mag_helpers.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656
  1. #include "mag_helpers.h"
  2. #define TAG "MagHelpers"
  3. #define GPIO_PIN_A &gpio_ext_pa6
  4. #define GPIO_PIN_B &gpio_ext_pa7
  5. #define GPIO_PIN_ENABLE &gpio_ext_pa4
  6. #define RFID_PIN_OUT &gpio_rfid_carrier_out
  7. #define ZERO_PREFIX 25 // n zeros prefix
  8. #define ZERO_BETWEEN 53 // n zeros between tracks
  9. #define ZERO_SUFFIX 25 // n zeros suffix
  10. // bits per char on a given track
  11. const uint8_t bitlen[] = {7, 5, 5};
  12. // char offset by track
  13. const int sublen[] = {32, 48, 48};
  14. uint8_t bit_dir = 0;
  15. uint8_t last_value = 2;
  16. void bitbang_raw(bool value, MagSetting* setting) {
  17. switch(setting->tx) {
  18. case MagTxStateRFID:
  19. furi_hal_gpio_write(RFID_PIN_OUT, value);
  20. break;
  21. case MagTxStateGPIO:
  22. furi_hal_gpio_write(GPIO_PIN_A, value);
  23. furi_hal_gpio_write(GPIO_PIN_B, !value);
  24. break;
  25. case MagTxStatePiezo:
  26. furi_hal_gpio_write(&gpio_speaker, value);
  27. break;
  28. case MagTxStateLF_P:
  29. furi_hal_gpio_write(RFID_PIN_OUT, value);
  30. furi_hal_gpio_write(&gpio_speaker, value);
  31. break;
  32. case MagTxCC1101_434:
  33. case MagTxCC1101_868:
  34. if(last_value == 2 || value != (bool)last_value) {
  35. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  36. furi_delay_us(64);
  37. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  38. }
  39. break;
  40. default:
  41. break;
  42. }
  43. last_value = value;
  44. }
  45. void play_bit_rf(bool bit, MagSetting* setting) {
  46. bit_dir ^= 1;
  47. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  48. furi_delay_us(64);
  49. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  50. furi_delay_us(setting->us_clock);
  51. if(bit) {
  52. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  53. furi_delay_us(64);
  54. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  55. }
  56. furi_delay_us(setting->us_clock);
  57. furi_delay_us(setting->us_interpacket);
  58. }
  59. void play_bit_rfid(uint8_t send_bit, MagSetting* setting) {
  60. // internal TX over RFID coil
  61. bit_dir ^= 1;
  62. furi_hal_gpio_write(RFID_PIN_OUT, bit_dir);
  63. furi_delay_us(setting->us_clock);
  64. if(send_bit) {
  65. bit_dir ^= 1;
  66. furi_hal_gpio_write(RFID_PIN_OUT, bit_dir);
  67. }
  68. furi_delay_us(setting->us_clock);
  69. furi_delay_us(setting->us_interpacket);
  70. }
  71. void play_bit_gpio(uint8_t send_bit, MagSetting* setting) {
  72. // external TX over motor driver wired to PIN_A and PIN_B
  73. bit_dir ^= 1;
  74. furi_hal_gpio_write(GPIO_PIN_A, bit_dir);
  75. furi_hal_gpio_write(GPIO_PIN_B, !bit_dir);
  76. furi_delay_us(setting->us_clock);
  77. if(send_bit) {
  78. bit_dir ^= 1;
  79. furi_hal_gpio_write(GPIO_PIN_A, bit_dir);
  80. furi_hal_gpio_write(GPIO_PIN_B, !bit_dir);
  81. }
  82. furi_delay_us(setting->us_clock);
  83. furi_delay_us(setting->us_interpacket);
  84. }
  85. void play_bit_piezo(uint8_t send_bit, MagSetting* setting) {
  86. // TX testing with parasitic EMF from buzzer
  87. bit_dir ^= 1;
  88. furi_hal_gpio_write(&gpio_speaker, bit_dir);
  89. furi_delay_us(setting->us_clock);
  90. if(send_bit) {
  91. bit_dir ^= 1;
  92. furi_hal_gpio_write(&gpio_speaker, bit_dir);
  93. }
  94. furi_delay_us(setting->us_clock);
  95. furi_delay_us(setting->us_interpacket);
  96. }
  97. void play_bit_lf_p(uint8_t send_bit, MagSetting* setting) {
  98. // TX testing with parasitic EMF from buzzer
  99. bit_dir ^= 1;
  100. furi_hal_gpio_write(&gpio_speaker, bit_dir);
  101. furi_hal_gpio_write(RFID_PIN_OUT, bit_dir);
  102. furi_delay_us(setting->us_clock);
  103. if(send_bit) {
  104. bit_dir ^= 1;
  105. furi_hal_gpio_write(&gpio_speaker, bit_dir);
  106. furi_hal_gpio_write(RFID_PIN_OUT, bit_dir);
  107. }
  108. furi_delay_us(setting->us_clock);
  109. furi_delay_us(setting->us_interpacket);
  110. }
  111. bool play_bit(uint8_t send_bit, MagSetting* setting) {
  112. // Initialize configured TX method
  113. switch(setting->tx) {
  114. case MagTxStateRFID:
  115. play_bit_rfid(send_bit, setting);
  116. break;
  117. case MagTxStateGPIO:
  118. play_bit_gpio(send_bit, setting);
  119. break;
  120. case MagTxStatePiezo:
  121. play_bit_piezo(send_bit, setting);
  122. break;
  123. case MagTxStateLF_P:
  124. play_bit_lf_p(send_bit, setting);
  125. break;
  126. case MagTxCC1101_434:
  127. case MagTxCC1101_868:
  128. play_bit_rf(send_bit & 0x01, setting);
  129. break;
  130. default:
  131. return false;
  132. }
  133. return true;
  134. }
  135. void tx_init_rfid() {
  136. // initialize RFID system for TX
  137. furi_hal_power_enable_otg();
  138. furi_hal_ibutton_start_drive();
  139. furi_hal_ibutton_pin_low();
  140. // Initializing at GpioSpeedLow seems sufficient for our needs; no improvements seen by increasing speed setting
  141. // this doesn't seem to make a difference, leaving it in
  142. furi_hal_gpio_init(&gpio_rfid_data_in, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  143. furi_hal_gpio_write(&gpio_rfid_data_in, false);
  144. // false->ground RFID antenna; true->don't ground
  145. // skotopes (RFID dev) say normally you'd want RFID_PULL in high for signal forming, while modulating RFID_OUT
  146. // dunaevai135 had it low in their old code. Leaving low, as it doesn't seem to make a difference on my janky antenna
  147. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  148. furi_hal_gpio_write(&gpio_nfc_irq_rfid_pull, false);
  149. furi_hal_gpio_init(RFID_PIN_OUT, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  150. furi_delay_ms(300);
  151. }
  152. void tx_deinit_rfid() {
  153. // reset RFID system
  154. furi_hal_gpio_write(RFID_PIN_OUT, 0);
  155. furi_hal_rfid_pins_reset();
  156. furi_hal_power_disable_otg();
  157. }
  158. void tx_init_gpio() {
  159. furi_hal_power_enable_otg();
  160. // gpio_item_configure_all_pins(GpioModeOutputPushPull);
  161. furi_hal_gpio_init(GPIO_PIN_A, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  162. furi_hal_gpio_init(GPIO_PIN_B, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  163. furi_hal_gpio_init(GPIO_PIN_ENABLE, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  164. furi_hal_gpio_write(GPIO_PIN_ENABLE, 1);
  165. // had some issues with ~300; bumped higher temporarily
  166. furi_delay_ms(500);
  167. }
  168. void tx_deinit_gpio() {
  169. furi_hal_gpio_write(GPIO_PIN_A, 0);
  170. furi_hal_gpio_write(GPIO_PIN_B, 0);
  171. furi_hal_gpio_write(GPIO_PIN_ENABLE, 0);
  172. // set back to analog output mode?
  173. //gpio_item_configure_all_pins(GpioModeAnalog);
  174. furi_hal_power_disable_otg();
  175. }
  176. void tx_init_rf(int hz) {
  177. // presets and frequency will need some experimenting
  178. furi_hal_subghz_reset();
  179. furi_hal_subghz_load_preset(FuriHalSubGhzPresetOok650Async);
  180. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetGFSK9_99KbAsync);
  181. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetMSK99_97KbAsync);
  182. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev238Async);
  183. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev476Async);
  184. furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  185. furi_hal_subghz_set_frequency_and_path(hz);
  186. furi_hal_subghz_tx();
  187. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  188. }
  189. void tx_deinit_rf() {
  190. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  191. furi_hal_subghz_reset();
  192. furi_hal_subghz_idle();
  193. }
  194. void tx_init_piezo() {
  195. // TODO: some special mutex acquire procedure? c.f. furi_hal_speaker.c
  196. furi_hal_gpio_init(&gpio_speaker, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  197. // tossing in this delay arbitrarily to make it easier to see light blinking during TX
  198. //furi_delay_ms(100);
  199. }
  200. void tx_deinit_piezo() {
  201. // TODO: some special mutex release procedure?
  202. furi_hal_gpio_init(&gpio_speaker, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  203. }
  204. bool tx_init(MagSetting* setting) {
  205. // Initialize configured TX method
  206. switch(setting->tx) {
  207. case MagTxStateRFID:
  208. tx_init_rfid();
  209. break;
  210. case MagTxStateGPIO:
  211. tx_init_gpio();
  212. break;
  213. case MagTxStatePiezo:
  214. tx_init_piezo();
  215. break;
  216. case MagTxStateLF_P:
  217. tx_init_piezo();
  218. tx_init_rfid();
  219. break;
  220. case MagTxCC1101_434:
  221. tx_init_rf(434000000);
  222. break;
  223. case MagTxCC1101_868:
  224. tx_init_rf(868000000);
  225. break;
  226. default:
  227. return false;
  228. }
  229. return true;
  230. }
  231. bool tx_deinit(MagSetting* setting) {
  232. // Reset configured TX method
  233. switch(setting->tx) {
  234. case MagTxStateRFID:
  235. tx_deinit_rfid();
  236. break;
  237. case MagTxStateGPIO:
  238. tx_deinit_gpio();
  239. break;
  240. case MagTxStatePiezo:
  241. tx_deinit_piezo();
  242. break;
  243. case MagTxStateLF_P:
  244. tx_deinit_piezo();
  245. tx_deinit_rfid();
  246. break;
  247. case MagTxCC1101_434:
  248. case MagTxCC1101_868:
  249. tx_deinit_rf();
  250. break;
  251. default:
  252. return false;
  253. }
  254. return true;
  255. }
  256. // due for deprecation
  257. void track_to_bits(uint8_t* bit_array, const char* track_data, uint8_t track_index) {
  258. // convert individual track to bits
  259. int tmp, crc, lrc = 0;
  260. int i = 0;
  261. // convert track data to bits
  262. for(uint8_t j = 0; track_data[j] != '\0'; j++) {
  263. crc = 1;
  264. tmp = track_data[j] - sublen[track_index];
  265. for(uint8_t k = 0; k < bitlen[track_index] - 1; k++) {
  266. crc ^= tmp & 1;
  267. lrc ^= (tmp & 1) << k;
  268. bit_array[i] = tmp & 1;
  269. i++;
  270. tmp >>= 1;
  271. }
  272. bit_array[i] = crc;
  273. i++;
  274. }
  275. FURI_LOG_D(TAG, "LRC");
  276. // finish calculating final "byte" (LRC)
  277. tmp = lrc;
  278. crc = 1;
  279. for(uint8_t j = 0; j < bitlen[track_index] - 1; j++) {
  280. crc ^= tmp & 1;
  281. bit_array[i] = tmp & 1;
  282. i++;
  283. tmp >>= 1;
  284. }
  285. bit_array[i] = crc;
  286. i++;
  287. // My makeshift end sentinel. All other values 0/1
  288. bit_array[i] = 2;
  289. i++;
  290. // Log the output (messy but works)
  291. //char output[500] = {0x0};
  292. /*FuriString* tmp_str;
  293. tmp_str = furi_string_alloc();
  294. for(uint8_t j = 0; bit_array[j] != 2; j++) {
  295. furi_string_cat_printf(tmp_str, "%d", (bit_array[j] & 1));
  296. //strcat(output, furi_string_get_cstr(tmp_str));
  297. }
  298. FURI_LOG_D(TAG, "Track %d: %s", (track_index + 1), track_data);
  299. FURI_LOG_D(TAG, "Track %d: %s", (track_index + 1), furi_string_get_cstr(tmp_str));*/
  300. //furi_string_free(tmp_str);
  301. }
  302. void mag_spoof_bitwise(Mag* mag) {
  303. MagSetting* setting = mag->setting;
  304. FuriString* ft1 = mag->mag_dev->dev_data.track[0].str;
  305. FuriString* ft2 = mag->mag_dev->dev_data.track[1].str;
  306. char* data1;
  307. char* data2;
  308. data1 = malloc(furi_string_size(ft1) + 1);
  309. data2 = malloc(furi_string_size(ft2) + 1);
  310. strncpy(data1, furi_string_get_cstr(ft1), furi_string_size(ft1));
  311. strncpy(data2, furi_string_get_cstr(ft2), furi_string_size(ft2));
  312. if(furi_log_get_level() >= FuriLogLevelDebug) {
  313. debug_msr_string(data1, BITS_TRACK1, OFFSET_TRACK1);
  314. debug_msr_string(data2, BITS_TRACK2, OFFSET_TRACK2);
  315. }
  316. uint8_t bits_t1_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  317. uint8_t bits_t1_manchester[128] = {0x00}; // twice the above
  318. uint16_t bits_t1_count = msr_encode(
  319. data1, (uint8_t*)bits_t1_manchester, (uint8_t*)bits_t1_raw, BITS_TRACK1, OFFSET_TRACK1);
  320. uint8_t bits_t2_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  321. uint8_t bits_t2_manchester[128] = {0x00}; // twice the above
  322. uint16_t bits_t2_count = msr_encode(
  323. data2, (uint8_t*)bits_t2_manchester, (uint8_t*)bits_t2_raw, BITS_TRACK2, OFFSET_TRACK2);
  324. if(furi_log_get_level() >= FuriLogLevelDebug) {
  325. printf("Manchester bitcount: T1: %d, T2: %d\r\n", bits_t1_count, bits_t2_count);
  326. printf("T1 raw: ");
  327. for(int i = 0; i < bits_t1_count / 16; i++) printf("%02x ", bits_t1_raw[i]);
  328. printf("\r\n");
  329. printf("T1 manchester: ");
  330. for(int i = 0; i < bits_t1_count / 8; i++) printf("%02x ", bits_t1_manchester[i]);
  331. printf("\r\n");
  332. printf("T2 raw: ");
  333. for(int i = 0; i < bits_t2_count / 16; i++) printf("%02x ", bits_t2_raw[i]);
  334. printf("\r\n");
  335. printf("T2 manchester: ");
  336. for(int i = 0; i < bits_t2_count / 8; i++) printf("%02x ", bits_t2_manchester[i]);
  337. printf("\r\n");
  338. printf("Bitwise emulation done\r\n\r\n");
  339. }
  340. if(!tx_init(setting)) return;
  341. last_value = 2;
  342. FURI_CRITICAL_ENTER();
  343. bool bit = false;
  344. if((setting->track == MagTrackStateAll))
  345. for(uint16_t i = 0; i < ZERO_PREFIX; i++) {
  346. bit ^= 0xFF;
  347. bitbang_raw(bit, setting);
  348. furi_delay_us(setting->us_clock * 2);
  349. }
  350. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateOne))
  351. for(uint16_t i = 0; i < bits_t1_count; i++) {
  352. uint8_t byte = i / 8;
  353. uint8_t bitmask = 1 << (7 - (i % 8));
  354. /* Bits are stored in their arrays like on a card (LSB first). This is not how usually bits are stored in a
  355. * byte, with the MSB first. the var bitmask creates the pattern to iterate through each bit, LSB first, like so
  356. * 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x80... masking bits one by one from the current byte
  357. *
  358. * I've chosen this LSB approach since bits and bytes are hard enough to visualize with the 5/8 and 7/8 encoding
  359. * MSR uses. It's a biiit more complicated to process, but visualizing it with printf or a debugger is
  360. * infinitely easier
  361. *
  362. * Encoding the following pairs of 5 bits as 5/8: A1234 B1234 C1234 D1234
  363. * using this LSB format looks like: A1234B12 34C1234D 12340000
  364. * using the MSB format, looks like: 21B4321A D4321C43 00004321
  365. * this means reading each byte backwards when printing/debugging, and the jumping 16 bits ahead, reading 8 more
  366. * bits backward, jumping 16 more bits ahead.
  367. *
  368. * I find this much more convenient for debugging, with the tiny incovenience of reading the bits in reverse
  369. * order. Thus, the reason for the bitmask above
  370. */
  371. bit = !!(bits_t1_manchester[byte] & bitmask);
  372. // TODO: reimplement timing delays. Replace fixed furi_hal_cortex_delay_us to wait instead to a specific value
  373. // for DWT->CYCCNT. Note timer is aliased to 64us as per
  374. // #define FURI_HAL_CORTEX_INSTRUCTIONS_PER_MICROSECOND (SystemCoreClock / 1000000) | furi_hal_cortex.c
  375. bitbang_raw(bit, setting);
  376. furi_delay_us(setting->us_clock);
  377. // if (i % 2 == 1) furi_delay_us(setting->us_interpacket);
  378. }
  379. if((setting->track == MagTrackStateAll))
  380. for(uint16_t i = 0; i < ZERO_BETWEEN; i++) {
  381. bit ^= 0xFF;
  382. bitbang_raw(bit, setting);
  383. furi_delay_us(setting->us_clock * 2);
  384. }
  385. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateTwo))
  386. for(uint16_t i = 0; i < bits_t2_count; i++) {
  387. uint16_t j = bits_t2_count - i - 1;
  388. uint8_t byte = j / 8;
  389. uint8_t bitmask = 1 << (7 - (j % 8));
  390. bool bit = !!(bits_t2_manchester[byte] & bitmask);
  391. bitbang_raw(bit, setting);
  392. furi_delay_us(setting->us_clock);
  393. // if (i % 2 == 1) furi_delay_us(setting->us_interpacket);
  394. }
  395. if((setting->track == MagTrackStateAll))
  396. for(uint16_t i = 0; i < ZERO_SUFFIX; i++) {
  397. bit ^= 0xFF;
  398. bitbang_raw(bit, setting);
  399. furi_delay_us(setting->us_clock * 2);
  400. }
  401. FURI_CRITICAL_EXIT();
  402. free(data1);
  403. free(data2);
  404. tx_deinit(setting);
  405. }
  406. // due for deprecation
  407. void mag_spoof(Mag* mag) {
  408. MagSetting* setting = mag->setting;
  409. // precompute tracks (WIP; ignores reverse and 3rd track)
  410. // likely will be reworked to antirez's bitmap method anyway...
  411. const char* data1 = furi_string_get_cstr(mag->mag_dev->dev_data.track[0].str);
  412. const char* data2 = furi_string_get_cstr(mag->mag_dev->dev_data.track[1].str);
  413. uint8_t bit_array1[2 * (strlen(data1) * bitlen[0]) + 1];
  414. uint8_t bit_array2[2 * (strlen(data2) * bitlen[1]) + 1];
  415. track_to_bits(bit_array1, data1, 0);
  416. track_to_bits(bit_array2, data2, 1);
  417. bool spoofed = false;
  418. do {
  419. // Initialize configured TX method
  420. if(!tx_init(setting)) break;
  421. // Critical timing section (need to eliminate ifs? does this impact timing?)
  422. FURI_CRITICAL_ENTER();
  423. // Prefix of zeros
  424. for(uint16_t i = 0; i < ZERO_PREFIX; i++) {
  425. if(!play_bit(0, setting)) break;
  426. }
  427. // Track 1
  428. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateOne)) {
  429. for(uint16_t i = 0; bit_array1[i] != 2; i++) {
  430. if(!play_bit((bit_array1[i] & 1), setting)) break;
  431. }
  432. }
  433. // Zeros between tracks
  434. if(setting->track == MagTrackStateAll) {
  435. for(uint16_t i = 0; i < ZERO_BETWEEN; i++) {
  436. if(!play_bit(0, setting)) break;
  437. }
  438. }
  439. // Track 2 (TODO: Reverse track)
  440. if((setting->track == MagTrackStateAll) || (setting->track == MagTrackStateTwo)) {
  441. for(uint16_t i = 0; bit_array2[i] != 2; i++) {
  442. if(!play_bit((bit_array2[i] & 1), setting)) break;
  443. }
  444. }
  445. // Suffix of zeros
  446. for(uint16_t i = 0; i < ZERO_SUFFIX; i++) {
  447. if(!play_bit(0, setting)) break;
  448. }
  449. FURI_CRITICAL_EXIT();
  450. // Reset configured TX method
  451. if(!tx_deinit(setting)) break;
  452. spoofed = true;
  453. } while(0);
  454. UNUSED(spoofed);
  455. /*if(!spoofed) {
  456. // error handling?
  457. // cleanup?
  458. }*/
  459. }
  460. uint16_t add_bit(bool value, uint8_t* out, uint16_t count) {
  461. uint8_t bit = count % 8;
  462. uint8_t byte = count / 8;
  463. if(value) {
  464. out[byte] |= 0x01;
  465. }
  466. if(bit < 7) out[byte] <<= 1;
  467. return count + 1;
  468. }
  469. uint16_t add_bit_manchester(bool value, uint8_t* out, uint16_t count) {
  470. static bool toggle = 0;
  471. toggle ^= 0x01;
  472. count = add_bit(toggle, out, count);
  473. if(value) toggle ^= 0x01;
  474. count = add_bit(toggle, out, count);
  475. return count;
  476. }
  477. uint16_t msr_encode(
  478. char* data,
  479. uint8_t* out_manchester,
  480. uint8_t* out_raw,
  481. uint8_t track_bits,
  482. uint8_t track_ascii_offset) {
  483. /*
  484. * track_bits - the number of raw (data) bits on the track. on ISO cards, that's 7 for track 1, or 5 for 2/3 - this is samy's bitlen
  485. * - this count includes the parity bit
  486. * track_ascii_offset - how much the ascii values are offset. track 1 makes space (ascii 32) become data 0x00,
  487. * - tracks 2/3 make ascii "0" become data 0x00 - this is samy's sublen
  488. *
  489. */
  490. uint16_t raw_bits_count = 0;
  491. uint16_t output_count = 0;
  492. int tmp, crc, lrc = 0;
  493. for(int i = 0; i < PREFIX_NUM_ZEROES; i++) {
  494. output_count = add_bit_manchester(0, out_manchester, output_count);
  495. raw_bits_count = add_bit(0, out_raw, raw_bits_count);
  496. }
  497. for(int i = 0; *(data + i) != 0; i++) {
  498. crc = 1;
  499. tmp = *(data + i) - track_ascii_offset;
  500. for(int j = 0; j < track_bits - 1; j++) {
  501. crc ^= tmp & 1;
  502. lrc ^= (tmp & 1) << j;
  503. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  504. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  505. tmp >>= 1;
  506. }
  507. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  508. output_count = add_bit_manchester(crc, out_manchester, output_count);
  509. }
  510. // LRC byte
  511. tmp = lrc;
  512. crc = 1;
  513. for(int j = 0; j < track_bits - 1; j++) {
  514. crc ^= tmp & 0x01;
  515. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  516. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  517. tmp >>= 1;
  518. }
  519. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  520. output_count = add_bit_manchester(crc, out_manchester, output_count);
  521. return output_count;
  522. }
  523. void debug_msr_string(char* data, uint8_t track_bits, uint8_t track_ascii_offset) {
  524. uint8_t bits_raw[64] = {0}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  525. uint8_t bits_manchester[128] = {0}; // twice the above
  526. int numbits = 0;
  527. printf("Encoding [%s] with %d bits\r\n", data, track_bits);
  528. numbits = msr_encode(
  529. data, (uint8_t*)bits_manchester, (uint8_t*)bits_raw, track_bits, track_ascii_offset);
  530. printf("Got %d bits\r\n", numbits);
  531. printf("Raw byte stream: ");
  532. for(int i = 0; i < numbits / 8 / 2; i++) {
  533. printf("%02x", bits_raw[i]);
  534. if(i % 4 == 3) printf(" ");
  535. }
  536. printf("\r\n");
  537. printf("Bits ");
  538. int space_counter = 0;
  539. for(int i = 0; i < numbits / 2; i++) {
  540. if(i < PREFIX_NUM_ZEROES) {
  541. printf("X");
  542. continue;
  543. } else if(i == PREFIX_NUM_ZEROES) {
  544. printf(" ");
  545. space_counter = 0;
  546. }
  547. printf("%01x", (bits_raw[i / 8] & (1 << (7 - (i % 8)))) != 0);
  548. if((space_counter) % track_bits == track_bits - 1) printf(" ");
  549. space_counter++;
  550. }
  551. printf("\r\n");
  552. printf("Manchester encoded, byte stream: ");
  553. for(int i = 0; i < numbits / 8; i++) {
  554. printf("%02x", bits_manchester[i]);
  555. if(i % 4 == 3) printf(" ");
  556. }
  557. printf("\r\n\r\n");
  558. }