furi_hal_nfc.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614
  1. #include <limits.h>
  2. #include "furi_hal_nfc.h"
  3. #include <st25r3916.h>
  4. #include <st25r3916_irq.h>
  5. #include <rfal_rf.h>
  6. #include <furi.h>
  7. #include <m-string.h>
  8. #include <lib/digital_signal/digital_signal.h>
  9. #include <furi_hal_delay.h>
  10. #define TAG "FuriHalNfc"
  11. static const uint32_t clocks_in_ms = 64 * 1000;
  12. osEventFlagsId_t event = NULL;
  13. #define EVENT_FLAG_INTERRUPT (1UL << 0)
  14. #define EVENT_FLAG_STATE_CHANGED (1UL << 1)
  15. #define EVENT_FLAG_STOP (1UL << 2)
  16. #define EVENT_FLAG_ALL (EVENT_FLAG_INTERRUPT | EVENT_FLAG_STATE_CHANGED | EVENT_FLAG_STOP)
  17. void furi_hal_nfc_init() {
  18. ReturnCode ret = rfalNfcInitialize();
  19. if(ret == ERR_NONE) {
  20. furi_hal_nfc_start_sleep();
  21. event = osEventFlagsNew(NULL);
  22. FURI_LOG_I(TAG, "Init OK");
  23. } else {
  24. FURI_LOG_W(TAG, "Initialization failed, RFAL returned: %d", ret);
  25. }
  26. }
  27. bool furi_hal_nfc_is_busy() {
  28. return rfalNfcGetState() != RFAL_NFC_STATE_IDLE;
  29. }
  30. void furi_hal_nfc_field_on() {
  31. furi_hal_nfc_exit_sleep();
  32. st25r3916TxRxOn();
  33. }
  34. void furi_hal_nfc_field_off() {
  35. st25r3916TxRxOff();
  36. furi_hal_nfc_start_sleep();
  37. }
  38. void furi_hal_nfc_start_sleep() {
  39. rfalLowPowerModeStart();
  40. }
  41. void furi_hal_nfc_exit_sleep() {
  42. rfalLowPowerModeStop();
  43. }
  44. bool furi_hal_nfc_detect(FuriHalNfcDevData* nfc_data, uint32_t timeout) {
  45. furi_assert(nfc_data);
  46. rfalNfcDevice* dev_list = NULL;
  47. uint8_t dev_cnt = 0;
  48. bool detected = false;
  49. rfalLowPowerModeStop();
  50. rfalNfcState state = rfalNfcGetState();
  51. rfalNfcState state_old = 0;
  52. if(state == RFAL_NFC_STATE_NOTINIT) {
  53. rfalNfcInitialize();
  54. }
  55. rfalNfcDiscoverParam params;
  56. params.compMode = RFAL_COMPLIANCE_MODE_EMV;
  57. params.techs2Find = RFAL_NFC_POLL_TECH_A | RFAL_NFC_POLL_TECH_B | RFAL_NFC_POLL_TECH_F |
  58. RFAL_NFC_POLL_TECH_V | RFAL_NFC_POLL_TECH_AP2P | RFAL_NFC_POLL_TECH_ST25TB;
  59. params.totalDuration = 1000;
  60. params.devLimit = 3;
  61. params.wakeupEnabled = false;
  62. params.wakeupConfigDefault = true;
  63. params.nfcfBR = RFAL_BR_212;
  64. params.ap2pBR = RFAL_BR_424;
  65. params.maxBR = RFAL_BR_KEEP;
  66. params.GBLen = RFAL_NFCDEP_GB_MAX_LEN;
  67. params.notifyCb = NULL;
  68. uint32_t start = DWT->CYCCNT;
  69. rfalNfcDiscover(&params);
  70. while(true) {
  71. rfalNfcWorker();
  72. state = rfalNfcGetState();
  73. if(state != state_old) {
  74. FURI_LOG_T(TAG, "State change %d -> %d", state_old, state);
  75. }
  76. state_old = state;
  77. if(state == RFAL_NFC_STATE_ACTIVATED) {
  78. detected = true;
  79. break;
  80. }
  81. if(state == RFAL_NFC_STATE_POLL_ACTIVATION) {
  82. start = DWT->CYCCNT;
  83. continue;
  84. }
  85. if(state == RFAL_NFC_STATE_POLL_SELECT) {
  86. rfalNfcSelect(0);
  87. }
  88. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  89. rfalNfcDeactivate(true);
  90. FURI_LOG_T(TAG, "Timeout");
  91. break;
  92. }
  93. osDelay(1);
  94. }
  95. rfalNfcGetDevicesFound(&dev_list, &dev_cnt);
  96. if(detected) {
  97. if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCA) {
  98. nfc_data->type = FuriHalNfcTypeA;
  99. nfc_data->atqa[0] = dev_list[0].dev.nfca.sensRes.anticollisionInfo;
  100. nfc_data->atqa[1] = dev_list[0].dev.nfca.sensRes.platformInfo;
  101. nfc_data->sak = dev_list[0].dev.nfca.selRes.sak;
  102. uint8_t* cuid_start = dev_list[0].nfcid;
  103. if(dev_list[0].nfcidLen == 7) {
  104. cuid_start = &dev_list[0].nfcid[3];
  105. }
  106. nfc_data->cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) |
  107. (cuid_start[3]);
  108. } else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCB) {
  109. nfc_data->type = FuriHalNfcTypeB;
  110. } else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCF) {
  111. nfc_data->type = FuriHalNfcTypeF;
  112. } else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCV) {
  113. nfc_data->type = FuriHalNfcTypeV;
  114. }
  115. if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_RF) {
  116. nfc_data->interface = FuriHalNfcInterfaceRf;
  117. } else if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_ISODEP) {
  118. nfc_data->interface = FuriHalNfcInterfaceIsoDep;
  119. } else if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_NFCDEP) {
  120. nfc_data->interface = FuriHalNfcInterfaceNfcDep;
  121. }
  122. nfc_data->uid_len = dev_list[0].nfcidLen;
  123. memcpy(nfc_data->uid, dev_list[0].nfcid, nfc_data->uid_len);
  124. }
  125. return detected;
  126. }
  127. bool furi_hal_nfc_activate_nfca(uint32_t timeout, uint32_t* cuid) {
  128. rfalNfcDevice* dev_list;
  129. uint8_t dev_cnt = 0;
  130. rfalLowPowerModeStop();
  131. rfalNfcState state = rfalNfcGetState();
  132. if(state == RFAL_NFC_STATE_NOTINIT) {
  133. rfalNfcInitialize();
  134. }
  135. rfalNfcDiscoverParam params = {
  136. .compMode = RFAL_COMPLIANCE_MODE_NFC,
  137. .techs2Find = RFAL_NFC_POLL_TECH_A,
  138. .totalDuration = 1000,
  139. .devLimit = 3,
  140. .wakeupEnabled = false,
  141. .wakeupConfigDefault = true,
  142. .nfcfBR = RFAL_BR_212,
  143. .ap2pBR = RFAL_BR_424,
  144. .maxBR = RFAL_BR_KEEP,
  145. .GBLen = RFAL_NFCDEP_GB_MAX_LEN,
  146. .notifyCb = NULL,
  147. };
  148. uint32_t start = DWT->CYCCNT;
  149. rfalNfcDiscover(&params);
  150. while(state != RFAL_NFC_STATE_ACTIVATED) {
  151. rfalNfcWorker();
  152. state = rfalNfcGetState();
  153. FURI_LOG_T(TAG, "Current state %d", state);
  154. if(state == RFAL_NFC_STATE_POLL_ACTIVATION) {
  155. start = DWT->CYCCNT;
  156. continue;
  157. }
  158. if(state == RFAL_NFC_STATE_POLL_SELECT) {
  159. rfalNfcSelect(0);
  160. }
  161. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  162. rfalNfcDeactivate(true);
  163. FURI_LOG_T(TAG, "Timeout");
  164. return false;
  165. }
  166. osThreadYield();
  167. }
  168. rfalNfcGetDevicesFound(&dev_list, &dev_cnt);
  169. // Take first device and set cuid
  170. if(cuid) {
  171. uint8_t* cuid_start = dev_list[0].nfcid;
  172. if(dev_list[0].nfcidLen == 7) {
  173. cuid_start = &dev_list[0].nfcid[3];
  174. }
  175. *cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) |
  176. (cuid_start[3]);
  177. FURI_LOG_T(TAG, "Activated tag with cuid: %lX", *cuid);
  178. }
  179. return true;
  180. }
  181. bool furi_hal_nfc_listen(
  182. uint8_t* uid,
  183. uint8_t uid_len,
  184. uint8_t* atqa,
  185. uint8_t sak,
  186. bool activate_after_sak,
  187. uint32_t timeout) {
  188. rfalNfcState state = rfalNfcGetState();
  189. if(state == RFAL_NFC_STATE_NOTINIT) {
  190. rfalNfcInitialize();
  191. } else if(state >= RFAL_NFC_STATE_ACTIVATED) {
  192. rfalNfcDeactivate(false);
  193. }
  194. rfalLowPowerModeStop();
  195. rfalNfcDiscoverParam params = {
  196. .compMode = RFAL_COMPLIANCE_MODE_NFC,
  197. .techs2Find = RFAL_NFC_LISTEN_TECH_A,
  198. .totalDuration = 1000,
  199. .devLimit = 1,
  200. .wakeupEnabled = false,
  201. .wakeupConfigDefault = true,
  202. .nfcfBR = RFAL_BR_212,
  203. .ap2pBR = RFAL_BR_424,
  204. .maxBR = RFAL_BR_KEEP,
  205. .GBLen = RFAL_NFCDEP_GB_MAX_LEN,
  206. .notifyCb = NULL,
  207. .activate_after_sak = activate_after_sak,
  208. };
  209. params.lmConfigPA.nfcidLen = uid_len;
  210. memcpy(params.lmConfigPA.nfcid, uid, uid_len);
  211. params.lmConfigPA.SENS_RES[0] = atqa[0];
  212. params.lmConfigPA.SENS_RES[1] = atqa[1];
  213. params.lmConfigPA.SEL_RES = sak;
  214. rfalNfcDiscover(&params);
  215. uint32_t start = DWT->CYCCNT;
  216. while(state != RFAL_NFC_STATE_ACTIVATED) {
  217. rfalNfcWorker();
  218. state = rfalNfcGetState();
  219. if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
  220. rfalNfcDeactivate(true);
  221. return false;
  222. }
  223. osDelay(1);
  224. }
  225. return true;
  226. }
  227. void rfal_interrupt_callback_handler() {
  228. osEventFlagsSet(event, EVENT_FLAG_INTERRUPT);
  229. }
  230. void rfal_state_changed_callback(void* context) {
  231. UNUSED(context);
  232. osEventFlagsSet(event, EVENT_FLAG_STATE_CHANGED);
  233. }
  234. void furi_hal_nfc_stop() {
  235. if(event) {
  236. osEventFlagsSet(event, EVENT_FLAG_STOP);
  237. }
  238. }
  239. bool furi_hal_nfc_emulate_nfca(
  240. uint8_t* uid,
  241. uint8_t uid_len,
  242. uint8_t* atqa,
  243. uint8_t sak,
  244. FuriHalNfcEmulateCallback callback,
  245. void* context,
  246. uint32_t timeout) {
  247. rfalSetUpperLayerCallback(rfal_interrupt_callback_handler);
  248. rfal_set_state_changed_callback(rfal_state_changed_callback);
  249. rfalLmConfPA config;
  250. config.nfcidLen = uid_len;
  251. memcpy(config.nfcid, uid, uid_len);
  252. memcpy(config.SENS_RES, atqa, RFAL_LM_SENS_RES_LEN);
  253. config.SEL_RES = sak;
  254. uint8_t buff_rx[256];
  255. uint16_t buff_rx_size = 256;
  256. uint16_t buff_rx_len = 0;
  257. uint8_t buff_tx[256];
  258. uint16_t buff_tx_len = 0;
  259. uint32_t data_type = FURI_HAL_NFC_TXRX_DEFAULT;
  260. rfalLowPowerModeStop();
  261. if(rfalListenStart(
  262. RFAL_LM_MASK_NFCA,
  263. &config,
  264. NULL,
  265. NULL,
  266. buff_rx,
  267. rfalConvBytesToBits(buff_rx_size),
  268. &buff_rx_len)) {
  269. rfalListenStop();
  270. FURI_LOG_E(TAG, "Failed to start listen mode");
  271. return false;
  272. }
  273. while(true) {
  274. buff_rx_len = 0;
  275. buff_tx_len = 0;
  276. uint32_t flag = osEventFlagsWait(event, EVENT_FLAG_ALL, osFlagsWaitAny, timeout);
  277. if(flag == osFlagsErrorTimeout || flag == EVENT_FLAG_STOP) {
  278. break;
  279. }
  280. bool data_received = false;
  281. buff_rx_len = 0;
  282. rfalWorker();
  283. rfalLmState state = rfalListenGetState(&data_received, NULL);
  284. if(data_received) {
  285. rfalTransceiveBlockingRx();
  286. if(nfca_emulation_handler(buff_rx, buff_rx_len, buff_tx, &buff_tx_len)) {
  287. if(rfalListenSleepStart(
  288. RFAL_LM_STATE_SLEEP_A,
  289. buff_rx,
  290. rfalConvBytesToBits(buff_rx_size),
  291. &buff_rx_len)) {
  292. FURI_LOG_E(TAG, "Failed to enter sleep mode");
  293. break;
  294. } else {
  295. continue;
  296. }
  297. }
  298. if(buff_tx_len) {
  299. ReturnCode ret = rfalTransceiveBitsBlockingTx(
  300. buff_tx,
  301. buff_tx_len,
  302. buff_rx,
  303. sizeof(buff_rx),
  304. &buff_rx_len,
  305. data_type,
  306. RFAL_FWT_NONE);
  307. if(ret) {
  308. FURI_LOG_E(TAG, "Tranceive failed with status %d", ret);
  309. break;
  310. }
  311. continue;
  312. }
  313. if((state == RFAL_LM_STATE_ACTIVE_A || state == RFAL_LM_STATE_ACTIVE_Ax)) {
  314. if(callback) {
  315. callback(buff_rx, buff_rx_len, buff_tx, &buff_tx_len, &data_type, context);
  316. }
  317. if(!rfalIsExtFieldOn()) {
  318. break;
  319. }
  320. if(buff_tx_len) {
  321. if(buff_tx_len == UINT16_MAX) buff_tx_len = 0;
  322. ReturnCode ret = rfalTransceiveBitsBlockingTx(
  323. buff_tx,
  324. buff_tx_len,
  325. buff_rx,
  326. sizeof(buff_rx),
  327. &buff_rx_len,
  328. data_type,
  329. RFAL_FWT_NONE);
  330. if(ret) {
  331. FURI_LOG_E(TAG, "Tranceive failed with status %d", ret);
  332. continue;
  333. }
  334. } else {
  335. break;
  336. }
  337. }
  338. }
  339. }
  340. rfalListenStop();
  341. return true;
  342. }
  343. static bool furi_hal_nfc_transparent_tx_rx(FuriHalNfcTxRxContext* tx_rx, uint16_t timeout_ms) {
  344. furi_assert(tx_rx->nfca_signal);
  345. platformDisableIrqCallback();
  346. bool ret = false;
  347. // Start transparent mode
  348. st25r3916ExecuteCommand(ST25R3916_CMD_TRANSPARENT_MODE);
  349. // Reconfigure gpio
  350. furi_hal_spi_bus_handle_deinit(&furi_hal_spi_bus_handle_nfc);
  351. furi_hal_gpio_init(&gpio_spi_r_sck, GpioModeInput, GpioPullUp, GpioSpeedLow);
  352. furi_hal_gpio_init(&gpio_spi_r_miso, GpioModeInput, GpioPullUp, GpioSpeedLow);
  353. furi_hal_gpio_init(&gpio_nfc_cs, GpioModeInput, GpioPullUp, GpioSpeedLow);
  354. furi_hal_gpio_init(&gpio_spi_r_mosi, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh);
  355. furi_hal_gpio_write(&gpio_spi_r_mosi, false);
  356. // Send signal
  357. nfca_signal_encode(tx_rx->nfca_signal, tx_rx->tx_data, tx_rx->tx_bits, tx_rx->tx_parity);
  358. digital_signal_send(tx_rx->nfca_signal->tx_signal, &gpio_spi_r_mosi);
  359. furi_hal_gpio_write(&gpio_spi_r_mosi, false);
  360. // Configure gpio back to SPI and exit transparent
  361. furi_hal_spi_bus_handle_init(&furi_hal_spi_bus_handle_nfc);
  362. st25r3916ExecuteCommand(ST25R3916_CMD_UNMASK_RECEIVE_DATA);
  363. // Manually wait for interrupt
  364. furi_hal_gpio_init(&gpio_rfid_pull, GpioModeInput, GpioPullDown, GpioSpeedVeryHigh);
  365. st25r3916ClearAndEnableInterrupts(ST25R3916_IRQ_MASK_RXE);
  366. uint32_t irq = 0;
  367. uint8_t rxe = 0;
  368. uint32_t start = DWT->CYCCNT;
  369. while(true) {
  370. if(furi_hal_gpio_read(&gpio_rfid_pull) == true) {
  371. st25r3916ReadRegister(ST25R3916_REG_IRQ_MAIN, &rxe);
  372. if(rxe & (1 << 4)) {
  373. irq = 1;
  374. break;
  375. }
  376. }
  377. uint32_t timeout = DWT->CYCCNT - start;
  378. if(timeout / furi_hal_delay_instructions_per_microsecond() > timeout_ms * 1000) {
  379. FURI_LOG_D(TAG, "Interrupt waiting timeout");
  380. break;
  381. }
  382. }
  383. if(irq) {
  384. uint8_t fifo_stat[2];
  385. st25r3916ReadMultipleRegisters(
  386. ST25R3916_REG_FIFO_STATUS1, fifo_stat, ST25R3916_FIFO_STATUS_LEN);
  387. uint16_t len =
  388. ((((uint16_t)fifo_stat[1] & ST25R3916_REG_FIFO_STATUS2_fifo_b_mask) >>
  389. ST25R3916_REG_FIFO_STATUS2_fifo_b_shift)
  390. << RFAL_BITS_IN_BYTE);
  391. len |= (((uint16_t)fifo_stat[0]) & 0x00FFU);
  392. uint8_t rx[100];
  393. st25r3916ReadFifo(rx, len);
  394. tx_rx->rx_bits = len * 8;
  395. memcpy(tx_rx->rx_data, rx, len);
  396. ret = true;
  397. } else {
  398. FURI_LOG_E(TAG, "Timeout error");
  399. ret = false;
  400. }
  401. st25r3916ClearInterrupts();
  402. platformEnableIrqCallback();
  403. return ret;
  404. }
  405. static uint32_t furi_hal_nfc_tx_rx_get_flag(FuriHalNfcTxRxType type) {
  406. uint32_t flags = 0;
  407. if(type == FuriHalNfcTxRxTypeRxNoCrc) {
  408. flags = RFAL_TXRX_FLAGS_CRC_RX_KEEP;
  409. } else if(type == FuriHalNfcTxRxTypeRxKeepPar) {
  410. flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
  411. RFAL_TXRX_FLAGS_PAR_RX_KEEP;
  412. } else if(type == FuriHalNfcTxRxTypeRaw) {
  413. flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
  414. RFAL_TXRX_FLAGS_PAR_RX_KEEP | RFAL_TXRX_FLAGS_PAR_TX_NONE;
  415. } else if(type == FuriHalNfcTxRxTypeRxRaw) {
  416. flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
  417. RFAL_TXRX_FLAGS_PAR_RX_KEEP | RFAL_TXRX_FLAGS_PAR_TX_NONE;
  418. }
  419. return flags;
  420. }
  421. static uint16_t furi_hal_nfc_data_and_parity_to_bitstream(
  422. uint8_t* data,
  423. uint16_t len,
  424. uint8_t* parity,
  425. uint8_t* out) {
  426. furi_assert(data);
  427. furi_assert(out);
  428. uint8_t next_par_bit = 0;
  429. uint16_t curr_bit_pos = 0;
  430. for(uint16_t i = 0; i < len; i++) {
  431. next_par_bit = FURI_BIT(parity[i / 8], 7 - (i % 8));
  432. if(curr_bit_pos % 8 == 0) {
  433. out[curr_bit_pos / 8] = data[i];
  434. curr_bit_pos += 8;
  435. out[curr_bit_pos / 8] = next_par_bit;
  436. curr_bit_pos++;
  437. } else {
  438. out[curr_bit_pos / 8] |= data[i] << curr_bit_pos % 8;
  439. out[curr_bit_pos / 8 + 1] = data[i] >> (8 - curr_bit_pos % 8);
  440. out[curr_bit_pos / 8 + 1] |= next_par_bit << curr_bit_pos % 8;
  441. curr_bit_pos += 9;
  442. }
  443. }
  444. return curr_bit_pos;
  445. }
  446. uint16_t furi_hal_nfc_bitstream_to_data_and_parity(
  447. uint8_t* in_buff,
  448. uint16_t in_buff_bits,
  449. uint8_t* out_data,
  450. uint8_t* out_parity) {
  451. if(in_buff_bits % 9 != 0) {
  452. return 0;
  453. }
  454. uint8_t curr_byte = 0;
  455. uint16_t bit_processed = 0;
  456. memset(out_parity, 0, in_buff_bits / 9);
  457. while(bit_processed < in_buff_bits) {
  458. out_data[curr_byte] = in_buff[bit_processed / 8] >> bit_processed % 8;
  459. out_data[curr_byte] |= in_buff[bit_processed / 8 + 1] << (8 - bit_processed % 8);
  460. out_parity[curr_byte / 8] |= FURI_BIT(in_buff[bit_processed / 8 + 1], bit_processed % 8)
  461. << (7 - curr_byte % 8);
  462. bit_processed += 9;
  463. curr_byte++;
  464. }
  465. return curr_byte;
  466. }
  467. bool furi_hal_nfc_tx_rx(FuriHalNfcTxRxContext* tx_rx, uint16_t timeout_ms) {
  468. furi_assert(tx_rx);
  469. ReturnCode ret;
  470. rfalNfcState state = RFAL_NFC_STATE_ACTIVATED;
  471. uint8_t temp_tx_buff[FURI_HAL_NFC_DATA_BUFF_SIZE] = {};
  472. uint16_t temp_tx_bits = 0;
  473. uint8_t* temp_rx_buff = NULL;
  474. uint16_t* temp_rx_bits = NULL;
  475. if(tx_rx->tx_rx_type == FuriHalNfcTxRxTransparent) {
  476. return furi_hal_nfc_transparent_tx_rx(tx_rx, timeout_ms);
  477. }
  478. // Prepare data for FIFO if necessary
  479. uint32_t flags = furi_hal_nfc_tx_rx_get_flag(tx_rx->tx_rx_type);
  480. if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw) {
  481. temp_tx_bits = furi_hal_nfc_data_and_parity_to_bitstream(
  482. tx_rx->tx_data, tx_rx->tx_bits / 8, tx_rx->tx_parity, temp_tx_buff);
  483. ret = rfalNfcDataExchangeCustomStart(
  484. temp_tx_buff, temp_tx_bits, &temp_rx_buff, &temp_rx_bits, RFAL_FWT_NONE, flags);
  485. } else {
  486. ret = rfalNfcDataExchangeCustomStart(
  487. tx_rx->tx_data, tx_rx->tx_bits, &temp_rx_buff, &temp_rx_bits, RFAL_FWT_NONE, flags);
  488. }
  489. if(ret != ERR_NONE) {
  490. FURI_LOG_E(TAG, "Failed to start data exchange");
  491. return false;
  492. }
  493. if(tx_rx->sniff_tx) {
  494. bool crc_dropped = !(flags & RFAL_TXRX_FLAGS_CRC_TX_MANUAL);
  495. tx_rx->sniff_tx(tx_rx->tx_data, tx_rx->tx_bits, crc_dropped, tx_rx->sniff_context);
  496. }
  497. uint32_t start = DWT->CYCCNT;
  498. while(state != RFAL_NFC_STATE_DATAEXCHANGE_DONE) {
  499. rfalNfcWorker();
  500. state = rfalNfcGetState();
  501. ret = rfalNfcDataExchangeGetStatus();
  502. if(ret == ERR_BUSY) {
  503. if(DWT->CYCCNT - start > timeout_ms * clocks_in_ms) {
  504. FURI_LOG_D(TAG, "Timeout during data exchange");
  505. return false;
  506. }
  507. continue;
  508. } else {
  509. start = DWT->CYCCNT;
  510. }
  511. osDelay(1);
  512. }
  513. if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw ||
  514. tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRxRaw) {
  515. tx_rx->rx_bits = 8 * furi_hal_nfc_bitstream_to_data_and_parity(
  516. temp_rx_buff, *temp_rx_bits, tx_rx->rx_data, tx_rx->rx_parity);
  517. } else {
  518. memcpy(tx_rx->rx_data, temp_rx_buff, MIN(*temp_rx_bits / 8, FURI_HAL_NFC_DATA_BUFF_SIZE));
  519. tx_rx->rx_bits = *temp_rx_bits;
  520. }
  521. if(tx_rx->sniff_rx) {
  522. bool crc_dropped = !(flags & RFAL_TXRX_FLAGS_CRC_RX_KEEP);
  523. tx_rx->sniff_rx(tx_rx->rx_data, tx_rx->rx_bits, crc_dropped, tx_rx->sniff_context);
  524. }
  525. return true;
  526. }
  527. bool furi_hal_nfc_tx_rx_full(FuriHalNfcTxRxContext* tx_rx) {
  528. uint16_t part_len_bytes;
  529. if(!furi_hal_nfc_tx_rx(tx_rx, 1000)) {
  530. return false;
  531. }
  532. while(tx_rx->rx_bits && tx_rx->rx_data[0] == 0xAF) {
  533. FuriHalNfcTxRxContext tmp = *tx_rx;
  534. tmp.tx_data[0] = 0xAF;
  535. tmp.tx_bits = 8;
  536. if(!furi_hal_nfc_tx_rx(&tmp, 1000)) {
  537. return false;
  538. }
  539. part_len_bytes = tmp.rx_bits / 8;
  540. if(part_len_bytes > FURI_HAL_NFC_DATA_BUFF_SIZE - tx_rx->rx_bits / 8) {
  541. FURI_LOG_W(TAG, "Overrun rx buf");
  542. return false;
  543. }
  544. if(part_len_bytes == 0) {
  545. FURI_LOG_W(TAG, "Empty 0xAF response");
  546. return false;
  547. }
  548. memcpy(tx_rx->rx_data + tx_rx->rx_bits / 8, tmp.rx_data + 1, part_len_bytes - 1);
  549. tx_rx->rx_data[0] = tmp.rx_data[0];
  550. tx_rx->rx_bits += 8 * (part_len_bytes - 1);
  551. }
  552. return true;
  553. }
  554. void furi_hal_nfc_sleep() {
  555. rfalNfcDeactivate(false);
  556. rfalLowPowerModeStart();
  557. }