mag_helpers.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429
  1. #include "mag_helpers.h"
  2. #define TAG "MagHelpers"
  3. #define GPIO_PIN_A &gpio_ext_pa6
  4. #define GPIO_PIN_B &gpio_ext_pa7
  5. #define GPIO_PIN_ENABLE &gpio_ext_pa4
  6. #define RFID_PIN_OUT &gpio_rfid_carrier_out
  7. #define ZERO_PREFIX 25 // n zeros prefix
  8. #define ZERO_BETWEEN 53 // n zeros between tracks
  9. #define ZERO_SUFFIX 25 // n zeros suffix
  10. // bits per char on a given track
  11. const uint8_t bitlen[] = {7, 5, 5};
  12. // char offset by track
  13. const int sublen[] = {32, 48, 48};
  14. uint8_t last_value = 2;
  15. void play_halfbit(bool value, MagSetting* setting) {
  16. switch(setting->tx) {
  17. case MagTxStateRFID:
  18. furi_hal_gpio_write(RFID_PIN_OUT, value);
  19. break;
  20. case MagTxStateGPIO:
  21. furi_hal_gpio_write(GPIO_PIN_A, value);
  22. furi_hal_gpio_write(GPIO_PIN_B, !value);
  23. break;
  24. case MagTxStatePiezo:
  25. furi_hal_gpio_write(&gpio_speaker, value);
  26. break;
  27. case MagTxStateLF_P:
  28. furi_hal_gpio_write(RFID_PIN_OUT, value);
  29. furi_hal_gpio_write(&gpio_speaker, value);
  30. break;
  31. case MagTxCC1101_434:
  32. case MagTxCC1101_868:
  33. if(last_value == 2 || value != (bool)last_value) {
  34. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  35. furi_delay_us(64);
  36. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  37. }
  38. break;
  39. default:
  40. break;
  41. }
  42. last_value = value;
  43. }
  44. void play_track(uint8_t* bits_manchester, uint16_t n_bits, MagSetting* setting, bool reverse) {
  45. for(uint16_t i = 0; i < n_bits; i++) {
  46. uint16_t j = (reverse) ? (n_bits - i - 1) : i;
  47. uint8_t byte = j / 8;
  48. uint8_t bitmask = 1 << (7 - (j % 8));
  49. /* Bits are stored in their arrays like on a card (LSB first). This is not how usually bits are stored in a
  50. * byte, with the MSB first. the var bitmask creates the pattern to iterate through each bit, LSB first, like so
  51. * 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x80... masking bits one by one from the current byte
  52. *
  53. * I've chosen this LSB approach since bits and bytes are hard enough to visualize with the 5/8 and 7/8 encoding
  54. * MSR uses. It's a biiit more complicated to process, but visualizing it with printf or a debugger is
  55. * infinitely easier
  56. *
  57. * Encoding the following pairs of 5 bits as 5/8: A1234 B1234 C1234 D1234
  58. * using this LSB format looks like: A1234B12 34C1234D 12340000
  59. * using the MSB format, looks like: 21B4321A D4321C43 00004321
  60. * this means reading each byte backwards when printing/debugging, and the jumping 16 bits ahead, reading 8 more
  61. * bits backward, jumping 16 more bits ahead.
  62. *
  63. * I find this much more convenient for debugging, with the tiny incovenience of reading the bits in reverse
  64. * order. Thus, the reason for the bitmask above
  65. */
  66. bool bit = !!(bits_manchester[byte] & bitmask);
  67. // TODO: reimplement timing delays. Replace fixed furi_hal_cortex_delay_us to wait instead to a specific value
  68. // for DWT->CYCCNT. Note timer is aliased to 64us as per
  69. // #define FURI_HAL_CORTEX_INSTRUCTIONS_PER_MICROSECOND (SystemCoreClock / 1000000) | furi_hal_cortex.c
  70. play_halfbit(bit, setting);
  71. furi_delay_us(setting->us_clock);
  72. // if (i % 2 == 1) furi_delay_us(setting->us_interpacket);
  73. }
  74. }
  75. void tx_init_rfid() {
  76. // initialize RFID system for TX
  77. // OTG needed for RFID? Or just legacy from GPIO?
  78. furi_hal_power_enable_otg();
  79. furi_hal_ibutton_start_drive();
  80. furi_hal_ibutton_pin_low();
  81. // Initializing at GpioSpeedLow seems sufficient for our needs; no improvements seen by increasing speed setting
  82. // this doesn't seem to make a difference, leaving it in
  83. furi_hal_gpio_init(&gpio_rfid_data_in, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  84. furi_hal_gpio_write(&gpio_rfid_data_in, false);
  85. // false->ground RFID antenna; true->don't ground
  86. // skotopes (RFID dev) say normally you'd want RFID_PULL in high for signal forming, while modulating RFID_OUT
  87. // dunaevai135 had it low in their old code. Leaving low, as it doesn't seem to make a difference on my janky antenna
  88. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  89. furi_hal_gpio_write(&gpio_nfc_irq_rfid_pull, false);
  90. furi_hal_gpio_init(RFID_PIN_OUT, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  91. furi_delay_ms(300);
  92. }
  93. void tx_deinit_rfid() {
  94. // reset RFID system
  95. furi_hal_gpio_write(RFID_PIN_OUT, 0);
  96. furi_hal_rfid_pins_reset();
  97. furi_hal_power_disable_otg();
  98. }
  99. void tx_init_rf(int hz) {
  100. // presets and frequency will need some experimenting
  101. furi_hal_subghz_reset();
  102. furi_hal_subghz_load_preset(FuriHalSubGhzPresetOok650Async);
  103. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetGFSK9_99KbAsync);
  104. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetMSK99_97KbAsync);
  105. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev238Async);
  106. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev476Async);
  107. furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  108. furi_hal_subghz_set_frequency_and_path(hz);
  109. furi_hal_subghz_tx();
  110. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  111. }
  112. void tx_init_piezo() {
  113. // TODO: some special mutex acquire procedure? c.f. furi_hal_speaker.c
  114. furi_hal_gpio_init(&gpio_speaker, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  115. }
  116. void tx_deinit_piezo() {
  117. // TODO: some special mutex release procedure?
  118. furi_hal_gpio_init(&gpio_speaker, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  119. }
  120. bool tx_init(MagSetting* setting) {
  121. // Initialize configured TX method
  122. switch(setting->tx) {
  123. case MagTxStateRFID:
  124. tx_init_rfid();
  125. break;
  126. case MagTxStateGPIO:
  127. furi_hal_power_enable_otg();
  128. // gpio_item_configure_all_pins(GpioModeOutputPushPull);
  129. furi_hal_gpio_init(GPIO_PIN_A, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  130. furi_hal_gpio_init(GPIO_PIN_B, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  131. furi_hal_gpio_init(GPIO_PIN_ENABLE, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  132. furi_hal_gpio_write(GPIO_PIN_ENABLE, 1);
  133. // had some issues with ~300; bumped higher temporarily
  134. furi_delay_ms(500);
  135. break;
  136. case MagTxStatePiezo:
  137. tx_init_piezo();
  138. break;
  139. case MagTxStateLF_P:
  140. tx_init_piezo();
  141. tx_init_rfid();
  142. break;
  143. case MagTxCC1101_434:
  144. tx_init_rf(434000000);
  145. break;
  146. case MagTxCC1101_868:
  147. tx_init_rf(868000000);
  148. break;
  149. default:
  150. return false;
  151. }
  152. return true;
  153. }
  154. bool tx_deinit(MagSetting* setting) {
  155. // Reset configured TX method
  156. switch(setting->tx) {
  157. case MagTxStateRFID:
  158. tx_deinit_rfid();
  159. break;
  160. case MagTxStateGPIO:
  161. furi_hal_gpio_write(GPIO_PIN_A, 0);
  162. furi_hal_gpio_write(GPIO_PIN_B, 0);
  163. furi_hal_gpio_write(GPIO_PIN_ENABLE, 0);
  164. // set back to analog output mode?
  165. //gpio_item_configure_all_pins(GpioModeAnalog);
  166. furi_hal_power_disable_otg();
  167. break;
  168. case MagTxStatePiezo:
  169. tx_deinit_piezo();
  170. break;
  171. case MagTxStateLF_P:
  172. tx_deinit_piezo();
  173. tx_deinit_rfid();
  174. break;
  175. case MagTxCC1101_434:
  176. case MagTxCC1101_868:
  177. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  178. furi_hal_subghz_reset();
  179. furi_hal_subghz_idle();
  180. break;
  181. default:
  182. return false;
  183. }
  184. return true;
  185. }
  186. void mag_spoof(Mag* mag) {
  187. MagSetting* setting = mag->setting;
  188. // TODO: cleanup this section. Possibly move precompute + tx_init to emulate_on_enter?
  189. FuriString* ft1 = mag->mag_dev->dev_data.track[0].str;
  190. FuriString* ft2 = mag->mag_dev->dev_data.track[1].str;
  191. FuriString* ft3 = mag->mag_dev->dev_data.track[2].str;
  192. char *data1, *data2, *data3;
  193. data1 = malloc(furi_string_size(ft1) + 1);
  194. data2 = malloc(furi_string_size(ft2) + 1);
  195. data3 = malloc(furi_string_size(ft3) + 1);
  196. strncpy(data1, furi_string_get_cstr(ft1), furi_string_size(ft1));
  197. strncpy(data2, furi_string_get_cstr(ft2), furi_string_size(ft2));
  198. strncpy(data3, furi_string_get_cstr(ft3), furi_string_size(ft3));
  199. if(furi_log_get_level() >= FuriLogLevelDebug) {
  200. debug_mag_string(data1, bitlen[0], sublen[0]);
  201. debug_mag_string(data2, bitlen[1], sublen[1]);
  202. debug_mag_string(data3, bitlen[2], sublen[2]);
  203. }
  204. uint8_t bits_t1_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  205. uint8_t bits_t1_manchester[128] = {0x00}; // twice the above
  206. uint16_t bits_t1_count = mag_encode(
  207. data1, (uint8_t*)bits_t1_manchester, (uint8_t*)bits_t1_raw, bitlen[0], sublen[0]);
  208. uint8_t bits_t2_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  209. uint8_t bits_t2_manchester[128] = {0x00}; // twice the above
  210. uint16_t bits_t2_count = mag_encode(
  211. data2, (uint8_t*)bits_t2_manchester, (uint8_t*)bits_t2_raw, bitlen[1], sublen[1]);
  212. uint8_t bits_t3_raw[64] = {0x00};
  213. uint8_t bits_t3_manchester[128] = {0x00};
  214. uint16_t bits_t3_count = mag_encode(
  215. data3, (uint8_t*)bits_t3_manchester, (uint8_t*)bits_t3_raw, bitlen[2], sublen[2]);
  216. if(furi_log_get_level() >= FuriLogLevelDebug) {
  217. printf("Manchester bitcount: T1: %d, T2: %d\r\n", bits_t1_count, bits_t2_count);
  218. printf("T1 raw: ");
  219. for(int i = 0; i < bits_t1_count / 16; i++) printf("%02x ", bits_t1_raw[i]);
  220. printf("\r\nT1 manchester: ");
  221. for(int i = 0; i < bits_t1_count / 8; i++) printf("%02x ", bits_t1_manchester[i]);
  222. printf("\r\nT2 raw: ");
  223. for(int i = 0; i < bits_t2_count / 16; i++) printf("%02x ", bits_t2_raw[i]);
  224. printf("\r\nT2 manchester: ");
  225. for(int i = 0; i < bits_t2_count / 8; i++) printf("%02x ", bits_t2_manchester[i]);
  226. printf("\r\nT3 raw: ");
  227. for(int i = 0; i < bits_t3_count / 16; i++) printf("%02x ", bits_t3_raw[i]);
  228. printf("\r\nT3 manchester: ");
  229. for(int i = 0; i < bits_t3_count / 8; i++) printf("%02x ", bits_t3_manchester[i]);
  230. printf("\r\nBitwise emulation done\r\n\r\n");
  231. }
  232. last_value = 2;
  233. bool bit = false;
  234. if(!tx_init(setting)) return;
  235. FURI_CRITICAL_ENTER();
  236. for(uint16_t i = 0; i < (ZERO_PREFIX * 2); i++) {
  237. // is this right?
  238. bit ^= 0xFF;
  239. play_halfbit(bit, setting);
  240. furi_delay_us(setting->us_clock);
  241. }
  242. if((setting->track == MagTrackStateOneAndTwo) || (setting->track == MagTrackStateOne))
  243. play_track((uint8_t*)bits_t1_manchester, bits_t1_count, setting, false);
  244. if((setting->track == MagTrackStateOneAndTwo))
  245. for(uint16_t i = 0; i < (ZERO_BETWEEN * 2); i++) {
  246. bit ^= 0xFF;
  247. play_halfbit(bit, setting);
  248. furi_delay_us(setting->us_clock);
  249. }
  250. if((setting->track == MagTrackStateOneAndTwo) || (setting->track == MagTrackStateTwo))
  251. play_track(
  252. (uint8_t*)bits_t2_manchester,
  253. bits_t2_count,
  254. setting,
  255. (setting->reverse == MagReverseStateOn));
  256. if((setting->track == MagTrackStateThree))
  257. play_track((uint8_t*)bits_t3_manchester, bits_t3_count, setting, false);
  258. for(uint16_t i = 0; i < (ZERO_SUFFIX * 2); i++) {
  259. bit ^= 0xFF;
  260. play_halfbit(bit, setting);
  261. furi_delay_us(setting->us_clock);
  262. }
  263. FURI_CRITICAL_EXIT();
  264. free(data1);
  265. free(data2);
  266. free(data3);
  267. tx_deinit(setting);
  268. }
  269. uint16_t add_bit(bool value, uint8_t* out, uint16_t count) {
  270. uint8_t bit = count % 8;
  271. uint8_t byte = count / 8;
  272. if(value) {
  273. out[byte] |= 0x01;
  274. }
  275. if(bit < 7) out[byte] <<= 1;
  276. return count + 1;
  277. }
  278. uint16_t add_bit_manchester(bool value, uint8_t* out, uint16_t count) {
  279. static bool toggle = 0;
  280. toggle ^= 0x01;
  281. count = add_bit(toggle, out, count);
  282. if(value) toggle ^= 0x01;
  283. count = add_bit(toggle, out, count);
  284. return count;
  285. }
  286. uint16_t mag_encode(
  287. char* data,
  288. uint8_t* out_manchester,
  289. uint8_t* out_raw,
  290. uint8_t track_bits,
  291. uint8_t track_ascii_offset) {
  292. /*
  293. * track_bits - the number of raw (data) bits on the track. on ISO cards, that's 7 for track 1, or 5 for 2/3 - this is samy's bitlen
  294. * - this count includes the parity bit
  295. * track_ascii_offset - how much the ascii values are offset. track 1 makes space (ascii 32) become data 0x00,
  296. * - tracks 2/3 make ascii "0" become data 0x00 - this is samy's sublen
  297. *
  298. */
  299. uint16_t raw_bits_count = 0;
  300. uint16_t output_count = 0;
  301. int tmp, crc, lrc = 0;
  302. /* // why are we adding zeros to the encoded string if we're also doing it while playing?
  303. for(int i = 0; i < ZERO_PREFIX; i++) {
  304. output_count = add_bit_manchester(0, out_manchester, output_count);
  305. raw_bits_count = add_bit(0, out_raw, raw_bits_count);
  306. }*/
  307. for(int i = 0; *(data + i) != 0; i++) {
  308. crc = 1;
  309. tmp = *(data + i) - track_ascii_offset;
  310. for(int j = 0; j < track_bits - 1; j++) {
  311. crc ^= tmp & 1;
  312. lrc ^= (tmp & 1) << j;
  313. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  314. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  315. tmp >>= 1;
  316. }
  317. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  318. output_count = add_bit_manchester(crc, out_manchester, output_count);
  319. }
  320. // LRC byte
  321. tmp = lrc;
  322. crc = 1;
  323. for(int j = 0; j < track_bits - 1; j++) {
  324. crc ^= tmp & 0x01;
  325. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  326. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  327. tmp >>= 1;
  328. }
  329. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  330. output_count = add_bit_manchester(crc, out_manchester, output_count);
  331. return output_count;
  332. }
  333. void debug_mag_string(char* data, uint8_t track_bits, uint8_t track_ascii_offset) {
  334. uint8_t bits_raw[64] = {0}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  335. uint8_t bits_manchester[128] = {0}; // twice the above
  336. int numbits = 0;
  337. printf("Encoding [%s] with %d bits\r\n", data, track_bits);
  338. numbits = mag_encode(
  339. data, (uint8_t*)bits_manchester, (uint8_t*)bits_raw, track_bits, track_ascii_offset);
  340. printf("Got %d bits\r\n", numbits);
  341. printf("Raw byte stream: ");
  342. for(int i = 0; i < numbits / 8 / 2; i++) {
  343. printf("%02x", bits_raw[i]);
  344. if(i % 4 == 3) printf(" ");
  345. }
  346. printf("\r\n");
  347. printf("Bits ");
  348. int space_counter = 0;
  349. for(int i = 0; i < numbits / 2; i++) {
  350. /*if(i < ZERO_PREFIX) {
  351. printf("X");
  352. continue;
  353. } else if(i == ZERO_PREFIX) {
  354. printf(" ");
  355. space_counter = 0;
  356. }*/
  357. printf("%01x", (bits_raw[i / 8] & (1 << (7 - (i % 8)))) != 0);
  358. if((space_counter) % track_bits == track_bits - 1) printf(" ");
  359. space_counter++;
  360. }
  361. printf("\r\n");
  362. printf("Manchester encoded, byte stream: ");
  363. for(int i = 0; i < numbits / 8; i++) {
  364. printf("%02x", bits_manchester[i]);
  365. if(i % 4 == 3) printf(" ");
  366. }
  367. printf("\r\n\r\n");
  368. }