nrf24.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533
  1. // Modified by vad7, 25.11.2022
  2. //
  3. #include "nrf24.h"
  4. #include <furi.h>
  5. #include <furi_hal.h>
  6. #include <furi_hal_resources.h>
  7. #include <assert.h>
  8. #include <string.h>
  9. void nrf24_init() {
  10. furi_hal_spi_bus_handle_init(nrf24_HANDLE);
  11. furi_hal_spi_acquire(nrf24_HANDLE);
  12. furi_hal_gpio_init(nrf24_CE_PIN, GpioModeOutputPushPull, GpioPullUp, GpioSpeedVeryHigh);
  13. furi_hal_gpio_write(nrf24_CE_PIN, false);
  14. }
  15. void nrf24_deinit() {
  16. furi_hal_spi_release(nrf24_HANDLE);
  17. furi_hal_spi_bus_handle_deinit(nrf24_HANDLE);
  18. furi_hal_gpio_write(nrf24_CE_PIN, false);
  19. furi_hal_gpio_init(nrf24_CE_PIN, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  20. }
  21. void nrf24_spi_trx(
  22. FuriHalSpiBusHandle* handle,
  23. uint8_t* tx,
  24. uint8_t* rx,
  25. uint8_t size,
  26. uint32_t timeout) {
  27. UNUSED(timeout);
  28. furi_hal_gpio_write(handle->cs, false);
  29. furi_hal_spi_bus_trx(handle, tx, rx, size, nrf24_TIMEOUT);
  30. furi_hal_gpio_write(handle->cs, true);
  31. }
  32. uint8_t nrf24_write_reg(FuriHalSpiBusHandle* handle, uint8_t reg, uint8_t data) {
  33. uint8_t tx[2] = {W_REGISTER | (REGISTER_MASK & reg), data};
  34. uint8_t rx[2] = {0};
  35. nrf24_spi_trx(handle, tx, rx, 2, nrf24_TIMEOUT);
  36. //FURI_LOG_D("NRF_WR", " #%02X=%02X", reg, data);
  37. return rx[0];
  38. }
  39. uint8_t nrf24_write_buf_reg(FuriHalSpiBusHandle* handle, uint8_t reg, uint8_t* data, uint8_t size) {
  40. uint8_t tx[size + 1];
  41. uint8_t rx[size + 1];
  42. memset(rx, 0, size + 1);
  43. tx[0] = W_REGISTER | (REGISTER_MASK & reg);
  44. memcpy(&tx[1], data, size);
  45. nrf24_spi_trx(handle, tx, rx, size + 1, nrf24_TIMEOUT);
  46. //FURI_LOG_D("NRF_WR", " #%02X(%02X)=0x%02X%02X%02X%02X%02X", reg, size, data[0], data[1], data[2], data[3], data[4] );
  47. return rx[0];
  48. }
  49. uint8_t nrf24_read_reg(FuriHalSpiBusHandle* handle, uint8_t reg, uint8_t* data, uint8_t size) {
  50. uint8_t tx[size + 1];
  51. uint8_t rx[size + 1];
  52. memset(rx, 0, size + 1);
  53. tx[0] = R_REGISTER | (REGISTER_MASK & reg);
  54. memset(&tx[1], 0, size);
  55. nrf24_spi_trx(handle, tx, rx, size + 1, nrf24_TIMEOUT);
  56. memcpy(data, &rx[1], size);
  57. return rx[0];
  58. }
  59. uint8_t nrf24_flush_rx(FuriHalSpiBusHandle* handle) {
  60. uint8_t tx[] = {FLUSH_RX};
  61. uint8_t rx[] = {0};
  62. nrf24_spi_trx(handle, tx, rx, 1, nrf24_TIMEOUT);
  63. return rx[0];
  64. }
  65. uint8_t nrf24_flush_tx(FuriHalSpiBusHandle* handle) {
  66. uint8_t tx[] = {FLUSH_TX};
  67. uint8_t rx[] = {0};
  68. nrf24_spi_trx(handle, tx, rx, 1, nrf24_TIMEOUT);
  69. return rx[0];
  70. }
  71. uint8_t nrf24_get_maclen(FuriHalSpiBusHandle* handle) {
  72. uint8_t maclen;
  73. nrf24_read_reg(handle, REG_SETUP_AW, &maclen, 1);
  74. maclen &= 3;
  75. return maclen + 2;
  76. }
  77. uint8_t nrf24_set_maclen(FuriHalSpiBusHandle* handle, uint8_t maclen) {
  78. assert(maclen > 1 && maclen < 6);
  79. uint8_t status = 0;
  80. status = nrf24_write_reg(handle, REG_SETUP_AW, maclen - 2);
  81. return status;
  82. }
  83. uint8_t nrf24_status(FuriHalSpiBusHandle* handle) {
  84. uint8_t status;
  85. uint8_t tx[] = {R_REGISTER | (REGISTER_MASK & REG_STATUS)};
  86. nrf24_spi_trx(handle, tx, &status, 1, nrf24_TIMEOUT);
  87. return status;
  88. }
  89. uint32_t nrf24_get_rate(FuriHalSpiBusHandle* handle) {
  90. uint8_t setup = 0;
  91. uint32_t rate = 0;
  92. nrf24_read_reg(handle, REG_RF_SETUP, &setup, 1);
  93. setup &= 0x28;
  94. if(setup == 0x20)
  95. rate = 250000; // 250kbps
  96. else if(setup == 0x08)
  97. rate = 2000000; // 2Mbps
  98. else if(setup == 0x00)
  99. rate = 1000000; // 1Mbps
  100. return rate;
  101. }
  102. uint8_t nrf24_set_rate(FuriHalSpiBusHandle* handle, uint32_t rate) {
  103. uint8_t r6 = 0;
  104. uint8_t status = 0;
  105. if(!rate) rate = 2000000;
  106. nrf24_read_reg(handle, REG_RF_SETUP, &r6, 1); // RF_SETUP register
  107. r6 = r6 & (~0x28); // Clear rate fields.
  108. if(rate == 2000000)
  109. r6 = r6 | 0x08;
  110. else if(rate == 1000000)
  111. r6 = r6;
  112. else if(rate == 250000)
  113. r6 = r6 | 0x20;
  114. status = nrf24_write_reg(handle, REG_RF_SETUP, r6); // Write new rate.
  115. return status;
  116. }
  117. uint8_t nrf24_get_chan(FuriHalSpiBusHandle* handle) {
  118. uint8_t channel = 0;
  119. nrf24_read_reg(handle, REG_RF_CH, &channel, 1);
  120. return channel;
  121. }
  122. uint8_t nrf24_set_chan(FuriHalSpiBusHandle* handle, uint8_t chan) {
  123. uint8_t status;
  124. status = nrf24_write_reg(handle, REG_RF_CH, chan);
  125. return status;
  126. }
  127. uint8_t nrf24_get_src_mac(FuriHalSpiBusHandle* handle, uint8_t* mac) {
  128. uint8_t size = 0;
  129. uint8_t status = 0;
  130. size = nrf24_get_maclen(handle);
  131. status = nrf24_read_reg(handle, REG_RX_ADDR_P0, mac, size);
  132. return status;
  133. }
  134. uint8_t nrf24_set_src_mac(FuriHalSpiBusHandle* handle, uint8_t* mac, uint8_t size) {
  135. uint8_t status = 0;
  136. uint8_t clearmac[] = {0, 0, 0, 0, 0};
  137. nrf24_set_maclen(handle, size);
  138. nrf24_write_buf_reg(handle, REG_RX_ADDR_P0, clearmac, 5);
  139. status = nrf24_write_buf_reg(handle, REG_RX_ADDR_P0, mac, size);
  140. return status;
  141. }
  142. uint8_t nrf24_get_dst_mac(FuriHalSpiBusHandle* handle, uint8_t* mac) {
  143. uint8_t size = 0;
  144. uint8_t status = 0;
  145. size = nrf24_get_maclen(handle);
  146. status = nrf24_read_reg(handle, REG_TX_ADDR, mac, size);
  147. return status;
  148. }
  149. uint8_t nrf24_set_dst_mac(FuriHalSpiBusHandle* handle, uint8_t* mac, uint8_t size) {
  150. uint8_t status = 0;
  151. uint8_t clearmac[] = {0, 0, 0, 0, 0};
  152. nrf24_set_maclen(handle, size);
  153. nrf24_write_buf_reg(handle, REG_TX_ADDR, clearmac, 5);
  154. status = nrf24_write_buf_reg(handle, REG_TX_ADDR, mac, size);
  155. return status;
  156. }
  157. uint8_t nrf24_get_packetlen(FuriHalSpiBusHandle* handle, uint8_t pipe) {
  158. uint8_t len = 0;
  159. if(pipe > 5) pipe = 0;
  160. nrf24_read_reg(handle, RX_PW_P0 + pipe, &len, 1);
  161. return len;
  162. }
  163. uint8_t nrf24_set_packetlen(FuriHalSpiBusHandle* handle, uint8_t len) {
  164. uint8_t status = 0;
  165. status = nrf24_write_reg(handle, RX_PW_P0, len);
  166. return status;
  167. }
  168. uint8_t nrf24_rxpacket(FuriHalSpiBusHandle* handle, uint8_t* packet, uint8_t* ret_packetsize, uint8_t packet_size) {
  169. uint8_t status = 0;
  170. uint8_t tx_cmd[33] = {0}; // 32 max payload size + 1 for command
  171. uint8_t tmp_packet[33] = {0};
  172. status = nrf24_status(handle);
  173. if(!(status & RX_DR)) {
  174. tx_cmd[0] = R_REGISTER | (REGISTER_MASK & REG_FIFO_STATUS);
  175. nrf24_spi_trx(handle, tx_cmd, tmp_packet, 2, nrf24_TIMEOUT);
  176. if((tmp_packet[1] & 1) == 0) status |= RX_DR; // packet in FIFO buffer
  177. }
  178. if(status & RX_DR) {
  179. if(packet_size == 1)
  180. packet_size = nrf24_get_packetlen(handle, (status >> 1) & 7);
  181. else if(packet_size == 0){
  182. tx_cmd[0] = R_RX_PL_WID; tx_cmd[1] = 0;
  183. nrf24_spi_trx(handle, tx_cmd, tmp_packet, 2, nrf24_TIMEOUT);
  184. packet_size = tmp_packet[1];
  185. }
  186. if(packet_size > 32 || packet_size == 0) packet_size = 32;
  187. tx_cmd[0] = R_RX_PAYLOAD; tx_cmd[1] = 0;
  188. nrf24_spi_trx(handle, tx_cmd, tmp_packet, packet_size + 1, nrf24_TIMEOUT);
  189. memcpy(packet, &tmp_packet[1], packet_size);
  190. nrf24_write_reg(handle, REG_STATUS, RX_DR); // clear RX_DR
  191. } else if(status & (TX_DS | MAX_RT)) { // MAX_RT, TX_DS
  192. nrf24_write_reg(handle, REG_STATUS, (TX_DS | MAX_RT)); // clear RX_DR, MAX_RT.
  193. }
  194. *ret_packetsize = packet_size;
  195. return status;
  196. }
  197. // Return 0 when error
  198. uint8_t nrf24_txpacket(FuriHalSpiBusHandle* handle, uint8_t* payload, uint8_t size, bool ack) {
  199. uint8_t status = 0;
  200. uint8_t tx[size + 1];
  201. uint8_t rx[size + 1];
  202. memset(tx, 0, size + 1);
  203. memset(rx, 0, size + 1);
  204. if(!ack)
  205. tx[0] = W_TX_PAYLOAD_NOACK;
  206. else
  207. tx[0] = W_TX_PAYLOAD;
  208. memcpy(&tx[1], payload, size);
  209. nrf24_spi_trx(handle, tx, rx, size + 1, nrf24_TIMEOUT);
  210. nrf24_set_tx_mode(handle);
  211. uint32_t start_time = furi_get_tick();
  212. while(!(status & (TX_DS | MAX_RT)) && furi_get_tick() - start_time < 2000UL) status = nrf24_status(handle);
  213. if(status & MAX_RT) nrf24_flush_tx(handle);
  214. nrf24_set_idle(handle);
  215. nrf24_write_reg(handle, REG_STATUS, TX_DS | MAX_RT);
  216. return status & TX_DS;
  217. }
  218. uint8_t nrf24_power_up(FuriHalSpiBusHandle* handle) {
  219. uint8_t status = 0;
  220. uint8_t cfg = 0;
  221. nrf24_read_reg(handle, REG_CONFIG, &cfg, 1);
  222. cfg = cfg | 2;
  223. status = nrf24_write_reg(handle, REG_CONFIG, cfg);
  224. furi_delay_ms(1000);
  225. return status;
  226. }
  227. uint8_t nrf24_set_idle(FuriHalSpiBusHandle* handle) {
  228. uint8_t status = 0;
  229. uint8_t cfg = 0;
  230. nrf24_read_reg(handle, REG_CONFIG, &cfg, 1);
  231. cfg &= 0xfc; // clear bottom two bits to power down the radio
  232. status = nrf24_write_reg(handle, REG_CONFIG, cfg);
  233. //nr204_write_reg(handle, REG_EN_RXADDR, 0x0);
  234. furi_hal_gpio_write(nrf24_CE_PIN, false);
  235. return status;
  236. }
  237. uint8_t nrf24_set_rx_mode(FuriHalSpiBusHandle* handle) {
  238. uint8_t status = 0;
  239. uint8_t cfg = 0;
  240. //status = nrf24_write_reg(handle, REG_CONFIG, 0x0F); // enable 2-byte CRC, PWR_UP, and PRIM_RX
  241. nrf24_read_reg(handle, REG_CONFIG, &cfg, 1);
  242. cfg |= 0x03; // PWR_UP, and PRIM_RX
  243. status = nrf24_write_reg(handle, REG_CONFIG, cfg);
  244. //nr204_write_reg(REG_EN_RXADDR, 0x03) // Set RX Pipe 0 and 1
  245. furi_hal_gpio_write(nrf24_CE_PIN, true);
  246. furi_delay_ms(2);
  247. return status;
  248. }
  249. uint8_t nrf24_set_tx_mode(FuriHalSpiBusHandle* handle) {
  250. uint8_t status = 0;
  251. uint8_t cfg = 0;
  252. furi_hal_gpio_write(nrf24_CE_PIN, false);
  253. nrf24_write_reg(handle, REG_STATUS, 0x30);
  254. //status = nrf24_write_reg(handle, REG_CONFIG, 0x0E); // enable 2-byte CRC, PWR_UP
  255. nrf24_read_reg(handle, REG_CONFIG, &cfg, 1);
  256. cfg &= 0xfe; // disable PRIM_RX
  257. cfg |= 0x02; // PWR_UP
  258. status = nrf24_write_reg(handle, REG_CONFIG, cfg);
  259. furi_hal_gpio_write(nrf24_CE_PIN, true);
  260. furi_delay_ms(2);
  261. return status;
  262. }
  263. void nrf24_configure(
  264. FuriHalSpiBusHandle* handle,
  265. uint8_t rate,
  266. uint8_t* srcmac,
  267. uint8_t* dstmac,
  268. uint8_t maclen,
  269. uint8_t channel,
  270. bool noack,
  271. bool disable_aa) {
  272. assert(channel <= 125);
  273. assert(rate == 1 || rate == 2);
  274. if(rate == 2)
  275. rate = 8; // 2Mbps
  276. else
  277. rate = 0; // 1Mbps
  278. nrf24_write_reg(handle, REG_CONFIG, 0x00); // Stop nRF
  279. nrf24_set_idle(handle);
  280. nrf24_write_reg(handle, REG_STATUS, 0x70); // clear interrupts
  281. if(disable_aa)
  282. nrf24_write_reg(handle, REG_EN_AA, 0x00); // Disable Shockburst
  283. else
  284. nrf24_write_reg(handle, REG_EN_AA, 0x1F); // Enable Shockburst
  285. nrf24_write_reg(handle, REG_DYNPD, 0x3F); // enable dynamic payload length on all pipes
  286. if(noack)
  287. nrf24_write_reg(handle, REG_FEATURE, 0x05); // disable payload-with-ack, enable noack
  288. else {
  289. nrf24_write_reg(handle, REG_CONFIG, 0x0C); // 2 byte CRC
  290. nrf24_write_reg(handle, REG_FEATURE, 0x07); // enable dyn payload and ack
  291. nrf24_write_reg(
  292. handle, REG_SETUP_RETR, 0x1f); // 15 retries for AA, 500us auto retransmit delay
  293. }
  294. nrf24_set_idle(handle);
  295. nrf24_flush_rx(handle);
  296. nrf24_flush_tx(handle);
  297. if(maclen) nrf24_set_maclen(handle, maclen);
  298. if(srcmac) nrf24_set_src_mac(handle, srcmac, maclen);
  299. if(dstmac) nrf24_set_dst_mac(handle, dstmac, maclen);
  300. nrf24_write_reg(handle, REG_RF_CH, channel);
  301. nrf24_write_reg(handle, REG_RF_SETUP, rate);
  302. furi_delay_ms(200);
  303. }
  304. void nrf24_init_promisc_mode(FuriHalSpiBusHandle* handle, uint8_t channel, uint8_t rate) {
  305. //uint8_t preamble[] = {0x55, 0x00}; // little endian
  306. uint8_t preamble[] = {0xAA, 0x00}; // little endian
  307. //uint8_t preamble[] = {0x00, 0x55}; // little endian
  308. //uint8_t preamble[] = {0x00, 0xAA}; // little endian
  309. nrf24_write_reg(handle, REG_CONFIG, 0x00); // Stop nRF
  310. nrf24_write_reg(handle, REG_STATUS, 0x70); // clear interrupts
  311. nrf24_write_reg(handle, REG_DYNPD, 0x0); // disable shockburst
  312. nrf24_write_reg(handle, REG_EN_AA, 0x00); // Disable Shockburst
  313. nrf24_write_reg(handle, REG_FEATURE, 0x05); // disable payload-with-ack, enable noack
  314. nrf24_set_maclen(handle, 2); // shortest address
  315. nrf24_set_src_mac(handle, preamble, 2); // set src mac to preamble bits to catch everything
  316. nrf24_set_packetlen(handle, 32); // set max packet length
  317. nrf24_set_idle(handle);
  318. nrf24_flush_rx(handle);
  319. nrf24_flush_tx(handle);
  320. nrf24_write_reg(handle, REG_RF_CH, channel);
  321. nrf24_write_reg(handle, REG_RF_SETUP, rate);
  322. // prime for RX, no checksum
  323. nrf24_write_reg(handle, REG_CONFIG, 0x03); // PWR_UP and PRIM_RX, disable AA and CRC
  324. furi_hal_gpio_write(nrf24_CE_PIN, true);
  325. furi_delay_ms(100);
  326. }
  327. void hexlify(uint8_t* in, uint8_t size, char* out) {
  328. memset(out, 0, size * 2);
  329. for(int i = 0; i < size; i++)
  330. snprintf(out + strlen(out), sizeof(out + strlen(out)), "%02X", in[i]);
  331. }
  332. uint64_t bytes_to_int64(uint8_t* bytes, uint8_t size, bool bigendian) {
  333. uint64_t ret = 0;
  334. for(int i = 0; i < size; i++)
  335. if(bigendian)
  336. ret |= bytes[i] << ((size - 1 - i) * 8);
  337. else
  338. ret |= bytes[i] << (i * 8);
  339. return ret;
  340. }
  341. void int64_to_bytes(uint64_t val, uint8_t* out, bool bigendian) {
  342. for(int i = 0; i < 8; i++) {
  343. if(bigendian)
  344. out[i] = (val >> ((7 - i) * 8)) & 0xff;
  345. else
  346. out[i] = (val >> (i * 8)) & 0xff;
  347. }
  348. }
  349. uint32_t bytes_to_int32(uint8_t* bytes, bool bigendian) {
  350. uint32_t ret = 0;
  351. for(int i = 0; i < 4; i++)
  352. if(bigendian)
  353. ret |= bytes[i] << ((3 - i) * 8);
  354. else
  355. ret |= bytes[i] << (i * 8);
  356. return ret;
  357. }
  358. void int32_to_bytes(uint32_t val, uint8_t* out, bool bigendian) {
  359. for(int i = 0; i < 4; i++) {
  360. if(bigendian)
  361. out[i] = (val >> ((3 - i) * 8)) & 0xff;
  362. else
  363. out[i] = (val >> (i * 8)) & 0xff;
  364. }
  365. }
  366. uint64_t bytes_to_int16(uint8_t* bytes, bool bigendian) {
  367. uint16_t ret = 0;
  368. for(int i = 0; i < 2; i++)
  369. if(bigendian)
  370. ret |= bytes[i] << ((1 - i) * 8);
  371. else
  372. ret |= bytes[i] << (i * 8);
  373. return ret;
  374. }
  375. void int16_to_bytes(uint16_t val, uint8_t* out, bool bigendian) {
  376. for(int i = 0; i < 2; i++) {
  377. if(bigendian)
  378. out[i] = (val >> ((1 - i) * 8)) & 0xff;
  379. else
  380. out[i] = (val >> (i * 8)) & 0xff;
  381. }
  382. }
  383. // handle iffyness with preamble processing sometimes being a bit (literally) off
  384. void alt_address_old(uint8_t* packet, uint8_t* altaddr) {
  385. uint8_t macmess_hi_b[4];
  386. uint8_t macmess_lo_b[2];
  387. uint32_t macmess_hi;
  388. uint16_t macmess_lo;
  389. uint8_t preserved;
  390. // get first 6 bytes into 32-bit and 16-bit variables
  391. memcpy(macmess_hi_b, packet, 4);
  392. memcpy(macmess_lo_b, packet + 4, 2);
  393. macmess_hi = bytes_to_int32(macmess_hi_b, true);
  394. //preserve least 7 bits from hi that will be shifted down to lo
  395. preserved = macmess_hi & 0x7f;
  396. macmess_hi >>= 7;
  397. macmess_lo = bytes_to_int16(macmess_lo_b, true);
  398. macmess_lo >>= 7;
  399. macmess_lo = (preserved << 9) | macmess_lo;
  400. int32_to_bytes(macmess_hi, macmess_hi_b, true);
  401. int16_to_bytes(macmess_lo, macmess_lo_b, true);
  402. memcpy(altaddr, &macmess_hi_b[1], 3);
  403. memcpy(altaddr + 3, macmess_lo_b, 2);
  404. }
  405. bool validate_address(uint8_t* addr) {
  406. uint8_t bad[][3] = {{0x55, 0x55}, {0xAA, 0xAA}, {0x00, 0x00}, {0xFF, 0xFF}};
  407. for(int i = 0; i < 4; i++)
  408. for(int j = 0; j < 2; j++)
  409. if(!memcmp(addr + j * 2, bad[i], 2)) return false;
  410. return true;
  411. }
  412. bool nrf24_sniff_address(FuriHalSpiBusHandle* handle, uint8_t maclen, uint8_t* address) {
  413. bool found = false;
  414. uint8_t packet[32] = {0};
  415. uint8_t packetsize;
  416. //char printit[65];
  417. uint8_t status = 0;
  418. status = nrf24_rxpacket(handle, packet, &packetsize, true);
  419. if(status & 0x40) {
  420. if(validate_address(packet)) {
  421. for(int i = 0; i < maclen; i++) address[i] = packet[maclen - 1 - i];
  422. /*
  423. alt_address(packet, packet);
  424. for(i = 0; i < maclen; i++)
  425. address[i + 5] = packet[maclen - 1 - i];
  426. */
  427. //memcpy(address, packet, maclen);
  428. //hexlify(packet, packetsize, printit);
  429. found = true;
  430. }
  431. }
  432. return found;
  433. }
  434. uint8_t nrf24_find_channel(
  435. FuriHalSpiBusHandle* handle,
  436. uint8_t* srcmac,
  437. uint8_t* dstmac,
  438. uint8_t maclen,
  439. uint8_t rate,
  440. uint8_t min_channel,
  441. uint8_t max_channel,
  442. bool autoinit) {
  443. uint8_t ping_packet[] = {0x0f, 0x0f, 0x0f, 0x0f}; // this can be anything, we just need an ack
  444. uint8_t ch = max_channel + 1; // means fail
  445. nrf24_configure(handle, rate, srcmac, dstmac, maclen, 2, false, false);
  446. for(ch = min_channel; ch <= max_channel + 1; ch++) {
  447. nrf24_write_reg(handle, REG_RF_CH, ch);
  448. if(nrf24_txpacket(handle, ping_packet, 4, true)) break;
  449. }
  450. if(autoinit) {
  451. FURI_LOG_D("nrf24", "initializing radio for channel %d", ch);
  452. nrf24_configure(handle, rate, srcmac, dstmac, maclen, ch, false, false);
  453. return ch;
  454. }
  455. return ch;
  456. }
  457. uint8_t nrf24_set_mac(uint8_t mac_addr, uint8_t *mac, uint8_t mlen)
  458. {
  459. uint8_t addr[5];
  460. for(int i = 0; i < mlen; i++) addr[i] = mac[mlen - i - 1];
  461. return nrf24_write_buf_reg(nrf24_HANDLE, mac_addr, addr, mlen);
  462. }