uhf_worker.c 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143
  1. #include "uhf_worker.h"
  2. #include "uhf_tag.h"
  3. // yrm100 module commands
  4. UHFWorkerEvent verify_module_connected(UHFWorker* uhf_worker) {
  5. char* hw_version = m100_get_hardware_version(uhf_worker->module);
  6. char* sw_version = m100_get_software_version(uhf_worker->module);
  7. char* manufacturer = m100_get_manufacturers(uhf_worker->module);
  8. // verify all data exists
  9. if(hw_version == NULL || sw_version == NULL || manufacturer == NULL) return UHFWorkerEventFail;
  10. return UHFWorkerEventSuccess;
  11. }
  12. UHFTag* send_polling_command(UHFWorker* uhf_worker) {
  13. // read epc bank
  14. UHFTag* uhf_tag = uhf_tag_alloc();
  15. while(true) {
  16. M100ResponseType status = m100_single_poll(uhf_worker->module, uhf_tag);
  17. if(uhf_worker->state == UHFWorkerStateStop) {
  18. uhf_tag_free(uhf_tag);
  19. return NULL;
  20. }
  21. if(status == M100Success) break;
  22. }
  23. return uhf_tag;
  24. }
  25. UHFWorkerEvent read_bank_till_max_length(UHFWorker* uhf_worker, UHFTag* uhf_tag, BankType bank) {
  26. unsigned int retry = 3, word_low = 0, word_high = 64;
  27. unsigned int word_size;
  28. M100ResponseType status;
  29. do {
  30. if(uhf_worker->state == UHFWorkerStateStop) return UHFWorkerEventAborted;
  31. if(word_low >= word_high) return UHFWorkerEventSuccess;
  32. word_size = (word_low + word_high) / 2;
  33. status = m100_read_label_data_storage(uhf_worker->module, uhf_tag, bank, 0, word_size);
  34. if(status == M100Success) {
  35. word_low = word_size + 1;
  36. } else if(status == M100MemoryOverrun) {
  37. word_high = word_size - 1;
  38. } else if(status == M100NoTagResponse) {
  39. retry--;
  40. }
  41. FURI_LOG_E("TAG", "read bank %d, word_low %d, word_high %d", bank, word_low, word_high);
  42. } while(retry);
  43. FURI_LOG_E("TAG", "read success; retry = %d", retry);
  44. if(!retry) return UHFWorkerEventFail;
  45. return UHFWorkerEventSuccess;
  46. }
  47. UHFWorkerEvent read_single_card(UHFWorker* uhf_worker) {
  48. UHFTag* uhf_tag = send_polling_command(uhf_worker);
  49. if(uhf_tag == NULL) return UHFWorkerEventAborted;
  50. uhf_tag_wrapper_set_tag(uhf_worker->uhf_tag_wrapper, uhf_tag);
  51. // set select
  52. if(m100_set_select(uhf_worker->module, uhf_tag) != M100Success) return UHFWorkerEventFail;
  53. // read tid
  54. UHFWorkerEvent event;
  55. event = read_bank_till_max_length(uhf_worker, uhf_tag, TIDBank);
  56. if(event != UHFWorkerEventSuccess) return event;
  57. // read user
  58. event = read_bank_till_max_length(uhf_worker, uhf_tag, UserBank);
  59. if(event != UHFWorkerEventSuccess) return event;
  60. return UHFWorkerEventSuccess;
  61. }
  62. UHFWorkerEvent write_single_card(UHFWorker* uhf_worker) {
  63. UHFTag* uhf_tag_des = send_polling_command(uhf_worker);
  64. if(uhf_tag_des == NULL) return UHFWorkerEventAborted;
  65. UHFTag* uhf_tag_from = uhf_worker->uhf_tag_wrapper->uhf_tag;
  66. if(m100_set_select(uhf_worker->module, uhf_tag_des) != M100Success) return UHFWorkerEventFail;
  67. do {
  68. M100ResponseType rp_type = m100_write_label_data_storage(
  69. uhf_worker->module, uhf_tag_from, uhf_tag_des, UserBank, 0, 0);
  70. if(uhf_worker->state == UHFWorkerStateStop) return UHFWorkerEventAborted;
  71. if(rp_type == M100Success) break;
  72. } while(true);
  73. do {
  74. M100ResponseType rp_type = m100_write_label_data_storage(
  75. uhf_worker->module, uhf_tag_from, uhf_tag_des, EPCBank, 0, 0);
  76. if(uhf_worker->state == UHFWorkerStateStop) return UHFWorkerEventAborted;
  77. if(rp_type == M100Success) break;
  78. } while(true);
  79. return UHFWorkerEventSuccess;
  80. }
  81. int32_t uhf_worker_task(void* ctx) {
  82. UHFWorker* uhf_worker = ctx;
  83. if(uhf_worker->state == UHFWorkerStateVerify) {
  84. UHFWorkerEvent event = verify_module_connected(uhf_worker);
  85. uhf_worker->callback(event, uhf_worker->ctx);
  86. } else if(uhf_worker->state == UHFWorkerStateDetectSingle) {
  87. UHFWorkerEvent event = read_single_card(uhf_worker);
  88. FURI_LOG_E("TAG", "read single card success");
  89. uhf_worker->callback(event, uhf_worker->ctx);
  90. FURI_LOG_E("TAG", "read single card callback success %d", event);
  91. } else if(uhf_worker->state == UHFWorkerStateWriteSingle) {
  92. UHFWorkerEvent event = write_single_card(uhf_worker);
  93. uhf_worker->callback(event, uhf_worker->ctx);
  94. }
  95. return 0;
  96. }
  97. UHFWorker* uhf_worker_alloc() {
  98. UHFWorker* uhf_worker = (UHFWorker*)malloc(sizeof(UHFWorker));
  99. uhf_worker->thread = furi_thread_alloc_ex("UHFWorker", 8 * 1024, uhf_worker_task, uhf_worker);
  100. uhf_worker->module = m100_module_alloc();
  101. uhf_worker->callback = NULL;
  102. uhf_worker->ctx = NULL;
  103. return uhf_worker;
  104. }
  105. void uhf_worker_change_state(UHFWorker* worker, UHFWorkerState state) {
  106. worker->state = state;
  107. }
  108. void uhf_worker_start(
  109. UHFWorker* uhf_worker,
  110. UHFWorkerState state,
  111. UHFWorkerCallback callback,
  112. void* ctx) {
  113. uhf_worker->state = state;
  114. uhf_worker->callback = callback;
  115. uhf_worker->ctx = ctx;
  116. furi_thread_start(uhf_worker->thread);
  117. }
  118. void uhf_worker_stop(UHFWorker* uhf_worker) {
  119. furi_assert(uhf_worker);
  120. furi_assert(uhf_worker->thread);
  121. if(furi_thread_get_state(uhf_worker->thread) != FuriThreadStateStopped) {
  122. uhf_worker_change_state(uhf_worker, UHFWorkerStateStop);
  123. furi_thread_join(uhf_worker->thread);
  124. }
  125. }
  126. void uhf_worker_free(UHFWorker* uhf_worker) {
  127. furi_assert(uhf_worker);
  128. furi_thread_free(uhf_worker->thread);
  129. m100_module_free(uhf_worker->module);
  130. free(uhf_worker);
  131. }