533. };
  534. return processed;
  535. }
  536. bool seader_process_success_response_i(
  537. Seader* seader,
  538. uint8_t* apdu,
  539. size_t len,
  540. bool online,
  541. SeaderPollerContainer* spc) {
  542. Payload_t* payload = 0;
  543. payload = calloc(1, sizeof *payload);
  544. assert(payload);
  545. bool processed = false;
  546. asn_dec_rval_t rval =
  547. asn_decode(0, ATS_DER, &asn_DEF_Payload, (void**)&payload, apdu + 6, len - 6);
  548. if(rval.code == RC_OK) {
  549. #ifdef ASN1_DEBUG
  550. if(online == false) {
  551. char payloadDebug[384] = {0};
  552. memset(payloadDebug, 0, sizeof(payloadDebug));
  553. (&asn_DEF_Payload)
  554. ->op->print_struct(
  555. &asn_DEF_Payload, payload, 1, seader_print_struct_callback, payloadDebug);
  556. if(strlen(payloadDebug) > 0) {
  557. FURI_LOG_D(TAG, "Payload: %s", payloadDebug);
  558. }
  559. }
  560. #endif
  561. processed = seader_worker_state_machine(seader, payload, online, spc);
  562. } else {
  563. FURI_LOG_D(TAG, "Failed to decode APDU payload");
  564. }
  565. ASN_STRUCT_FREE(asn_DEF_Payload, payload);
  566. return processed;
  567. }
  568. NfcCommand seader_worker_card_detect(
  569. Seader* seader,
  570. uint8_t sak,
  571. uint8_t* atqa,
  572. const uint8_t* uid,
  573. uint8_t uid_len,
  574. uint8_t* ats,
  575. uint8_t ats_len) {
  576. UNUSED(ats);
  577. UNUSED(ats_len);
  578. // We're telling the SAM we've seen a new card, so reset out requestPacs check
  579. requestPacs = true;
  580. SeaderWorker* seader_worker = seader->worker;
  581. SeaderUartBridge* seader_uart = seader_worker->uart;
  582. CardDetails_t* cardDetails = 0;
  583. cardDetails = calloc(1, sizeof *cardDetails);
  584. assert(cardDetails);
  585. OCTET_STRING_fromBuf(&cardDetails->csn, (const char*)uid, uid_len);
  586. OCTET_STRING_t sak_string = {.buf = &sak, .size = 1};
  587. OCTET_STRING_t atqa_string = {.buf = atqa, .size = 2};
  588. uint8_t protocol_bytes[] = {0x00, 0x00};
  589. if(sak == 0 && atqa == NULL) {
  590. protocol_bytes[1] = FrameProtocol_iclass;
  591. OCTET_STRING_fromBuf(
  592. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  593. } else {
  594. protocol_bytes[1] = FrameProtocol_nfc;
  595. OCTET_STRING_fromBuf(
  596. &cardDetails->protocol, (const char*)protocol_bytes, sizeof(protocol_bytes));
  597. cardDetails->sak = &sak_string;
  598. cardDetails->atqa = &atqa_string;
  599. }
  600. seader_send_card_detected(seader_uart, cardDetails);
  601. ASN_STRUCT_FREE(asn_DEF_CardDetails, cardDetails);
  602. return NfcCommandContinue;
  603. }