uhf_module.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. #include "uhf_module.h"
  2. #include "uhf_module_cmd.h"
  3. #define DELAY_MS 100
  4. #define WAIT_TICK 8000 // max wait time in between each byte
  5. volatile uint16_t tick = 0;
  6. void rx_callback(UartIrqEvent event, uint8_t data, void* ctx) {
  7. UNUSED(event);
  8. Buffer* buffer = ctx;
  9. if(buffer->closed) return; // buffer closed
  10. buffer_append_single(buffer, data); // append data
  11. if(data == FRAME_END) buffer_close(buffer); // end of frame
  12. tick = WAIT_TICK; // reset tick
  13. }
  14. static void setup_and_send_rx(M100Module* module, uint8_t* cmd, size_t cmd_length) {
  15. buffer_reset(module->buf);
  16. // furi_hal_uart_set_br(FuriHalUartIdUSART1, module->baudrate);
  17. // furi_hal_uart_set_irq_cb(FuriHalUartIdUSART1, rx_callback, module->buf);
  18. tick = WAIT_TICK;
  19. furi_hal_uart_tx(FuriHalUartIdUSART1, cmd, cmd_length);
  20. while(--tick) {
  21. furi_delay_us(5);
  22. }
  23. buffer_close(module->buf);
  24. }
  25. M100ModuleInfo* m100_module_info_alloc() {
  26. M100ModuleInfo* module_info = (M100ModuleInfo*)malloc(sizeof(M100ModuleInfo));
  27. return module_info;
  28. }
  29. void m100_module_info_free(M100ModuleInfo* module_info) {
  30. free(module_info->hw_version);
  31. free(module_info->sw_version);
  32. free(module_info->manufacturer);
  33. free(module_info);
  34. }
  35. M100Module* m100_module_alloc() {
  36. M100Module* module = (M100Module*)malloc(sizeof(M100Module));
  37. module->info = m100_module_info_alloc();
  38. module->buf = buffer_alloc(MAX_BUFFER_SIZE);
  39. module->baudrate = DEFAULT_BAUDRATE;
  40. // module->area = DEFAULT_AREA;
  41. furi_hal_uart_set_irq_cb(FuriHalUartIdUSART1, rx_callback, module->buf);
  42. return module;
  43. }
  44. void m100_module_free(M100Module* module) {
  45. m100_module_info_free(module->info);
  46. buffer_free(module->buf);
  47. free(module);
  48. }
  49. uint8_t checksum(const uint8_t* data, size_t length) {
  50. // CheckSum8 Modulo 256
  51. // Sum of Bytes % 256
  52. uint64_t sum_val = 0x00;
  53. for(size_t i = 0; i < length; i++) {
  54. sum_val += data[i];
  55. }
  56. return (uint8_t)(sum_val % 0x100);
  57. }
  58. uint16_t crc16_genibus(const uint8_t* data, size_t length) {
  59. uint16_t crc = 0xFFFF; // Initial value
  60. uint16_t polynomial = 0x1021; // CRC-16/GENIBUS polynomial
  61. for(size_t i = 0; i < length; i++) {
  62. crc ^= (data[i] << 8); // Move byte into MSB of 16bit CRC
  63. for(int j = 0; j < 8; j++) {
  64. if(crc & 0x8000) {
  65. crc = (crc << 1) ^ polynomial;
  66. } else {
  67. crc <<= 1;
  68. }
  69. }
  70. }
  71. return crc ^ 0xFFFF; // Post-inversion
  72. }
  73. char* _m100_info_helper(M100Module* module, char** info) {
  74. if(!buffer_get_size(module->buf)) return NULL;
  75. uint8_t* data = buffer_get_data(module->buf);
  76. uint16_t payload_len = data[3];
  77. payload_len = (payload_len << 8) + data[4];
  78. FuriString* temp_str = furi_string_alloc();
  79. for(int i = 0; i < payload_len; i++) {
  80. furi_string_cat_printf(temp_str, "%c", data[6 + i]);
  81. }
  82. if(*info == NULL) {
  83. *info = (char*)malloc(sizeof(char) * payload_len);
  84. } else {
  85. for(size_t i = 0; i < strlen(*info); i++) {
  86. (*info)[i] = 0;
  87. }
  88. }
  89. memcpy(*info, furi_string_get_cstr(temp_str), payload_len);
  90. furi_string_free(temp_str);
  91. return *info;
  92. }
  93. char* m100_get_hardware_version(M100Module* module) {
  94. setup_and_send_rx(module, (uint8_t*)&CMD_HW_VERSION.cmd[0], CMD_HW_VERSION.length);
  95. return _m100_info_helper(module, &module->info->hw_version);
  96. }
  97. char* m100_get_software_version(M100Module* module) {
  98. setup_and_send_rx(module, (uint8_t*)&CMD_SW_VERSION.cmd[0], CMD_SW_VERSION.length);
  99. return _m100_info_helper(module, &module->info->sw_version);
  100. }
  101. char* m100_get_manufacturers(M100Module* module) {
  102. setup_and_send_rx(module, (uint8_t*)&CMD_MANUFACTURERS.cmd[0], CMD_MANUFACTURERS.length);
  103. return _m100_info_helper(module, &module->info->manufacturer);
  104. }
  105. M100ResponseType m100_single_poll(M100Module* module, UHFTag* uhf_tag) {
  106. setup_and_send_rx(module, (uint8_t*)&CMD_SINGLE_POLLING.cmd[0], CMD_SINGLE_POLLING.length);
  107. uint8_t* data = buffer_get_data(module->buf);
  108. size_t length = buffer_get_size(module->buf);
  109. for(size_t i = 0; i < length; i++) {
  110. FURI_LOG_E("TAG", "data[%d] = %02X", i, data[i]);
  111. }
  112. if(length <= 8 && data[2] == 0xFF) return M100NoTagResponse;
  113. uint16_t pc = data[6];
  114. uint16_t crc = 0;
  115. // mask out epc length from protocol control
  116. size_t epc_len = pc;
  117. epc_len >>= 3;
  118. epc_len *= 2;
  119. // get protocol control
  120. pc <<= 8;
  121. pc += data[7];
  122. // get cyclic redundency check
  123. crc = data[8 + epc_len];
  124. crc <<= 8;
  125. crc += data[8 + epc_len + 1];
  126. // validate checksum
  127. if(checksum(data + 1, length - 3) != data[length - 2]) return M100ValidationFail;
  128. // validate crc
  129. if(crc16_genibus(data + 6, epc_len + 2) != crc) return M100ValidationFail;
  130. uhf_tag_set_epc_pc(uhf_tag, pc);
  131. uhf_tag_set_epc_crc(uhf_tag, crc);
  132. uhf_tag_set_epc(uhf_tag, data + 8, epc_len);
  133. return M100Success;
  134. }
  135. M100ResponseType m100_set_select(M100Module* module, UHFTag* uhf_tag) {
  136. // Set select
  137. uint8_t cmd[MAX_BUFFER_SIZE];
  138. size_t cmd_length = CMD_SET_SELECT_PARAMETER.length;
  139. size_t mask_length_bytes = uhf_tag->epc->size;
  140. size_t mask_length_bits = mask_length_bytes * 8;
  141. // payload len == sel param len + ptr len + mask len + epc len
  142. size_t payload_len = 7 + mask_length_bytes;
  143. memcpy(cmd, CMD_SET_SELECT_PARAMETER.cmd, cmd_length);
  144. // set new length
  145. cmd_length = 12 + mask_length_bytes + 2;
  146. // set payload length
  147. cmd[3] = (payload_len >> 8) & 0xFF;
  148. cmd[4] = payload_len & 0xFF;
  149. // set select param
  150. cmd[5] = 0x01; // 0x00=rfu, 0x01=epc, 0x10=tid, 0x11=user
  151. // set ptr
  152. cmd[9] = 0x20; // epc data begins after 0x20
  153. // set mask length
  154. cmd[10] = mask_length_bits;
  155. // truncate
  156. cmd[11] = false;
  157. // set mask
  158. memcpy((void*)&cmd[12], uhf_tag->epc->data, mask_length_bytes);
  159. // set checksum
  160. cmd[cmd_length - 2] = checksum(cmd + 1, 11 + mask_length_bytes);
  161. // end frame
  162. cmd[cmd_length - 1] = FRAME_END;
  163. setup_and_send_rx(module, cmd, 12 + mask_length_bytes + 3);
  164. uint8_t* data = buffer_get_data(module->buf);
  165. if(checksum(data + 1, 5) != data[6]) return M100ValidationFail; // error in rx
  166. if(data[5] != 0x00) return M100ValidationFail; // error if not 0
  167. return M100Success;
  168. }
  169. UHFTag* m100_get_select_param(M100Module* module) {
  170. buffer_reset(module->buf);
  171. furi_hal_uart_set_irq_cb(FuriHalUartIdLPUART1, rx_callback, module->buf);
  172. furi_hal_uart_tx(
  173. FuriHalUartIdUSART1,
  174. (uint8_t*)&CMD_GET_SELECT_PARAMETER.cmd,
  175. CMD_GET_SELECT_PARAMETER.length);
  176. furi_delay_ms(DELAY_MS);
  177. // UHFTag* uhf_tag = uhf_tag_alloc();
  178. // uint8_t* data = buffer_get_data(module->buf);
  179. // size_t mask_length =
  180. // uhf_tag_set_epc(uhf_tag, data + 12, )
  181. return NULL;
  182. }
  183. M100ResponseType m100_read_label_data_storage(
  184. M100Module* module,
  185. UHFTag* uhf_tag,
  186. BankType bank,
  187. uint32_t access_pwd,
  188. uint16_t word_count) {
  189. /*
  190. Will probably remove UHFTag as param and get it from get selected tag
  191. */
  192. if(bank == EPCBank) return M100Success;
  193. uint8_t cmd[MAX_BUFFER_SIZE];
  194. size_t cmd_length = CMD_READ_LABEL_DATA_STORAGE_AREA.length;
  195. memcpy(cmd, CMD_READ_LABEL_DATA_STORAGE_AREA.cmd, cmd_length);
  196. // set access password
  197. cmd[5] = (access_pwd >> 24) & 0xFF;
  198. cmd[6] = (access_pwd >> 16) & 0xFF;
  199. cmd[7] = (access_pwd >> 8) & 0xFF;
  200. cmd[8] = access_pwd & 0xFF;
  201. // set mem bank
  202. cmd[9] = (uint8_t)bank;
  203. // set word counter
  204. cmd[12] = (word_count >> 8) & 0xFF;
  205. cmd[13] = word_count & 0xFF;
  206. // calc checksum
  207. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  208. setup_and_send_rx(module, cmd, cmd_length);
  209. uint8_t* data = buffer_get_data(module->buf);
  210. uint16_t payload_len = data[3];
  211. payload_len = (payload_len << 8) + data[4];
  212. size_t ptr_offset = 5 /*<-ptr offset*/ + uhf_tag->epc->size + 3 /*<-pc + ul*/;
  213. size_t bank_data_length = payload_len - (ptr_offset - 5 /*dont include the offset*/);
  214. // print paylod length ptr offset and bank data length
  215. // FURI_LOG_E(
  216. // "TAG",
  217. // "payload_len: %d, ptr_offset: %d, bank_data_length: %d",
  218. // payload_len,
  219. // ptr_offset,
  220. // bank_data_length);
  221. if(data[2] == 0xFF) {
  222. if(payload_len == 0x0001) return M100NoTagResponse;
  223. return M100MemoryOverrun;
  224. }
  225. if(bank == TIDBank) {
  226. uhf_tag_set_tid(uhf_tag, data + ptr_offset, bank_data_length);
  227. } else if(bank == UserBank) {
  228. uhf_tag_set_user(uhf_tag, data + ptr_offset, bank_data_length);
  229. }
  230. return M100Success;
  231. }
  232. M100ResponseType m100_write_label_data_storage(
  233. M100Module* module,
  234. UHFTag* saved_tag,
  235. UHFTag* selected_tag,
  236. BankType bank,
  237. uint16_t source_address,
  238. uint32_t access_pwd) {
  239. uint8_t cmd[MAX_BUFFER_SIZE];
  240. size_t cmd_length = CMD_WRITE_LABEL_DATA_STORE.length;
  241. memcpy(cmd, CMD_WRITE_LABEL_DATA_STORE.cmd, cmd_length);
  242. uint16_t payload_len = 9;
  243. uint16_t data_length = 0;
  244. if(bank == ReservedBank) {
  245. // access pwd len + kill pwd len
  246. payload_len += 4;
  247. data_length = 4;
  248. } else if(bank == EPCBank) {
  249. // epc len + pc len
  250. payload_len += 4 + uhf_tag_get_epc_size(saved_tag);
  251. data_length = 4 + uhf_tag_get_epc_size(saved_tag);
  252. // set data
  253. uint8_t tmp_arr[4];
  254. tmp_arr[0] = (uint8_t)((uhf_tag_get_epc_crc(selected_tag) >> 8) & 0xFF);
  255. tmp_arr[1] = (uint8_t)(uhf_tag_get_epc_crc(selected_tag) & 0xFF);
  256. tmp_arr[2] = (uint8_t)((uhf_tag_get_epc_pc(saved_tag) >> 8) & 0xFF);
  257. tmp_arr[3] = (uint8_t)(uhf_tag_get_epc_pc(saved_tag) & 0xFF);
  258. memcpy(cmd + 14, tmp_arr, 4);
  259. memcpy(cmd + 18, uhf_tag_get_epc(saved_tag), uhf_tag_get_epc_size(saved_tag));
  260. } else if(bank == UserBank) {
  261. payload_len += uhf_tag_get_user_size(saved_tag);
  262. data_length = uhf_tag_get_user_size(saved_tag);
  263. // set data
  264. memcpy(cmd + 14, uhf_tag_get_user(saved_tag), uhf_tag_get_user_size(saved_tag));
  265. }
  266. // set payload length
  267. cmd[3] = (payload_len >> 8) & 0xFF;
  268. cmd[4] = payload_len & 0xFF;
  269. // set access password
  270. cmd[5] = (access_pwd >> 24) & 0xFF;
  271. cmd[6] = (access_pwd >> 16) & 0xFF;
  272. cmd[7] = (access_pwd >> 8) & 0xFF;
  273. cmd[8] = access_pwd & 0xFF;
  274. // set membank
  275. cmd[9] = (uint8_t)bank;
  276. // set source address
  277. cmd[10] = (source_address >> 8) & 0xFF;
  278. cmd[11] = source_address & 0xFF;
  279. // set data length
  280. size_t data_length_words = data_length / 2;
  281. cmd[12] = (data_length_words >> 8) & 0xFF;
  282. cmd[13] = data_length_words & 0xFF;
  283. // update cmd len
  284. cmd_length = 7 + payload_len;
  285. // calculate checksum
  286. cmd[cmd_length - 2] = checksum(cmd + 1, cmd_length - 3);
  287. cmd[cmd_length - 1] = FRAME_END;
  288. // send cmd
  289. // furi_hal_uart_set_irq_cb(FuriHalUartIdUSART1, rx_callback, module->buf);
  290. // furi_hal_uart_tx(FuriHalUartIdUSART1, cmd, cmd_length);
  291. // unsigned int delay = DELAY_MS / 2;
  292. // unsigned int timeout = 15;
  293. // while(!buffer_get_size(module->buf)) {
  294. // furi_delay_ms(delay);
  295. // if(!timeout--) break;
  296. // }
  297. setup_and_send_rx(module, cmd, cmd_length);
  298. uint8_t* buff_data = buffer_get_data(module->buf);
  299. size_t buff_length = buffer_get_size(module->buf);
  300. if(buff_data[2] == 0xFF && buff_length == 8)
  301. return M100NoTagResponse;
  302. else if(buff_data[2] == 0xFF)
  303. return M100ValidationFail;
  304. return M100Success;
  305. }
  306. void m100_set_baudrate(M100Module* module, uint32_t baudrate) {
  307. size_t length = CMD_SET_COMMUNICATION_BAUD_RATE.length;
  308. uint8_t cmd[length];
  309. memcpy(cmd, CMD_SET_COMMUNICATION_BAUD_RATE.cmd, length);
  310. uint16_t br_mod = baudrate / 100; // module format
  311. cmd[6] = 0xFF & br_mod; // pow LSB
  312. cmd[5] = 0xFF & (br_mod >> 8); // pow MSB
  313. cmd[length - 2] = checksum(cmd + 1, length - 3);
  314. furi_hal_uart_tx(FuriHalUartIdUSART1, cmd, length);
  315. furi_hal_uart_set_br(FuriHalUartIdUSART1, baudrate);
  316. module->baudrate = baudrate;
  317. }
  318. bool m100_set_working_area(M100Module* module, WorkingArea area) {
  319. size_t length = CMD_SET_WORK_AREA.length;
  320. uint8_t cmd[length];
  321. memcpy(cmd, CMD_SET_WORK_AREA.cmd, length);
  322. cmd[5] = area;
  323. Buffer* buf = buffer_alloc(12);
  324. furi_hal_uart_set_irq_cb(FuriHalUartIdUSART1, rx_callback, buf);
  325. furi_hal_uart_tx(FuriHalUartIdUSART1, cmd, length);
  326. buffer_free(buf);
  327. module->area = area;
  328. return true;
  329. }
  330. bool m100_set_working_channel(M100Module* module, WorkingChannel channel) {
  331. UNUSED(module);
  332. UNUSED(channel);
  333. return true;
  334. }
  335. bool m100_set_transmitting_power(M100Module* module, uint16_t power) {
  336. UNUSED(module);
  337. UNUSED(power);
  338. return true;
  339. }
  340. bool m100_set_freq_hopping(M100Module* module, bool hopping) {
  341. UNUSED(module);
  342. UNUSED(hopping);
  343. return true;
  344. }
  345. bool m100_set_power(M100Module* module, uint8_t* power) {
  346. UNUSED(module);
  347. UNUSED(power);
  348. return true;
  349. }
  350. uint32_t m100_get_baudrate(M100Module* module) {
  351. return module->baudrate;
  352. }