mag_helpers.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498
  1. #include "mag_helpers.h"
  2. #define TAG "MagHelpers"
  3. #define ZERO_PREFIX 25 // n zeros prefix
  4. #define ZERO_BETWEEN 53 // n zeros between tracks
  5. #define ZERO_SUFFIX 25 // n zeros suffix
  6. #define REPEAT_DELAY_MS 50
  7. // bits per char on a given track
  8. const uint8_t bitlen[] = {7, 5, 5};
  9. // char offset by track
  10. const int sublen[] = {32, 48, 48};
  11. uint8_t last_value = 2;
  12. void play_halfbit(bool value, MagState* state) {
  13. switch(state->tx) {
  14. case MagTxStateRFID:
  15. furi_hal_gpio_write(&gpio_rfid_carrier_out, value);
  16. /*furi_hal_gpio_write(RFID_PIN_OUT, !value);
  17. furi_hal_gpio_write(RFID_PIN_OUT, value);
  18. furi_hal_gpio_write(RFID_PIN_OUT, !value);
  19. furi_hal_gpio_write(RFID_PIN_OUT, value);*/
  20. break;
  21. case MagTxStateGPIO:
  22. furi_hal_gpio_write(mag_state_enum_to_pin(state->pin_input), value);
  23. furi_hal_gpio_write(mag_state_enum_to_pin(state->pin_output), !value);
  24. break;
  25. case MagTxStatePiezo:
  26. furi_hal_gpio_write(&gpio_speaker, value);
  27. /*furi_hal_gpio_write(&gpio_speaker, !value);
  28. furi_hal_gpio_write(&gpio_speaker, value);
  29. furi_hal_gpio_write(&gpio_speaker, !value);
  30. furi_hal_gpio_write(&gpio_speaker, value);*/
  31. break;
  32. case MagTxStateLF_P:
  33. furi_hal_gpio_write(&gpio_rfid_carrier_out, value);
  34. furi_hal_gpio_write(&gpio_speaker, value);
  35. /* // Weaker but cleaner signal
  36. if(value) {
  37. furi_hal_gpio_write(RFID_PIN_OUT, value);
  38. furi_hal_gpio_write(&gpio_speaker, value);
  39. furi_delay_us(10);
  40. furi_hal_gpio_write(RFID_PIN_OUT, !value);
  41. furi_hal_gpio_write(&gpio_speaker, !value);
  42. } else {
  43. furi_delay_us(10);
  44. }*/
  45. /*furi_hal_gpio_write(RFID_PIN_OUT, value);
  46. furi_hal_gpio_write(&gpio_speaker, value);
  47. furi_hal_gpio_write(RFID_PIN_OUT, !value);
  48. furi_hal_gpio_write(&gpio_speaker, !value);
  49. furi_hal_gpio_write(RFID_PIN_OUT, value);
  50. furi_hal_gpio_write(&gpio_speaker, value);*/
  51. break;
  52. case MagTxStateNFC:
  53. // turn on for duration of half-bit? or "blip" the field on / off?
  54. // getting nothing from the mag reader either way
  55. //(value) ? furi_hal_nfc_ll_txrx_on() : furi_hal_nfc_ll_txrx_off();
  56. if(last_value == 2 || value != (bool)last_value) {
  57. //furi_hal_nfc_ll_txrx_on();
  58. furi_delay_us(64);
  59. //furi_hal_nfc_ll_txrx_off();
  60. }
  61. break;
  62. case MagTxCC1101_434:
  63. case MagTxCC1101_868:
  64. if(last_value == 2 || value != (bool)last_value) {
  65. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  66. furi_delay_us(64);
  67. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  68. }
  69. break;
  70. default:
  71. break;
  72. }
  73. last_value = value;
  74. }
  75. void play_track(uint8_t* bits_manchester, uint16_t n_bits, MagState* state, bool reverse) {
  76. for(uint16_t i = 0; i < n_bits; i++) {
  77. uint16_t j = (reverse) ? (n_bits - i - 1) : i;
  78. uint8_t byte = j / 8;
  79. uint8_t bitmask = 1 << (7 - (j % 8));
  80. /* Bits are stored in their arrays like on a card (LSB first). This is not how usually bits are stored in a
  81. * byte, with the MSB first. the var bitmask creates the pattern to iterate through each bit, LSB first, like so
  82. * 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x80... masking bits one by one from the current byte
  83. *
  84. * I've chosen this LSB approach since bits and bytes are hard enough to visualize with the 5/8 and 7/8 encoding
  85. * MSR uses. It's a biiit more complicated to process, but visualizing it with printf or a debugger is
  86. * infinitely easier
  87. *
  88. * Encoding the following pairs of 5 bits as 5/8: A1234 B1234 C1234 D1234
  89. * using this LSB format looks like: A1234B12 34C1234D 12340000
  90. * using the MSB format, looks like: 21B4321A D4321C43 00004321
  91. * this means reading each byte backwards when printing/debugging, and the jumping 16 bits ahead, reading 8 more
  92. * bits backward, jumping 16 more bits ahead.
  93. *
  94. * I find this much more convenient for debugging, with the tiny incovenience of reading the bits in reverse
  95. * order. Thus, the reason for the bitmask above
  96. */
  97. bool bit = !!(bits_manchester[byte] & bitmask);
  98. // TODO: reimplement timing delays. Replace fixed furi_hal_cortex_delay_us to wait instead to a specific value
  99. // for DWT->CYCCNT. Note timer is aliased to 64us as per
  100. // #define FURI_HAL_CORTEX_INSTRUCTIONS_PER_MICROSECOND (SystemCoreClock / 1000000) | furi_hal_cortex.c
  101. play_halfbit(bit, state);
  102. furi_delay_us(state->us_clock);
  103. // if (i % 2 == 1) furi_delay_us(state->us_interpacket);
  104. }
  105. }
  106. void tx_init_rfid() {
  107. // initialize RFID system for TX
  108. furi_hal_ibutton_pin_configure();
  109. // furi_hal_ibutton_start_drive();
  110. furi_hal_ibutton_pin_write(false);
  111. // Initializing at GpioSpeedLow seems sufficient for our needs; no improvements seen by increasing speed state
  112. // this doesn't seem to make a difference, leaving it in
  113. furi_hal_gpio_init(&gpio_rfid_data_in, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  114. furi_hal_gpio_write(&gpio_rfid_data_in, false);
  115. // false->ground RFID antenna; true->don't ground
  116. // skotopes (RFID dev) say normally you'd want RFID_PULL in high for signal forming, while modulating RFID_OUT
  117. // dunaevai135 had it low in their old code. Leaving low, as it doesn't seem to make a difference on my janky antenna
  118. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  119. furi_hal_gpio_write(&gpio_nfc_irq_rfid_pull, false);
  120. furi_hal_gpio_init(&gpio_rfid_carrier_out, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  121. furi_delay_ms(300);
  122. }
  123. void tx_deinit_rfid() {
  124. // reset RFID system
  125. furi_hal_gpio_write(&gpio_rfid_carrier_out, 0);
  126. furi_hal_rfid_pins_reset();
  127. }
  128. void tx_init_rf(int hz) {
  129. // presets and frequency will need some experimenting
  130. furi_hal_subghz_reset();
  131. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetOok650Async);
  132. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetGFSK9_99KbAsync);
  133. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetMSK99_97KbAsync);
  134. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev238Async);
  135. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev476Async);
  136. furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  137. furi_hal_subghz_set_frequency_and_path(hz);
  138. furi_hal_subghz_tx();
  139. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  140. }
  141. void tx_init_piezo() {
  142. // TODO: some special mutex acquire procedure? c.f. furi_hal_speaker.c
  143. furi_hal_gpio_init(&gpio_speaker, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  144. }
  145. void tx_deinit_piezo() {
  146. // TODO: some special mutex release procedure?
  147. furi_hal_gpio_init(&gpio_speaker, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  148. }
  149. bool tx_init(MagState* state) {
  150. // Initialize configured TX method
  151. switch(state->tx) {
  152. case MagTxStateRFID:
  153. tx_init_rfid();
  154. break;
  155. case MagTxStateGPIO:
  156. // gpio_item_configure_all_pins(GpioModeOutputPushPull);
  157. furi_hal_gpio_init(
  158. mag_state_enum_to_pin(state->pin_input),
  159. GpioModeOutputPushPull,
  160. GpioPullNo,
  161. GpioSpeedLow);
  162. furi_hal_gpio_init(
  163. mag_state_enum_to_pin(state->pin_output),
  164. GpioModeOutputPushPull,
  165. GpioPullNo,
  166. GpioSpeedLow);
  167. furi_hal_gpio_init(
  168. mag_state_enum_to_pin(state->pin_enable),
  169. GpioModeOutputPushPull,
  170. GpioPullNo,
  171. GpioSpeedLow);
  172. furi_hal_gpio_write(mag_state_enum_to_pin(state->pin_enable), 1);
  173. // had some issues with ~300; bumped higher temporarily
  174. furi_delay_ms(500);
  175. break;
  176. case MagTxStatePiezo:
  177. tx_init_piezo();
  178. break;
  179. case MagTxStateLF_P:
  180. tx_init_piezo();
  181. tx_init_rfid();
  182. break;
  183. case MagTxStateNFC:
  184. //furi_hal_nfc_exit_sleep();
  185. break;
  186. case MagTxCC1101_434:
  187. tx_init_rf(434000000);
  188. break;
  189. case MagTxCC1101_868:
  190. tx_init_rf(868000000);
  191. break;
  192. default:
  193. return false;
  194. }
  195. return true;
  196. }
  197. bool tx_deinit(MagState* state) {
  198. // Reset configured TX method
  199. switch(state->tx) {
  200. case MagTxStateRFID:
  201. tx_deinit_rfid();
  202. break;
  203. case MagTxStateGPIO:
  204. furi_hal_gpio_write(mag_state_enum_to_pin(state->pin_input), 0);
  205. furi_hal_gpio_write(mag_state_enum_to_pin(state->pin_output), 0);
  206. furi_hal_gpio_write(mag_state_enum_to_pin(state->pin_enable), 0);
  207. // set back to analog output mode? - YES
  208. furi_hal_gpio_init(
  209. mag_state_enum_to_pin(state->pin_input), GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  210. furi_hal_gpio_init(
  211. mag_state_enum_to_pin(state->pin_output), GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  212. furi_hal_gpio_init(
  213. mag_state_enum_to_pin(state->pin_enable), GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  214. //gpio_item_configure_all_pins(GpioModeAnalog);
  215. break;
  216. case MagTxStatePiezo:
  217. tx_deinit_piezo();
  218. break;
  219. case MagTxStateLF_P:
  220. tx_deinit_piezo();
  221. tx_deinit_rfid();
  222. break;
  223. case MagTxStateNFC:
  224. //furi_hal_nfc_ll_txrx_off();
  225. //furi_hal_nfc_start_sleep();
  226. break;
  227. case MagTxCC1101_434:
  228. case MagTxCC1101_868:
  229. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  230. furi_hal_subghz_reset();
  231. furi_hal_subghz_idle();
  232. break;
  233. default:
  234. return false;
  235. }
  236. return true;
  237. }
  238. void mag_spoof(Mag* mag) {
  239. MagState* state = &mag->state;
  240. // TODO: cleanup this section. Possibly move precompute + tx_init to emulate_on_enter?
  241. FuriString* ft1 = mag->mag_dev->dev_data.track[0].str;
  242. FuriString* ft2 = mag->mag_dev->dev_data.track[1].str;
  243. FuriString* ft3 = mag->mag_dev->dev_data.track[2].str;
  244. char *data1, *data2, *data3;
  245. data1 = malloc(furi_string_size(ft1) + 1);
  246. data2 = malloc(furi_string_size(ft2) + 1);
  247. data3 = malloc(furi_string_size(ft3) + 1);
  248. strncpy(data1, furi_string_get_cstr(ft1), furi_string_size(ft1));
  249. strncpy(data2, furi_string_get_cstr(ft2), furi_string_size(ft2));
  250. strncpy(data3, furi_string_get_cstr(ft3), furi_string_size(ft3));
  251. if(furi_log_get_level() >= FuriLogLevelDebug) {
  252. debug_mag_string(data1, bitlen[0], sublen[0]);
  253. debug_mag_string(data2, bitlen[1], sublen[1]);
  254. debug_mag_string(data3, bitlen[2], sublen[2]);
  255. }
  256. uint8_t bits_t1_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  257. uint8_t bits_t1_manchester[128] = {0x00}; // twice the above
  258. uint16_t bits_t1_count = mag_encode(
  259. data1, (uint8_t*)bits_t1_manchester, (uint8_t*)bits_t1_raw, bitlen[0], sublen[0]);
  260. uint8_t bits_t2_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  261. uint8_t bits_t2_manchester[128] = {0x00}; // twice the above
  262. uint16_t bits_t2_count = mag_encode(
  263. data2, (uint8_t*)bits_t2_manchester, (uint8_t*)bits_t2_raw, bitlen[1], sublen[1]);
  264. uint8_t bits_t3_raw[64] = {0x00};
  265. uint8_t bits_t3_manchester[128] = {0x00};
  266. uint16_t bits_t3_count = mag_encode(
  267. data3, (uint8_t*)bits_t3_manchester, (uint8_t*)bits_t3_raw, bitlen[2], sublen[2]);
  268. if(furi_log_get_level() >= FuriLogLevelDebug) {
  269. printf(
  270. "Manchester bitcount: T1: %d, T2: %d, T3: %d\r\n",
  271. bits_t1_count,
  272. bits_t2_count,
  273. bits_t3_count);
  274. printf("T1 raw: ");
  275. for(int i = 0; i < bits_t1_count / 16; i++) printf("%02x ", bits_t1_raw[i]);
  276. printf("\r\nT1 manchester: ");
  277. for(int i = 0; i < bits_t1_count / 8; i++) printf("%02x ", bits_t1_manchester[i]);
  278. printf("\r\nT2 raw: ");
  279. for(int i = 0; i < bits_t2_count / 16; i++) printf("%02x ", bits_t2_raw[i]);
  280. printf("\r\nT2 manchester: ");
  281. for(int i = 0; i < bits_t2_count / 8; i++) printf("%02x ", bits_t2_manchester[i]);
  282. printf("\r\nT3 raw: ");
  283. for(int i = 0; i < bits_t3_count / 16; i++) printf("%02x ", bits_t3_raw[i]);
  284. printf("\r\nT3 manchester: ");
  285. for(int i = 0; i < bits_t3_count / 8; i++) printf("%02x ", bits_t3_manchester[i]);
  286. printf("\r\nBitwise emulation done\r\n\r\n");
  287. }
  288. last_value = 2;
  289. bool bit = false;
  290. if(!tx_init(state)) return;
  291. uint8_t i = 0;
  292. do {
  293. FURI_CRITICAL_ENTER();
  294. for(uint16_t i = 0; i < (ZERO_PREFIX * 2); i++) {
  295. // is this right?
  296. if(!!(i % 2)) bit ^= 1;
  297. play_halfbit(bit, state);
  298. furi_delay_us(state->us_clock);
  299. }
  300. if((state->track == MagTrackStateOneAndTwo) || (state->track == MagTrackStateOne))
  301. play_track((uint8_t*)bits_t1_manchester, bits_t1_count, state, false);
  302. if((state->track == MagTrackStateOneAndTwo))
  303. for(uint16_t i = 0; i < (ZERO_BETWEEN * 2); i++) {
  304. if(!!(i % 2)) bit ^= 1;
  305. play_halfbit(bit, state);
  306. furi_delay_us(state->us_clock);
  307. }
  308. if((state->track == MagTrackStateOneAndTwo) || (state->track == MagTrackStateTwo))
  309. play_track(
  310. (uint8_t*)bits_t2_manchester,
  311. bits_t2_count,
  312. state,
  313. (state->reverse == MagReverseStateOn));
  314. if((state->track == MagTrackStateThree))
  315. play_track((uint8_t*)bits_t3_manchester, bits_t3_count, state, false);
  316. for(uint16_t i = 0; i < (ZERO_SUFFIX * 2); i++) {
  317. if(!!(i % 2)) bit ^= 1;
  318. play_halfbit(bit, state);
  319. furi_delay_us(state->us_clock);
  320. }
  321. FURI_CRITICAL_EXIT();
  322. i++;
  323. FURI_LOG_D(
  324. TAG, "TX %u (n_repeats: %u, repeat_mode: %u)", i, state->n_repeats, state->repeat_mode);
  325. furi_delay_ms(REPEAT_DELAY_MS);
  326. } while((i < state->n_repeats) && state->repeat_mode);
  327. free(data1);
  328. free(data2);
  329. free(data3);
  330. tx_deinit(state);
  331. }
  332. uint16_t add_bit(bool value, uint8_t* out, uint16_t count) {
  333. uint8_t bit = count % 8;
  334. uint8_t byte = count / 8;
  335. if(value) {
  336. out[byte] |= 0x01;
  337. }
  338. if(bit < 7) out[byte] <<= 1;
  339. return count + 1;
  340. }
  341. uint16_t add_bit_manchester(bool value, uint8_t* out, uint16_t count) {
  342. static bool toggle = 0;
  343. toggle ^= 0x01;
  344. count = add_bit(toggle, out, count);
  345. if(value) toggle ^= 0x01;
  346. count = add_bit(toggle, out, count);
  347. return count;
  348. }
  349. uint16_t mag_encode(
  350. char* data,
  351. uint8_t* out_manchester,
  352. uint8_t* out_raw,
  353. uint8_t track_bits,
  354. uint8_t track_ascii_offset) {
  355. /*
  356. * track_bits - the number of raw (data) bits on the track. on ISO cards, that's 7 for track 1, or 5 for 2/3 - this is samy's bitlen
  357. * - this count includes the parity bit
  358. * track_ascii_offset - how much the ascii values are offset. track 1 makes space (ascii 32) become data 0x00,
  359. * - tracks 2/3 make ascii "0" become data 0x00 - this is samy's sublen
  360. *
  361. */
  362. uint16_t raw_bits_count = 0;
  363. uint16_t output_count = 0;
  364. int tmp, crc, lrc = 0;
  365. /* // why are we adding zeros to the encoded string if we're also doing it while playing?
  366. for(int i = 0; i < ZERO_PREFIX; i++) {
  367. output_count = add_bit_manchester(0, out_manchester, output_count);
  368. raw_bits_count = add_bit(0, out_raw, raw_bits_count);
  369. }*/
  370. for(int i = 0; *(data + i) != 0; i++) {
  371. crc = 1;
  372. tmp = *(data + i) - track_ascii_offset;
  373. for(int j = 0; j < track_bits - 1; j++) {
  374. crc ^= tmp & 1;
  375. lrc ^= (tmp & 1) << j;
  376. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  377. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  378. tmp >>= 1;
  379. }
  380. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  381. output_count = add_bit_manchester(crc, out_manchester, output_count);
  382. }
  383. // LRC byte
  384. tmp = lrc;
  385. crc = 1;
  386. for(int j = 0; j < track_bits - 1; j++) {
  387. crc ^= tmp & 0x01;
  388. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  389. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  390. tmp >>= 1;
  391. }
  392. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  393. output_count = add_bit_manchester(crc, out_manchester, output_count);
  394. return output_count;
  395. }
  396. void debug_mag_string(char* data, uint8_t track_bits, uint8_t track_ascii_offset) {
  397. uint8_t bits_raw[64] = {0}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  398. uint8_t bits_manchester[128] = {0}; // twice the above
  399. int numbits = 0;
  400. printf("Encoding [%s] with %d bits\r\n", data, track_bits);
  401. numbits = mag_encode(
  402. data, (uint8_t*)bits_manchester, (uint8_t*)bits_raw, track_bits, track_ascii_offset);
  403. printf("Got %d bits\r\n", numbits);
  404. printf("Raw byte stream: ");
  405. for(int i = 0; i < numbits / 8 / 2; i++) {
  406. printf("%02x", bits_raw[i]);
  407. if(i % 4 == 3) printf(" ");
  408. }
  409. printf("\r\n");
  410. printf("Bits ");
  411. int space_counter = 0;
  412. for(int i = 0; i < numbits / 2; i++) {
  413. /*if(i < ZERO_PREFIX) {
  414. printf("X");
  415. continue;
  416. } else if(i == ZERO_PREFIX) {
  417. printf(" ");
  418. space_counter = 0;
  419. }*/
  420. printf("%01x", (bits_raw[i / 8] & (1 << (7 - (i % 8)))) != 0);
  421. if((space_counter) % track_bits == track_bits - 1) printf(" ");
  422. space_counter++;
  423. }
  424. printf("\r\n");
  425. printf("Manchester encoded, byte stream: ");
  426. for(int i = 0; i < numbits / 8; i++) {
  427. printf("%02x", bits_manchester[i]);
  428. if(i % 4 == 3) printf(" ");
  429. }
  430. printf("\r\n\r\n");
  431. }