| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343 |
- /* sp_int.c
- *
- * Copyright (C) 2006-2023 wolfSSL Inc.
- *
- * This file is part of wolfSSL.
- *
- * wolfSSL is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * wolfSSL is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
- */
- /* Implementation by Sean Parkinson. */
- /*
- DESCRIPTION
- This library provides single precision (SP) integer math functions.
- */
- #ifdef HAVE_CONFIG_H
- #include <config.h>
- #endif
- #include <wolfssl/wolfcrypt/settings.h>
- #if defined(WOLFSSL_SP_MATH) || defined(WOLFSSL_SP_MATH_ALL)
- #if (!defined(WOLFSSL_SMALL_STACK) && !defined(SP_ALLOC)) || \
- defined(WOLFSSL_SP_NO_MALLOC)
- #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
- !defined(WOLFSSL_SP_NO_DYN_STACK)
- #pragma GCC diagnostic push
- /* We are statically declaring a variable smaller than sp_int.
- * We track available memory in the 'size' field.
- * Disable warnings of sp_int being partly outside array bounds of variable.
- */
- #pragma GCC diagnostic ignored "-Warray-bounds"
- #endif
- #endif
- #ifdef NO_INLINE
- #include <wolfssl/wolfcrypt/misc.h>
- #else
- #define WOLFSSL_MISC_INCLUDED
- #include <wolfcrypt/src/misc.c>
- #endif
- /* SP Build Options:
- * WOLFSSL_HAVE_SP_RSA: Enable SP RSA support
- * WOLFSSL_HAVE_SP_DH: Enable SP DH support
- * WOLFSSL_HAVE_SP_ECC: Enable SP ECC support
- * WOLFSSL_SP_MATH: Use only single precision math and algorithms
- * it supports (no fastmath tfm.c or normal integer.c)
- * WOLFSSL_SP_MATH_ALL Implementation of all MP functions
- * (replacement for tfm.c and integer.c)
- * WOLFSSL_SP_SMALL: Use smaller version of code and avoid large
- * stack variables
- * WOLFSSL_SP_NO_MALLOC: Always use stack, no heap XMALLOC/XFREE allowed
- * WOLFSSL_SP_NO_2048: Disable RSA/DH 2048-bit support
- * WOLFSSL_SP_NO_3072: Disable RSA/DH 3072-bit support
- * WOLFSSL_SP_4096: Enable RSA/RH 4096-bit support
- * WOLFSSL_SP_NO_256 Disable ECC 256-bit SECP256R1 support
- * WOLFSSL_SP_384 Enable ECC 384-bit SECP384R1 support
- * WOLFSSL_SP_521 Enable ECC 521-bit SECP521R1 support
- * WOLFSSL_SP_ASM Enable assembly speedups (detect platform)
- * WOLFSSL_SP_X86_64_ASM Enable Intel x64 assembly implementation
- * WOLFSSL_SP_ARM32_ASM Enable Aarch32 assembly implementation
- * WOLFSSL_SP_ARM64_ASM Enable Aarch64 assembly implementation
- * WOLFSSL_SP_ARM_CORTEX_M_ASM Enable Cortex-M assembly implementation
- * WOLFSSL_SP_ARM_THUMB_ASM Enable ARM Thumb assembly implementation
- * (used with -mthumb)
- * WOLFSSL_SP_X86_64 Enable Intel x86 64-bit assembly speedups
- * WOLFSSL_SP_X86 Enable Intel x86 assembly speedups
- * WOLFSSL_SP_ARM64 Enable Aarch64 assembly speedups
- * WOLFSSL_SP_ARM32 Enable ARM32 assembly speedups
- * WOLFSSL_SP_ARM32_UDIV Enable word divide asm that uses UDIV instr
- * WOLFSSL_SP_ARM_THUMB Enable ARM Thumb assembly speedups
- * (explicitly uses register 'r7')
- * WOLFSSL_SP_PPC64 Enable PPC64 assembly speedups
- * WOLFSSL_SP_PPC Enable PPC assembly speedups
- * WOLFSSL_SP_MIPS64 Enable MIPS64 assembly speedups
- * WOLFSSL_SP_MIPS Enable MIPS assembly speedups
- * WOLFSSL_SP_RISCV64 Enable RISCV64 assembly speedups
- * WOLFSSL_SP_RISCV32 Enable RISCV32 assembly speedups
- * WOLFSSL_SP_S390X Enable S390X assembly speedups
- * SP_WORD_SIZE Force 32 or 64 bit mode
- * WOLFSSL_SP_NONBLOCK Enables "non blocking" mode for SP math, which
- * will return FP_WOULDBLOCK for long operations and function must be
- * called again until complete.
- * WOLFSSL_SP_FAST_NCT_EXPTMOD Enables the faster non-constant time modular
- * exponentiation implementation.
- * WOLFSSL_SP_INT_NEGATIVE Enables negative values to be used.
- * WOLFSSL_SP_INT_DIGIT_ALIGN Enable when unaligned access of sp_int_digit
- * pointer is not allowed.
- * WOLFSSL_SP_NO_DYN_STACK Disable use of dynamic stack items.
- * Dynamic arrays used when not small stack.
- * WOLFSSL_SP_FAST_MODEXP Allow fast mod_exp with small C code
- * WOLFSSL_SP_LOW_MEM Use algorithms that use less memory.
- */
- /* TODO: WOLFSSL_SP_SMALL is incompatible with clang-12+ -Os. */
- #if defined(__clang__) && defined(__clang_major__) && \
- (__clang_major__ >= 12) && defined(WOLFSSL_SP_SMALL)
- #undef WOLFSSL_SP_SMALL
- #endif
- #include <wolfssl/wolfcrypt/sp_int.h>
- /* DECL_SP_INT: Declare one variable of type 'sp_int'. */
- #if (defined(WOLFSSL_SMALL_STACK) || defined(SP_ALLOC)) && \
- !defined(WOLFSSL_SP_NO_MALLOC)
- /* Declare a variable that will be assigned a value on XMALLOC. */
- #define DECL_SP_INT(n, s) \
- sp_int* n = NULL
- #else
- #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
- !defined(WOLFSSL_SP_NO_DYN_STACK)
- /* Declare a variable on the stack with the required data size. */
- #define DECL_SP_INT(n, s) \
- byte n##d[MP_INT_SIZEOF(s)]; \
- sp_int* (n) = (sp_int*)n##d
- #else
- /* Declare a variable on the stack. */
- #define DECL_SP_INT(n, s) \
- sp_int n[1]
- #endif
- #endif
- /* ALLOC_SP_INT: Allocate an 'sp_int' of required size. */
- #if (defined(WOLFSSL_SMALL_STACK) || defined(SP_ALLOC)) && \
- !defined(WOLFSSL_SP_NO_MALLOC)
- /* Dynamically allocate just enough data to support size. */
- #define ALLOC_SP_INT(n, s, err, h) \
- do { \
- if (((err) == MP_OKAY) && ((s) > SP_INT_DIGITS)) { \
- (err) = MP_VAL; \
- } \
- if ((err) == MP_OKAY) { \
- (n) = (sp_int*)XMALLOC(MP_INT_SIZEOF(s), (h), \
- DYNAMIC_TYPE_BIGINT); \
- if ((n) == NULL) { \
- (err) = MP_MEM; \
- } \
- } \
- } \
- while (0)
- /* Dynamically allocate just enough data to support size - and set size. */
- #define ALLOC_SP_INT_SIZE(n, s, err, h) \
- do { \
- ALLOC_SP_INT(n, s, err, h); \
- if ((err) == MP_OKAY) { \
- (n)->size = (s); \
- } \
- } \
- while (0)
- #else
- /* Array declared on stack - check size is valid. */
- #define ALLOC_SP_INT(n, s, err, h) \
- do { \
- if (((err) == MP_OKAY) && ((s) > SP_INT_DIGITS)) { \
- (err) = MP_VAL; \
- } \
- } \
- while (0)
- /* Array declared on stack - set the size field. */
- #define ALLOC_SP_INT_SIZE(n, s, err, h) \
- do { \
- ALLOC_SP_INT(n, s, err, h); \
- if ((err) == MP_OKAY) { \
- (n)->size = (unsigned int)(s); \
- } \
- } \
- while (0)
- #endif
- /* FREE_SP_INT: Free an 'sp_int' variable. */
- #if (defined(WOLFSSL_SMALL_STACK) || defined(SP_ALLOC)) && \
- !defined(WOLFSSL_SP_NO_MALLOC)
- /* Free dynamically allocated data. */
- #define FREE_SP_INT(n, h) \
- do { \
- if ((n) != NULL) { \
- XFREE(n, h, DYNAMIC_TYPE_BIGINT); \
- } \
- } \
- while (0)
- #else
- /* Nothing to do as declared on stack. */
- #define FREE_SP_INT(n, h)
- #endif
- /* Declare a variable that will be assigned a value on XMALLOC. */
- #define DECL_DYN_SP_INT_ARRAY(n, s, c) \
- sp_int* n##d = NULL; \
- sp_int* (n)[c] = { NULL, }
- /* DECL_SP_INT_ARRAY: Declare array of 'sp_int'. */
- #if (defined(WOLFSSL_SMALL_STACK) || defined(SP_ALLOC)) && \
- !defined(WOLFSSL_SP_NO_MALLOC)
- /* Declare a variable that will be assigned a value on XMALLOC. */
- #define DECL_SP_INT_ARRAY(n, s, c) \
- DECL_DYN_SP_INT_ARRAY(n, s, c)
- #else
- #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
- !defined(WOLFSSL_SP_NO_DYN_STACK)
- /* Declare a variable on the stack with the required data size. */
- #define DECL_SP_INT_ARRAY(n, s, c) \
- byte n##d[MP_INT_SIZEOF(s) * (c)]; \
- sp_int* (n)[c] = { NULL, }
- #else
- /* Declare a variable on the stack. */
- #define DECL_SP_INT_ARRAY(n, s, c) \
- sp_int n##d[c]; \
- sp_int* (n)[c]
- #endif
- #endif
- /* Dynamically allocate just enough data to support multiple sp_ints of the
- * required size. Use pointers into data to make up array and set sizes.
- */
- #define ALLOC_DYN_SP_INT_ARRAY(n, s, c, err, h) \
- do { \
- if (((err) == MP_OKAY) && ((s) > SP_INT_DIGITS)) { \
- (err) = MP_VAL; \
- } \
- if ((err) == MP_OKAY) { \
- n##d = (sp_int*)XMALLOC(MP_INT_SIZEOF(s) * (c), (h), \
- DYNAMIC_TYPE_BIGINT); \
- if (n##d == NULL) { \
- (err) = MP_MEM; \
- } \
- else { \
- int n##ii; \
- (n)[0] = n##d; \
- (n)[0]->size = (s); \
- for (n##ii = 1; n##ii < (int)(c); n##ii++) { \
- (n)[n##ii] = MP_INT_NEXT((n)[n##ii-1], s); \
- (n)[n##ii]->size = (s); \
- } \
- } \
- } \
- } \
- while (0)
- /* ALLOC_SP_INT_ARRAY: Allocate an array of 'sp_int's of required size. */
- #if (defined(WOLFSSL_SMALL_STACK) || defined(SP_ALLOC)) && \
- !defined(WOLFSSL_SP_NO_MALLOC)
- #define ALLOC_SP_INT_ARRAY(n, s, c, err, h) \
- ALLOC_DYN_SP_INT_ARRAY(n, s, c, err, h)
- #else
- #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
- !defined(WOLFSSL_SP_NO_DYN_STACK)
- /* Data declared on stack that supports multiple sp_ints of the
- * required size. Use pointers into data to make up array and set sizes.
- */
- #define ALLOC_SP_INT_ARRAY(n, s, c, err, h) \
- do { \
- if (((err) == MP_OKAY) && ((s) > SP_INT_DIGITS)) { \
- (err) = MP_VAL; \
- } \
- if ((err) == MP_OKAY) { \
- int n##ii; \
- (n)[0] = (sp_int*)n##d; \
- ((sp_int_minimal*)(n)[0])->size = (s); \
- for (n##ii = 1; n##ii < (int)(c); n##ii++) { \
- (n)[n##ii] = MP_INT_NEXT((n)[n##ii-1], s); \
- ((sp_int_minimal*)(n)[n##ii])->size = (s); \
- } \
- } \
- } \
- while (0)
- #else
- /* Data declared on stack that supports multiple sp_ints of the
- * required size. Set into array and set sizes.
- */
- #define ALLOC_SP_INT_ARRAY(n, s, c, err, h) \
- do { \
- if (((err) == MP_OKAY) && ((s) > SP_INT_DIGITS)) { \
- (err) = MP_VAL; \
- } \
- if ((err) == MP_OKAY) { \
- int n##ii; \
- for (n##ii = 0; n##ii < (int)(c); n##ii++) { \
- (n)[n##ii] = &n##d[n##ii]; \
- (n)[n##ii]->size = (s); \
- } \
- } \
- } \
- while (0)
- #endif
- #endif
- /* Free data variable that was dynamically allocated. */
- #define FREE_DYN_SP_INT_ARRAY(n, h) \
- do { \
- if (n##d != NULL) { \
- XFREE(n##d, h, DYNAMIC_TYPE_BIGINT); \
- } \
- } \
- while (0)
- /* FREE_SP_INT_ARRAY: Free an array of 'sp_int'. */
- #if (defined(WOLFSSL_SMALL_STACK) || defined(SP_ALLOC)) && \
- !defined(WOLFSSL_SP_NO_MALLOC)
- #define FREE_SP_INT_ARRAY(n, h) \
- FREE_DYN_SP_INT_ARRAY(n, h)
- #else
- /* Nothing to do as data declared on stack. */
- #define FREE_SP_INT_ARRAY(n, h)
- #endif
- #ifndef WOLFSSL_NO_ASM
- #ifdef __IAR_SYSTEMS_ICC__
- #define __asm__ asm
- #define __volatile__ volatile
- #endif /* __IAR_SYSTEMS_ICC__ */
- #ifdef __KEIL__
- #define __asm__ __asm
- #define __volatile__ volatile
- #endif
- #if defined(WOLFSSL_SP_X86_64) && SP_WORD_SIZE == 64
- /*
- * CPU: x86_64
- */
- #ifndef _MSC_VER
- /* Multiply va by vb and store double size result in: vh | vl */
- #define SP_ASM_MUL(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "movq %[b], %%rax \n\t" \
- "mulq %[a] \n\t" \
- "movq %%rax, %[l] \n\t" \
- "movq %%rdx, %[h] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "m" (va), [b] "m" (vb) \
- : "memory", "%rax", "%rdx", "cc" \
- )
- /* Multiply va by vb and store double size result in: vo | vh | vl */
- #define SP_ASM_MUL_SET(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "movq %[b], %%rax \n\t" \
- "mulq %[a] \n\t" \
- "movq $0 , %[o] \n\t" \
- "movq %%rax, %[l] \n\t" \
- "movq %%rdx, %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "=r" (vo) \
- : [a] "m" (va), [b] "m" (vb) \
- : "%rax", "%rdx", "cc" \
- )
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "movq %[b], %%rax \n\t" \
- "mulq %[a] \n\t" \
- "addq %%rax, %[l] \n\t" \
- "adcq %%rdx, %[h] \n\t" \
- "adcq $0 , %[o] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "m" (va), [b] "m" (vb) \
- : "%rax", "%rdx", "cc" \
- )
- /* Multiply va by vb and add double size result into: vh | vl */
- #define SP_ASM_MUL_ADD_NO(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "movq %[b], %%rax \n\t" \
- "mulq %[a] \n\t" \
- "addq %%rax, %[l] \n\t" \
- "adcq %%rdx, %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "m" (va), [b] "m" (vb) \
- : "%rax", "%rdx", "cc" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "movq %[b], %%rax \n\t" \
- "mulq %[a] \n\t" \
- "addq %%rax, %[l] \n\t" \
- "adcq %%rdx, %[h] \n\t" \
- "adcq $0 , %[o] \n\t" \
- "addq %%rax, %[l] \n\t" \
- "adcq %%rdx, %[h] \n\t" \
- "adcq $0 , %[o] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "m" (va), [b] "m" (vb) \
- : "%rax", "%rdx", "cc" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "movq %[b], %%rax \n\t" \
- "mulq %[a] \n\t" \
- "addq %%rax, %[l] \n\t" \
- "adcq %%rdx, %[h] \n\t" \
- "addq %%rax, %[l] \n\t" \
- "adcq %%rdx, %[h] \n\t" \
- "adcq $0 , %[o] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "m" (va), [b] "m" (vb) \
- : "%rax", "%rdx", "cc" \
- )
- /* Square va and store double size result in: vh | vl */
- #define SP_ASM_SQR(vl, vh, va) \
- __asm__ __volatile__ ( \
- "movq %[a], %%rax \n\t" \
- "mulq %%rax \n\t" \
- "movq %%rax, %[l] \n\t" \
- "movq %%rdx, %[h] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "m" (va) \
- : "memory", "%rax", "%rdx", "cc" \
- )
- /* Square va and add double size result into: vo | vh | vl */
- #define SP_ASM_SQR_ADD(vl, vh, vo, va) \
- __asm__ __volatile__ ( \
- "movq %[a], %%rax \n\t" \
- "mulq %%rax \n\t" \
- "addq %%rax, %[l] \n\t" \
- "adcq %%rdx, %[h] \n\t" \
- "adcq $0 , %[o] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "m" (va) \
- : "%rax", "%rdx", "cc" \
- )
- /* Square va and add double size result into: vh | vl */
- #define SP_ASM_SQR_ADD_NO(vl, vh, va) \
- __asm__ __volatile__ ( \
- "movq %[a], %%rax \n\t" \
- "mulq %%rax \n\t" \
- "addq %%rax, %[l] \n\t" \
- "adcq %%rdx, %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "m" (va) \
- : "%rax", "%rdx", "cc" \
- )
- /* Add va into: vh | vl */
- #define SP_ASM_ADDC(vl, vh, va) \
- __asm__ __volatile__ ( \
- "addq %[a], %[l] \n\t" \
- "adcq $0 , %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "m" (va) \
- : "cc" \
- )
- /* Add va, variable in a register, into: vh | vl */
- #define SP_ASM_ADDC_REG(vl, vh, va) \
- __asm__ __volatile__ ( \
- "addq %[a], %[l] \n\t" \
- "adcq $0 , %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "cc" \
- )
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB(vl, vh, va) \
- __asm__ __volatile__ ( \
- "subq %[a], %[l] \n\t" \
- "sbbq $0 , %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "m" (va) \
- : "cc" \
- )
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB_REG(vl, vh, va) \
- __asm__ __volatile__ ( \
- "subq %[a], %[l] \n\t" \
- "sbbq $0 , %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "cc" \
- )
- /* Add two times vc | vb | va into vo | vh | vl */
- #define SP_ASM_ADD_DBL_3(vl, vh, vo, va, vb, vc) \
- __asm__ __volatile__ ( \
- "addq %[a], %[l] \n\t" \
- "adcq %[b], %[h] \n\t" \
- "adcq %[c], %[o] \n\t" \
- "addq %[a], %[l] \n\t" \
- "adcq %[b], %[h] \n\t" \
- "adcq %[c], %[o] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb), [c] "r" (vc) \
- : "cc" \
- )
- /* Index of highest bit set. */
- #define SP_ASM_HI_BIT_SET_IDX(va, vi) \
- __asm__ __volatile__ ( \
- "bsr %[a], %[i] \n\t" \
- : [i] "=r" (vi) \
- : [a] "r" (va) \
- : "cc" \
- )
- #else
- #include <intrin.h>
- /* Multiply va by vb and store double size result in: vh | vl */
- #define SP_ASM_MUL(vl, vh, va, vb) \
- vl = _umul128(va, vb, &vh)
- /* Multiply va by vb and store double size result in: vo | vh | vl */
- #define SP_ASM_MUL_SET(vl, vh, vo, va, vb) \
- do { \
- vl = _umul128(va, vb, &vh); \
- vo = 0; \
- } \
- while (0)
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- do { \
- unsigned __int64 vtl, vth; \
- unsigned char c; \
- vtl = _umul128(va, vb, &vth); \
- c = _addcarry_u64(0, vl, vtl, &vl); \
- c = _addcarry_u64(c, vh, vth, &vh); \
- _addcarry_u64(c, vo, 0, &vo); \
- } \
- while (0)
- /* Multiply va by vb and add double size result into: vh | vl */
- #define SP_ASM_MUL_ADD_NO(vl, vh, va, vb) \
- do { \
- unsigned __int64 vtl, vth; \
- unsigned char c; \
- vtl = _umul128(va, vb, &vth); \
- c = _addcarry_u64(0, vl, vtl, &vl); \
- _addcarry_u64(c, vh, vth, &vh); \
- } \
- while (0)
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- do { \
- unsigned __int64 vtl, vth; \
- unsigned char c; \
- vtl = _umul128(va, vb, &vth); \
- c = _addcarry_u64(0, vl, vtl, &vl); \
- c = _addcarry_u64(c, vh, vth, &vh); \
- _addcarry_u64(c, vo, 0, &vo); \
- c = _addcarry_u64(0, vl, vtl, &vl); \
- c = _addcarry_u64(c, vh, vth, &vh); \
- _addcarry_u64(c, vo, 0, &vo); \
- } \
- while (0)
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- do { \
- unsigned __int64 vtl, vth; \
- unsigned char c; \
- vtl = _umul128(va, vb, &vth); \
- c = _addcarry_u64(0, vl, vtl, &vl); \
- _addcarry_u64(c, vh, vth, &vh); \
- c = _addcarry_u64(0, vl, vtl, &vl); \
- c = _addcarry_u64(c, vh, vth, &vh); \
- _addcarry_u64(c, vo, 0, &vo); \
- } \
- while (0)
- /* Square va and store double size result in: vh | vl */
- #define SP_ASM_SQR(vl, vh, va) \
- vl = _umul128(va, va, &vh)
- /* Square va and add double size result into: vo | vh | vl */
- #define SP_ASM_SQR_ADD(vl, vh, vo, va) \
- do { \
- unsigned __int64 vtl, vth; \
- unsigned char c; \
- vtl = _umul128(va, va, &vth); \
- c = _addcarry_u64(0, vl, vtl, &vl); \
- c = _addcarry_u64(c, vh, vth, &vh); \
- _addcarry_u64(c, vo, 0, &vo); \
- } \
- while (0)
- /* Square va and add double size result into: vh | vl */
- #define SP_ASM_SQR_ADD_NO(vl, vh, va) \
- do { \
- unsigned __int64 vtl, vth; \
- unsigned char c; \
- vtl = _umul128(va, va, &vth); \
- c = _addcarry_u64(0, vl, vtl, &vl); \
- _addcarry_u64(c, vh, vth, &vh); \
- } \
- while (0)
- /* Add va into: vh | vl */
- #define SP_ASM_ADDC(vl, vh, va) \
- do { \
- unsigned char c; \
- c = _addcarry_u64(0, vl, va, &vl); \
- _addcarry_u64(c, vh, 0, &vh); \
- } \
- while (0)
- /* Add va, variable in a register, into: vh | vl */
- #define SP_ASM_ADDC_REG(vl, vh, va) \
- do { \
- unsigned char c; \
- c = _addcarry_u64(0, vl, va, &vl); \
- _addcarry_u64(c, vh, 0, &vh); \
- } \
- while (0)
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB(vl, vh, va) \
- do { \
- unsigned char c; \
- c = _subborrow_u64(0, vl, va, &vl); \
- _subborrow_u64(c, vh, 0, &vh); \
- } \
- while (0)
- /* Add two times vc | vb | va into vo | vh | vl */
- #define SP_ASM_ADD_DBL_3(vl, vh, vo, va, vb, vc) \
- do { \
- unsigned char c; \
- c = _addcarry_u64(0, vl, va, &vl); \
- c = _addcarry_u64(c, vh, vb, &vh); \
- _addcarry_u64(c, vo, vc, &vo); \
- c = _addcarry_u64(0, vl, va, &vl); \
- c = _addcarry_u64(c, vh, vb, &vh); \
- _addcarry_u64(c, vo, vc, &vo); \
- } \
- while (0)
- /* Index of highest bit set. */
- #define SP_ASM_HI_BIT_SET_IDX(va, vi) \
- do { \
- unsigned long idx; \
- _BitScanReverse64(&idx, va); \
- vi = idx; \
- } \
- while (0)
- #endif
- #if !defined(WOLFSSL_SP_DIV_WORD_HALF) && (!defined(_MSC_VER) || \
- _MSC_VER >= 1920)
- /* Divide a two digit number by a digit number and return. (hi | lo) / d
- *
- * Using divq instruction on Intel x64.
- *
- * @param [in] hi SP integer digit. High digit of the dividend.
- * @param [in] lo SP integer digit. Lower digit of the dividend.
- * @param [in] d SP integer digit. Number to divide by.
- * @return The division result.
- */
- static WC_INLINE sp_int_digit sp_div_word(sp_int_digit hi, sp_int_digit lo,
- sp_int_digit d)
- {
- #ifndef _MSC_VER
- __asm__ __volatile__ (
- "divq %2"
- : "+a" (lo)
- : "d" (hi), "r" (d)
- : "cc"
- );
- return lo;
- #elif defined(_MSC_VER) && _MSC_VER >= 1920
- return _udiv128(hi, lo, d, NULL);
- #endif
- }
- #define SP_ASM_DIV_WORD
- #endif
- #define SP_INT_ASM_AVAILABLE
- #endif /* WOLFSSL_SP_X86_64 && SP_WORD_SIZE == 64 */
- #if defined(WOLFSSL_SP_X86) && SP_WORD_SIZE == 32
- /*
- * CPU: x86
- */
- /* Multiply va by vb and store double size result in: vh | vl */
- #define SP_ASM_MUL(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "movl %[b], %%eax \n\t" \
- "mull %[a] \n\t" \
- "movl %%eax, %[l] \n\t" \
- "movl %%edx, %[h] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "m" (va), [b] "m" (vb) \
- : "memory", "eax", "edx", "cc" \
- )
- /* Multiply va by vb and store double size result in: vo | vh | vl */
- #define SP_ASM_MUL_SET(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "movl %[b], %%eax \n\t" \
- "mull %[a] \n\t" \
- "movl $0 , %[o] \n\t" \
- "movl %%eax, %[l] \n\t" \
- "movl %%edx, %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "=r" (vo) \
- : [a] "m" (va), [b] "m" (vb) \
- : "eax", "edx", "cc" \
- )
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "movl %[b], %%eax \n\t" \
- "mull %[a] \n\t" \
- "addl %%eax, %[l] \n\t" \
- "adcl %%edx, %[h] \n\t" \
- "adcl $0 , %[o] \n\t" \
- : [l] "+rm" (vl), [h] "+rm" (vh), [o] "+rm" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "eax", "edx", "cc" \
- )
- /* Multiply va by vb and add double size result into: vh | vl */
- #define SP_ASM_MUL_ADD_NO(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "movl %[b], %%eax \n\t" \
- "mull %[a] \n\t" \
- "addl %%eax, %[l] \n\t" \
- "adcl %%edx, %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "m" (va), [b] "m" (vb) \
- : "eax", "edx", "cc" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "movl %[b], %%eax \n\t" \
- "mull %[a] \n\t" \
- "addl %%eax, %[l] \n\t" \
- "adcl %%edx, %[h] \n\t" \
- "adcl $0 , %[o] \n\t" \
- "addl %%eax, %[l] \n\t" \
- "adcl %%edx, %[h] \n\t" \
- "adcl $0 , %[o] \n\t" \
- : [l] "+rm" (vl), [h] "+rm" (vh), [o] "+rm" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "eax", "edx", "cc" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "movl %[b], %%eax \n\t" \
- "mull %[a] \n\t" \
- "addl %%eax, %[l] \n\t" \
- "adcl %%edx, %[h] \n\t" \
- "addl %%eax, %[l] \n\t" \
- "adcl %%edx, %[h] \n\t" \
- "adcl $0 , %[o] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "m" (va), [b] "m" (vb) \
- : "eax", "edx", "cc" \
- )
- /* Square va and store double size result in: vh | vl */
- #define SP_ASM_SQR(vl, vh, va) \
- __asm__ __volatile__ ( \
- "movl %[a], %%eax \n\t" \
- "mull %%eax \n\t" \
- "movl %%eax, %[l] \n\t" \
- "movl %%edx, %[h] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "m" (va) \
- : "memory", "eax", "edx", "cc" \
- )
- /* Square va and add double size result into: vo | vh | vl */
- #define SP_ASM_SQR_ADD(vl, vh, vo, va) \
- __asm__ __volatile__ ( \
- "movl %[a], %%eax \n\t" \
- "mull %%eax \n\t" \
- "addl %%eax, %[l] \n\t" \
- "adcl %%edx, %[h] \n\t" \
- "adcl $0 , %[o] \n\t" \
- : [l] "+rm" (vl), [h] "+rm" (vh), [o] "+rm" (vo) \
- : [a] "m" (va) \
- : "eax", "edx", "cc" \
- )
- /* Square va and add double size result into: vh | vl */
- #define SP_ASM_SQR_ADD_NO(vl, vh, va) \
- __asm__ __volatile__ ( \
- "movl %[a], %%eax \n\t" \
- "mull %%eax \n\t" \
- "addl %%eax, %[l] \n\t" \
- "adcl %%edx, %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "m" (va) \
- : "eax", "edx", "cc" \
- )
- /* Add va into: vh | vl */
- #define SP_ASM_ADDC(vl, vh, va) \
- __asm__ __volatile__ ( \
- "addl %[a], %[l] \n\t" \
- "adcl $0 , %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "m" (va) \
- : "cc" \
- )
- /* Add va, variable in a register, into: vh | vl */
- #define SP_ASM_ADDC_REG(vl, vh, va) \
- __asm__ __volatile__ ( \
- "addl %[a], %[l] \n\t" \
- "adcl $0 , %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "cc" \
- )
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB(vl, vh, va) \
- __asm__ __volatile__ ( \
- "subl %[a], %[l] \n\t" \
- "sbbl $0 , %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "m" (va) \
- : "cc" \
- )
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB_REG(vl, vh, va) \
- __asm__ __volatile__ ( \
- "subl %[a], %[l] \n\t" \
- "sbbl $0 , %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "cc" \
- )
- /* Add two times vc | vb | va into vo | vh | vl */
- #define SP_ASM_ADD_DBL_3(vl, vh, vo, va, vb, vc) \
- __asm__ __volatile__ ( \
- "addl %[a], %[l] \n\t" \
- "adcl %[b], %[h] \n\t" \
- "adcl %[c], %[o] \n\t" \
- "addl %[a], %[l] \n\t" \
- "adcl %[b], %[h] \n\t" \
- "adcl %[c], %[o] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb), [c] "r" (vc) \
- : "cc" \
- )
- /* Index of highest bit set. */
- #define SP_ASM_HI_BIT_SET_IDX(va, vi) \
- __asm__ __volatile__ ( \
- "bsr %[a], %[i] \n\t" \
- : [i] "=r" (vi) \
- : [a] "r" (va) \
- : "cC" \
- )
- #ifndef WOLFSSL_SP_DIV_WORD_HALF
- /* Divide a two digit number by a digit number and return. (hi | lo) / d
- *
- * Using divl instruction on Intel x64.
- *
- * @param [in] hi SP integer digit. High digit of the dividend.
- * @param [in] lo SP integer digit. Lower digit of the dividend.
- * @param [in] d SP integer digit. Number to divide by.
- * @return The division result.
- */
- static WC_INLINE sp_int_digit sp_div_word(sp_int_digit hi, sp_int_digit lo,
- sp_int_digit d)
- {
- __asm__ __volatile__ (
- "divl %2"
- : "+a" (lo)
- : "d" (hi), "r" (d)
- : "cc"
- );
- return lo;
- }
- #define SP_ASM_DIV_WORD
- #endif
- #define SP_INT_ASM_AVAILABLE
- #endif /* WOLFSSL_SP_X86 && SP_WORD_SIZE == 32 */
- #if defined(WOLFSSL_SP_ARM64) && SP_WORD_SIZE == 64
- /*
- * CPU: Aarch64
- */
- /* Multiply va by vb and store double size result in: vh | vl */
- #define SP_ASM_MUL(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "mul %[l], %[a], %[b] \n\t" \
- "umulh %[h], %[a], %[b] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va), [b] "r" (vb) \
- : "memory", "cc" \
- )
- /* Multiply va by vb and store double size result in: vo | vh | vl */
- #define SP_ASM_MUL_SET(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mul x8, %[a], %[b] \n\t" \
- "umulh %[h], %[a], %[b] \n\t" \
- "mov %[l], x8 \n\t" \
- "mov %[o], xzr \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "=r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "x8" \
- )
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mul x8, %[a], %[b] \n\t" \
- "umulh x9, %[a], %[b] \n\t" \
- "adds %[l], %[l], x8 \n\t" \
- "adcs %[h], %[h], x9 \n\t" \
- "adc %[o], %[o], xzr \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "x8", "x9", "cc" \
- )
- /* Multiply va by vb and add double size result into: vh | vl */
- #define SP_ASM_MUL_ADD_NO(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "mul x8, %[a], %[b] \n\t" \
- "umulh x9, %[a], %[b] \n\t" \
- "adds %[l], %[l], x8 \n\t" \
- "adc %[h], %[h], x9 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va), [b] "r" (vb) \
- : "x8", "x9", "cc" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mul x8, %[a], %[b] \n\t" \
- "umulh x9, %[a], %[b] \n\t" \
- "adds %[l], %[l], x8 \n\t" \
- "adcs %[h], %[h], x9 \n\t" \
- "adc %[o], %[o], xzr \n\t" \
- "adds %[l], %[l], x8 \n\t" \
- "adcs %[h], %[h], x9 \n\t" \
- "adc %[o], %[o], xzr \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "x8", "x9", "cc" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mul x8, %[a], %[b] \n\t" \
- "umulh x9, %[a], %[b] \n\t" \
- "adds %[l], %[l], x8 \n\t" \
- "adc %[h], %[h], x9 \n\t" \
- "adds %[l], %[l], x8 \n\t" \
- "adcs %[h], %[h], x9 \n\t" \
- "adc %[o], %[o], xzr \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "x8", "x9", "cc" \
- )
- /* Square va and store double size result in: vh | vl */
- #define SP_ASM_SQR(vl, vh, va) \
- __asm__ __volatile__ ( \
- "mul %[l], %[a], %[a] \n\t" \
- "umulh %[h], %[a], %[a] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va) \
- : "memory" \
- )
- /* Square va and add double size result into: vo | vh | vl */
- #define SP_ASM_SQR_ADD(vl, vh, vo, va) \
- __asm__ __volatile__ ( \
- "mul x8, %[a], %[a] \n\t" \
- "umulh x9, %[a], %[a] \n\t" \
- "adds %[l], %[l], x8 \n\t" \
- "adcs %[h], %[h], x9 \n\t" \
- "adc %[o], %[o], xzr \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va) \
- : "x8", "x9", "cc" \
- )
- /* Square va and add double size result into: vh | vl */
- #define SP_ASM_SQR_ADD_NO(vl, vh, va) \
- __asm__ __volatile__ ( \
- "mul x8, %[a], %[a] \n\t" \
- "umulh x9, %[a], %[a] \n\t" \
- "adds %[l], %[l], x8 \n\t" \
- "adc %[h], %[h], x9 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "x8", "x9", "cc" \
- )
- /* Add va into: vh | vl */
- #define SP_ASM_ADDC(vl, vh, va) \
- __asm__ __volatile__ ( \
- "adds %[l], %[l], %[a] \n\t" \
- "adc %[h], %[h], xzr \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "cc" \
- )
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB(vl, vh, va) \
- __asm__ __volatile__ ( \
- "subs %[l], %[l], %[a] \n\t" \
- "sbc %[h], %[h], xzr \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "cc" \
- )
- /* Add two times vc | vb | va into vo | vh | vl */
- #define SP_ASM_ADD_DBL_3(vl, vh, vo, va, vb, vc) \
- __asm__ __volatile__ ( \
- "adds %[l], %[l], %[a] \n\t" \
- "adcs %[h], %[h], %[b] \n\t" \
- "adc %[o], %[o], %[c] \n\t" \
- "adds %[l], %[l], %[a] \n\t" \
- "adcs %[h], %[h], %[b] \n\t" \
- "adc %[o], %[o], %[c] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb), [c] "r" (vc) \
- : "cc" \
- )
- /* Count leading zeros. */
- #define SP_ASM_LZCNT(va, vn) \
- __asm__ __volatile__ ( \
- "clz %[n], %[a] \n\t" \
- : [n] "=r" (vn) \
- : [a] "r" (va) \
- : \
- )
- #ifndef WOLFSSL_SP_DIV_WORD_HALF
- /* Divide a two digit number by a digit number and return. (hi | lo) / d
- *
- * Using udiv instruction on Aarch64.
- * Constant time.
- *
- * @param [in] hi SP integer digit. High digit of the dividend.
- * @param [in] lo SP integer digit. Lower digit of the dividend.
- * @param [in] d SP integer digit. Number to divide by.
- * @return The division result.
- */
- static WC_INLINE sp_int_digit sp_div_word(sp_int_digit hi, sp_int_digit lo,
- sp_int_digit d)
- {
- __asm__ __volatile__ (
- "lsr x3, %[d], 48\n\t"
- "mov x5, 16\n\t"
- "cmp x3, 0\n\t"
- "mov x4, 63\n\t"
- "csel x3, x5, xzr, eq\n\t"
- "sub x4, x4, x3\n\t"
- "lsl %[d], %[d], x3\n\t"
- "lsl %[hi], %[hi], x3\n\t"
- "lsr x5, %[lo], x4\n\t"
- "lsl %[lo], %[lo], x3\n\t"
- "orr %[hi], %[hi], x5, lsr 1\n\t"
- "lsr x5, %[d], 32\n\t"
- "add x5, x5, 1\n\t"
- "udiv x3, %[hi], x5\n\t"
- "lsl x6, x3, 32\n\t"
- "mul x4, %[d], x6\n\t"
- "umulh x3, %[d], x6\n\t"
- "subs %[lo], %[lo], x4\n\t"
- "sbc %[hi], %[hi], x3\n\t"
- "udiv x3, %[hi], x5\n\t"
- "lsl x3, x3, 32\n\t"
- "add x6, x6, x3\n\t"
- "mul x4, %[d], x3\n\t"
- "umulh x3, %[d], x3\n\t"
- "subs %[lo], %[lo], x4\n\t"
- "sbc %[hi], %[hi], x3\n\t"
- "lsr x3, %[lo], 32\n\t"
- "orr x3, x3, %[hi], lsl 32\n\t"
- "udiv x3, x3, x5\n\t"
- "add x6, x6, x3\n\t"
- "mul x4, %[d], x3\n\t"
- "umulh x3, %[d], x3\n\t"
- "subs %[lo], %[lo], x4\n\t"
- "sbc %[hi], %[hi], x3\n\t"
- "lsr x3, %[lo], 32\n\t"
- "orr x3, x3, %[hi], lsl 32\n\t"
- "udiv x3, x3, x5\n\t"
- "add x6, x6, x3\n\t"
- "mul x4, %[d], x3\n\t"
- "sub %[lo], %[lo], x4\n\t"
- "udiv x3, %[lo], %[d]\n\t"
- "add %[hi], x6, x3\n\t"
- : [hi] "+r" (hi), [lo] "+r" (lo), [d] "+r" (d)
- :
- : "x3", "x4", "x5", "x6", "cc"
- );
- return hi;
- }
- #define SP_ASM_DIV_WORD
- #endif
- #define SP_INT_ASM_AVAILABLE
- #endif /* WOLFSSL_SP_ARM64 && SP_WORD_SIZE == 64 */
- #if (defined(WOLFSSL_SP_ARM32) || defined(WOLFSSL_SP_ARM_CORTEX_M)) && \
- SP_WORD_SIZE == 32
- /*
- * CPU: ARM32 or Cortex-M4 and similar
- */
- /* Multiply va by vb and store double size result in: vh | vl */
- #define SP_ASM_MUL(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "umull %[l], %[h], %[a], %[b] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va), [b] "r" (vb) \
- : "memory" \
- )
- /* Multiply va by vb and store double size result in: vo | vh | vl */
- #define SP_ASM_MUL_SET(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "umull %[l], %[h], %[a], %[b] \n\t" \
- "mov %[o], #0 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "=r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : \
- )
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "umull r8, r9, %[a], %[b] \n\t" \
- "adds %[l], %[l], r8 \n\t" \
- "adcs %[h], %[h], r9 \n\t" \
- "adc %[o], %[o], #0 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "r8", "r9", "cc" \
- )
- /* Multiply va by vb and add double size result into: vh | vl */
- #define SP_ASM_MUL_ADD_NO(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "umlal %[l], %[h], %[a], %[b] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va), [b] "r" (vb) \
- : \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "umull r8, r9, %[a], %[b] \n\t" \
- "adds %[l], %[l], r8 \n\t" \
- "adcs %[h], %[h], r9 \n\t" \
- "adc %[o], %[o], #0 \n\t" \
- "adds %[l], %[l], r8 \n\t" \
- "adcs %[h], %[h], r9 \n\t" \
- "adc %[o], %[o], #0 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "r8", "r9", "cc" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "umull r8, r9, %[a], %[b] \n\t" \
- "adds %[l], %[l], r8 \n\t" \
- "adc %[h], %[h], r9 \n\t" \
- "adds %[l], %[l], r8 \n\t" \
- "adcs %[h], %[h], r9 \n\t" \
- "adc %[o], %[o], #0 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "r8", "r9", "cc" \
- )
- /* Square va and store double size result in: vh | vl */
- #define SP_ASM_SQR(vl, vh, va) \
- __asm__ __volatile__ ( \
- "umull %[l], %[h], %[a], %[a] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va) \
- : "memory" \
- )
- /* Square va and add double size result into: vo | vh | vl */
- #define SP_ASM_SQR_ADD(vl, vh, vo, va) \
- __asm__ __volatile__ ( \
- "umull r8, r9, %[a], %[a] \n\t" \
- "adds %[l], %[l], r8 \n\t" \
- "adcs %[h], %[h], r9 \n\t" \
- "adc %[o], %[o], #0 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va) \
- : "r8", "r9", "cc" \
- )
- /* Square va and add double size result into: vh | vl */
- #define SP_ASM_SQR_ADD_NO(vl, vh, va) \
- __asm__ __volatile__ ( \
- "umlal %[l], %[h], %[a], %[a] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "cc" \
- )
- /* Add va into: vh | vl */
- #define SP_ASM_ADDC(vl, vh, va) \
- __asm__ __volatile__ ( \
- "adds %[l], %[l], %[a] \n\t" \
- "adc %[h], %[h], #0 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "cc" \
- )
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB(vl, vh, va) \
- __asm__ __volatile__ ( \
- "subs %[l], %[l], %[a] \n\t" \
- "sbc %[h], %[h], #0 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "cc" \
- )
- /* Add two times vc | vb | va into vo | vh | vl */
- #define SP_ASM_ADD_DBL_3(vl, vh, vo, va, vb, vc) \
- __asm__ __volatile__ ( \
- "adds %[l], %[l], %[a] \n\t" \
- "adcs %[h], %[h], %[b] \n\t" \
- "adc %[o], %[o], %[c] \n\t" \
- "adds %[l], %[l], %[a] \n\t" \
- "adcs %[h], %[h], %[b] \n\t" \
- "adc %[o], %[o], %[c] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb), [c] "r" (vc) \
- : "cc" \
- )
- #if defined(WOLFSSL_SP_ARM_ARCH) && (WOLFSSL_SP_ARM_ARCH >= 7)
- /* Count leading zeros - instruction only available on ARMv7 and newer. */
- #define SP_ASM_LZCNT(va, vn) \
- __asm__ __volatile__ ( \
- "clz %[n], %[a] \n\t" \
- : [n] "=r" (vn) \
- : [a] "r" (va) \
- : \
- )
- #endif
- #ifndef WOLFSSL_SP_DIV_WORD_HALF
- #ifndef WOLFSSL_SP_ARM32_UDIV
- /* Divide a two digit number by a digit number and return. (hi | lo) / d
- *
- * No division instruction used - does operation bit by bit.
- * Constant time.
- *
- * @param [in] hi SP integer digit. High digit of the dividend.
- * @param [in] lo SP integer digit. Lower digit of the dividend.
- * @param [in] d SP integer digit. Number to divide by.
- * @return The division result.
- */
- static WC_INLINE sp_int_digit sp_div_word(sp_int_digit hi, sp_int_digit lo,
- sp_int_digit d)
- {
- sp_int_digit r = 0;
- #if defined(WOLFSSL_SP_ARM_ARCH) && (WOLFSSL_SP_ARM_ARCH < 7)
- static const char debruijn32[32] = {
- 0, 31, 9, 30, 3, 8, 13, 29, 2, 5, 7, 21, 12, 24, 28, 19,
- 1, 10, 4, 14, 6, 22, 25, 20, 11, 15, 23, 26, 16, 27, 17, 18
- };
- static const sp_uint32 debruijn32_mul = 0x076be629;
- #endif
- __asm__ __volatile__ (
- /* Shift d so that top bit is set. */
- #if defined(WOLFSSL_SP_ARM_ARCH) && (WOLFSSL_SP_ARM_ARCH < 7)
- "ldr r4, %[m]\n\t"
- "mov r5, %[d]\n\t"
- "orr r5, r5, r5, lsr #1\n\t"
- "orr r5, r5, r5, lsr #2\n\t"
- "orr r5, r5, r5, lsr #4\n\t"
- "orr r5, r5, r5, lsr #8\n\t"
- "orr r5, r5, r5, lsr #16\n\t"
- "add r5, r5, #1\n\t"
- "mul r5, r5, r4\n\t"
- "lsr r5, r5, #27\n\t"
- "ldrb r5, [%[t], r5]\n\t"
- #else
- "clz r5, %[d]\n\t"
- #endif
- "rsb r6, r5, #31\n\t"
- "lsl %[d], %[d], r5\n\t"
- "lsl %[hi], %[hi], r5\n\t"
- "lsr r9, %[lo], r6\n\t"
- "lsl %[lo], %[lo], r5\n\t"
- "orr %[hi], %[hi], r9, lsr #1\n\t"
- "lsr r5, %[d], #1\n\t"
- "add r5, r5, #1\n\t"
- "mov r6, %[lo]\n\t"
- "mov r9, %[hi]\n\t"
- /* Do top 32 */
- "subs r8, r5, r9\n\t"
- "sbc r8, r8, r8\n\t"
- "add %[r], %[r], %[r]\n\t"
- "sub %[r], %[r], r8\n\t"
- "and r8, r8, r5\n\t"
- "subs r9, r9, r8\n\t"
- /* Next 30 bits */
- "mov r4, #29\n\t"
- "\n1:\n\t"
- "movs r6, r6, lsl #1\n\t"
- "adc r9, r9, r9\n\t"
- "subs r8, r5, r9\n\t"
- "sbc r8, r8, r8\n\t"
- "add %[r], %[r], %[r]\n\t"
- "sub %[r], %[r], r8\n\t"
- "and r8, r8, r5\n\t"
- "subs r9, r9, r8\n\t"
- "subs r4, r4, #1\n\t"
- "bpl 1b\n\t"
- "add %[r], %[r], %[r]\n\t"
- "add %[r], %[r], #1\n\t"
- /* Handle difference has hi word > 0. */
- "umull r4, r5, %[r], %[d]\n\t"
- "subs r4, %[lo], r4\n\t"
- "sbc r5, %[hi], r5\n\t"
- "add %[r], %[r], r5\n\t"
- "umull r4, r5, %[r], %[d]\n\t"
- "subs r4, %[lo], r4\n\t"
- "sbc r5, %[hi], r5\n\t"
- "add %[r], %[r], r5\n\t"
- /* Add 1 to result if bottom half of difference is >= d. */
- "mul r4, %[r], %[d]\n\t"
- "subs r4, %[lo], r4\n\t"
- "subs r9, %[d], r4\n\t"
- "sbc r8, r8, r8\n\t"
- "sub %[r], %[r], r8\n\t"
- "subs r9, r9, #1\n\t"
- "sbc r8, r8, r8\n\t"
- "sub %[r], %[r], r8\n\t"
- : [r] "+r" (r), [hi] "+r" (hi), [lo] "+r" (lo), [d] "+r" (d)
- #if defined(WOLFSSL_SP_ARM_ARCH) && (WOLFSSL_SP_ARM_ARCH < 7)
- : [t] "r" (debruijn32), [m] "m" (debruijn32_mul)
- #else
- :
- #endif
- : "r4", "r5", "r6", "r8", "r9", "cc"
- );
- return r;
- }
- #else
- /* Divide a two digit number by a digit number and return. (hi | lo) / d
- *
- * Using udiv instruction on arm32
- * Constant time.
- *
- * @param [in] hi SP integer digit. High digit of the dividend.
- * @param [in] lo SP integer digit. Lower digit of the dividend.
- * @param [in] d SP integer digit. Number to divide by.
- * @return The division result.
- */
- static WC_INLINE sp_int_digit sp_div_word(sp_int_digit hi, sp_int_digit lo,
- sp_int_digit d)
- {
- __asm__ __volatile__ (
- "lsrs r3, %[d], #24\n\t"
- "it eq\n\t"
- "moveq r3, #8\n\t"
- "it ne\n\t"
- "movne r3, #0\n\t"
- "rsb r4, r3, #31\n\t"
- "lsl %[d], %[d], r3\n\t"
- "lsl %[hi], %[hi], r3\n\t"
- "lsr r5, %[lo], r4\n\t"
- "lsl %[lo], %[lo], r3\n\t"
- "orr %[hi], %[hi], r5, lsr #1\n\t"
- "lsr r5, %[d], 16\n\t"
- "add r5, r5, 1\n\t"
- "udiv r3, %[hi], r5\n\t"
- "lsl r6, r3, 16\n\t"
- "umull r4, r3, %[d], r6\n\t"
- "subs %[lo], %[lo], r4\n\t"
- "sbc %[hi], %[hi], r3\n\t"
- "udiv r3, %[hi], r5\n\t"
- "lsl r3, r3, 16\n\t"
- "add r6, r6, r3\n\t"
- "umull r4, r3, %[d], r3\n\t"
- "subs %[lo], %[lo], r4\n\t"
- "sbc %[hi], %[hi], r3\n\t"
- "lsr r3, %[lo], 16\n\t"
- "orr r3, r3, %[hi], lsl 16\n\t"
- "udiv r3, r3, r5\n\t"
- "add r6, r6, r3\n\t"
- "umull r4, r3, %[d], r3\n\t"
- "subs %[lo], %[lo], r4\n\t"
- "sbc %[hi], %[hi], r3\n\t"
- "lsr r3, %[lo], 16\n\t"
- "orr r3, r3, %[hi], lsl 16\n\t"
- "udiv r3, r3, r5\n\t"
- "add r6, r6, r3\n\t"
- "mul r4, %[d], r3\n\t"
- "sub %[lo], %[lo], r4\n\t"
- "udiv r3, %[lo], %[d]\n\t"
- "add %[hi], r6, r3\n\t"
- : [hi] "+r" (hi), [lo] "+r" (lo), [d] "+r" (d)
- :
- : "r3", "r4", "r5", "r6", "cc"
- );
- return hi;
- }
- #endif
- #define SP_ASM_DIV_WORD
- #endif
- #define SP_INT_ASM_AVAILABLE
- #endif /* (WOLFSSL_SP_ARM32 || ARM_CORTEX_M) && SP_WORD_SIZE == 32 */
- #if defined(WOLFSSL_SP_ARM_THUMB) && SP_WORD_SIZE == 32
- /*
- * CPU: ARM Thumb (like Cortex-M0)
- */
- /* Compile with -fomit-frame-pointer, or similar, if compiler complains about
- * usage of register 'r7'.
- */
- #if defined(__clang__)
- /* Multiply va by vb and store double size result in: vh | vl */
- #define SP_ASM_MUL(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth %[l], %[b] \n\t" \
- "muls %[l], r6 \n\t" \
- /* al * bh */ \
- "lsrs r4, %[b], #16 \n\t" \
- "muls r6, r4 \n\t" \
- "lsrs %[h], r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[h], r5 \n\t" \
- /* ah * bh */ \
- "lsrs r6, %[a], #16 \n\t" \
- "muls r4, r6 \n\t" \
- "adds %[h], %[h], r4 \n\t" \
- /* ah * bl */ \
- "uxth r4, %[b] \n\t" \
- "muls r6, r4 \n\t" \
- "lsrs r4, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r4 \n\t" \
- : [h] "+l" (vh), [l] "+l" (vl) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r4", "r5", "r6", "cc" \
- )
- /* Multiply va by vb and store double size result in: vo | vh | vl */
- #define SP_ASM_MUL_SET(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth %[l], %[b] \n\t" \
- "muls %[l], r6 \n\t" \
- /* al * bh */ \
- "lsrs r5, %[b], #16 \n\t" \
- "muls r6, r5 \n\t" \
- "lsrs %[h], r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "movs %[o], #0 \n\t" \
- "adcs %[h], %[o] \n\t" \
- /* ah * bh */ \
- "lsrs r6, %[a], #16 \n\t" \
- "muls r5, r6 \n\t" \
- "adds %[h], %[h], r5 \n\t" \
- /* ah * bl */ \
- "uxth r5, %[b] \n\t" \
- "muls r6, r5 \n\t" \
- "lsrs r5, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "cc" \
- )
- #if !defined(WOLFSSL_SP_SMALL) && !defined(DEBUG)
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r7, %[b] \n\t" \
- "muls r7, r6 \n\t" \
- "adds %[l], %[l], r7 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[h], r5 \n\t" \
- "adcs %[o], r5 \n\t" \
- /* al * bh */ \
- "lsrs r7, %[b], #16 \n\t" \
- "muls r6, r7 \n\t" \
- "lsrs r7, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r7 \n\t" \
- "adcs %[o], r5 \n\t" \
- /* ah * bh */ \
- "lsrs r6, %[a], #16 \n\t" \
- "lsrs r7, %[b], #16 \n\t" \
- "muls r7, r6 \n\t" \
- "adds %[h], %[h], r7 \n\t" \
- "adcs %[o], r5 \n\t" \
- /* ah * bl */ \
- "uxth r7, %[b] \n\t" \
- "muls r6, r7 \n\t" \
- "lsrs r7, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r7 \n\t" \
- "adcs %[o], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "r7", "cc" \
- )
- #else
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r5, %[b] \n\t" \
- "muls r5, r6 \n\t" \
- "adds %[l], %[l], r5 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[h], r5 \n\t" \
- "adcs %[o], r5 \n\t" \
- /* al * bh */ \
- "lsrs r5, %[b], #16 \n\t" \
- "muls r6, r5 \n\t" \
- "lsrs r5, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r5 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[o], r5 \n\t" \
- /* ah * bh */ \
- "lsrs r6, %[a], #16 \n\t" \
- "lsrs r5, %[b], #16 \n\t" \
- "muls r5, r6 \n\t" \
- "adds %[h], %[h], r5 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[o], r5 \n\t" \
- /* ah * bl */ \
- "uxth r5, %[b] \n\t" \
- "muls r6, r5 \n\t" \
- "lsrs r5, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r5 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[o], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "cc" \
- )
- #endif
- /* Multiply va by vb and add double size result into: vh | vl */
- #define SP_ASM_MUL_ADD_NO(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r4, %[b] \n\t" \
- "muls r4, r6 \n\t" \
- "adds %[l], %[l], r4 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[h], r5 \n\t" \
- /* al * bh */ \
- "lsrs r4, %[b], #16 \n\t" \
- "muls r6, r4 \n\t" \
- "lsrs r4, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r4 \n\t" \
- /* ah * bh */ \
- "lsrs r6, %[a], #16 \n\t" \
- "lsrs r4, %[b], #16 \n\t" \
- "muls r4, r6 \n\t" \
- "adds %[h], %[h], r4 \n\t" \
- /* ah * bl */ \
- "uxth r4, %[b] \n\t" \
- "muls r6, r4 \n\t" \
- "lsrs r4, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r4 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r4", "r5", "r6", "cc" \
- )
- #if !defined(WOLFSSL_SP_SMALL) && !defined(DEBUG)
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r7, %[b] \n\t" \
- "muls r7, r6 \n\t" \
- "adds %[l], %[l], r7 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[h], r5 \n\t" \
- "adcs %[o], r5 \n\t" \
- "adds %[l], %[l], r7 \n\t" \
- "adcs %[h], r5 \n\t" \
- "adcs %[o], r5 \n\t" \
- /* al * bh */ \
- "lsrs r7, %[b], #16 \n\t" \
- "muls r6, r7 \n\t" \
- "lsrs r7, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r7 \n\t" \
- "adcs %[o], r5 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r7 \n\t" \
- "adcs %[o], r5 \n\t" \
- /* ah * bh */ \
- "lsrs r6, %[a], #16 \n\t" \
- "lsrs r7, %[b], #16 \n\t" \
- "muls r7, r6 \n\t" \
- "adds %[h], %[h], r7 \n\t" \
- "adcs %[o], r5 \n\t" \
- "adds %[h], %[h], r7 \n\t" \
- "adcs %[o], r5 \n\t" \
- /* ah * bl */ \
- "uxth r7, %[b] \n\t" \
- "muls r6, r7 \n\t" \
- "lsrs r7, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r7 \n\t" \
- "adcs %[o], r5 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r7 \n\t" \
- "adcs %[o], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "r7", "cc" \
- )
- #else
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "movs r8, %[a] \n\t" \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r5, %[b] \n\t" \
- "muls r5, r6 \n\t" \
- "adds %[l], %[l], r5 \n\t" \
- "movs %[a], #0 \n\t" \
- "adcs %[h], %[a] \n\t" \
- "adcs %[o], %[a] \n\t" \
- "adds %[l], %[l], r5 \n\t" \
- "adcs %[h], %[a] \n\t" \
- "adcs %[o], %[a] \n\t" \
- /* al * bh */ \
- "lsrs r5, %[b], #16 \n\t" \
- "muls r6, r5 \n\t" \
- "lsrs r5, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r5 \n\t" \
- "adcs %[o], %[a] \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r5 \n\t" \
- "adcs %[o], %[a] \n\t" \
- /* ah * bh */ \
- "movs %[a], r8 \n\t" \
- "lsrs r6, %[a], #16 \n\t" \
- "lsrs r5, %[b], #16 \n\t" \
- "muls r5, r6 \n\t" \
- "adds %[h], %[h], r5 \n\t" \
- "movs %[a], #0 \n\t" \
- "adcs %[o], %[a] \n\t" \
- "adds %[h], %[h], r5 \n\t" \
- "adcs %[o], %[a] \n\t" \
- /* ah * bl */ \
- "uxth r5, %[b] \n\t" \
- "muls r6, r5 \n\t" \
- "lsrs r5, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r5 \n\t" \
- "adcs %[o], %[a] \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r5 \n\t" \
- "adcs %[o], %[a] \n\t" \
- "movs %[a], r8 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "r8", "cc" \
- )
- #endif
- #ifndef DEBUG
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r7, %[b] \n\t" \
- "muls r7, r6 \n\t" \
- "adds %[l], %[l], r7 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[h], r5 \n\t" \
- "adds %[l], %[l], r7 \n\t" \
- "adcs %[h], r5 \n\t" \
- /* al * bh */ \
- "lsrs r7, %[b], #16 \n\t" \
- "muls r6, r7 \n\t" \
- "lsrs r7, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r7 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r7 \n\t" \
- "adcs %[o], r5 \n\t" \
- /* ah * bh */ \
- "lsrs r6, %[a], #16 \n\t" \
- "lsrs r7, %[b], #16 \n\t" \
- "muls r7, r6 \n\t" \
- "adds %[h], %[h], r7 \n\t" \
- "adcs %[o], r5 \n\t" \
- "adds %[h], %[h], r7 \n\t" \
- "adcs %[o], r5 \n\t" \
- /* ah * bl */ \
- "uxth r7, %[b] \n\t" \
- "muls r6, r7 \n\t" \
- "lsrs r7, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r7 \n\t" \
- "adcs %[o], r5 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r7 \n\t" \
- "adcs %[o], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "r7", "cc" \
- )
- #else
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "movs r8, %[a] \n\t" \
- /* al * bl */ \
- "uxth r5, %[a] \n\t" \
- "uxth r6, %[b] \n\t" \
- "muls r6, r5 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "movs %[a], #0 \n\t" \
- "adcs %[h], %[a] \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[a] \n\t" \
- /* al * bh */ \
- "lsrs r6, %[b], #16 \n\t" \
- "muls r5, r6 \n\t" \
- "lsrs r6, r5, #16 \n\t" \
- "lsls r5, r5, #16 \n\t" \
- "adds %[l], %[l], r5 \n\t" \
- "adcs %[h], r6 \n\t" \
- "adds %[l], %[l], r5 \n\t" \
- "adcs %[h], r6 \n\t" \
- "adcs %[o], %[a] \n\t" \
- /* ah * bh */ \
- "movs %[a], r8 \n\t" \
- "lsrs r5, %[a], #16 \n\t" \
- "lsrs r6, %[b], #16 \n\t" \
- "muls r6, r5 \n\t" \
- "movs %[a], #0 \n\t" \
- "adds %[h], %[h], r6 \n\t" \
- "adcs %[o], %[a] \n\t" \
- "adds %[h], %[h], r6 \n\t" \
- "adcs %[o], %[a] \n\t" \
- /* ah * bl */ \
- "uxth r6, %[b] \n\t" \
- "muls r5, r6 \n\t" \
- "lsrs r6, r5, #16 \n\t" \
- "lsls r5, r5, #16 \n\t" \
- "adds %[l], %[l], r5 \n\t" \
- "adcs %[h], r6 \n\t" \
- "adcs %[o], %[a] \n\t" \
- "adds %[l], %[l], r5 \n\t" \
- "adcs %[h], r6 \n\t" \
- "adcs %[o], %[a] \n\t" \
- "movs %[a], r8 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "r8", "cc" \
- )
- #endif
- /* Square va and store double size result in: vh | vl */
- #define SP_ASM_SQR(vl, vh, va) \
- __asm__ __volatile__ ( \
- "lsrs r5, %[a], #16 \n\t" \
- "uxth r6, %[a] \n\t" \
- "mov %[l], r6 \n\t" \
- "mov %[h], r5 \n\t" \
- /* al * al */ \
- "muls %[l], %[l] \n\t" \
- /* ah * ah */ \
- "muls %[h], %[h] \n\t" \
- /* 2 * al * ah */ \
- "muls r6, r5 \n\t" \
- "lsrs r5, r6, #15 \n\t" \
- "lsls r6, r6, #17 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r5 \n\t" \
- : [h] "+l" (vh), [l] "+l" (vl) \
- : [a] "l" (va) \
- : "r5", "r6", "cc" \
- )
- /* Square va and add double size result into: vo | vh | vl */
- #define SP_ASM_SQR_ADD(vl, vh, vo, va) \
- __asm__ __volatile__ ( \
- "lsrs r4, %[a], #16 \n\t" \
- "uxth r6, %[a] \n\t" \
- /* al * al */ \
- "muls r6, r6 \n\t" \
- /* ah * ah */ \
- "muls r4, r4 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r4 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[o], r5 \n\t" \
- "lsrs r4, %[a], #16 \n\t" \
- "uxth r6, %[a] \n\t" \
- /* 2 * al * ah */ \
- "muls r6, r4 \n\t" \
- "lsrs r4, r6, #15 \n\t" \
- "lsls r6, r6, #17 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r4 \n\t" \
- "adcs %[o], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va) \
- : "r4", "r5", "r6", "cc" \
- )
- /* Square va and add double size result into: vh | vl */
- #define SP_ASM_SQR_ADD_NO(vl, vh, va) \
- __asm__ __volatile__ ( \
- "lsrs r6, %[a], #16 \n\t" \
- "uxth r6, %[a] \n\t" \
- /* al * al */ \
- "muls r6, r6 \n\t" \
- /* ah * ah */ \
- "muls r6, r6 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r6 \n\t" \
- "lsrs r6, %[a], #16 \n\t" \
- "uxth r6, %[a] \n\t" \
- /* 2 * al * ah */ \
- "muls r6, r6 \n\t" \
- "lsrs r6, r6, #15 \n\t" \
- "lsls r6, r6, #17 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], r6 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh) \
- : [a] "l" (va) \
- : "r5", "r6", "cc" \
- )
- /* Add va into: vh | vl */
- #define SP_ASM_ADDC(vl, vh, va) \
- __asm__ __volatile__ ( \
- "adds %[l], %[l], %[a] \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[h], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh) \
- : [a] "l" (va) \
- : "r5", "cc" \
- )
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB(vl, vh, va) \
- __asm__ __volatile__ ( \
- "subs %[l], %[l], %[a] \n\t" \
- "movs r5, #0 \n\t" \
- "sbcs %[h], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh) \
- : [a] "l" (va) \
- : "r5", "cc" \
- )
- /* Add two times vc | vb | va into vo | vh | vl */
- #define SP_ASM_ADD_DBL_3(vl, vh, vo, va, vb, vc) \
- __asm__ __volatile__ ( \
- "adds %[l], %[l], %[a] \n\t" \
- "adcs %[h], %[b] \n\t" \
- "adcs %[o], %[c] \n\t" \
- "adds %[l], %[l], %[a] \n\t" \
- "adcs %[h], %[b] \n\t" \
- "adcs %[o], %[c] \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb), [c] "l" (vc) \
- : "cc" \
- )
- #elif defined(WOLFSSL_KEIL)
- /* Multiply va by vb and store double size result in: vh | vl */
- #define SP_ASM_MUL(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth %[l], %[b] \n\t" \
- "muls %[l], r6, %[l] \n\t" \
- /* al * bh */ \
- "lsrs r4, %[b], #16 \n\t" \
- "muls r6, r4, r6 \n\t" \
- "lsrs %[h], r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- /* ah * bh */ \
- "lsrs r6, %[a], #16 \n\t" \
- "muls r4, r6, r4 \n\t" \
- "adds %[h], %[h], r4 \n\t" \
- /* ah * bl */ \
- "uxth r4, %[b] \n\t" \
- "muls r6, r4, r6 \n\t" \
- "lsrs r4, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r4 \n\t" \
- : [h] "+l" (vh), [l] "+l" (vl) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r4", "r5", "r6", "cc" \
- )
- /* Multiply va by vb and store double size result in: vo | vh | vl */
- #define SP_ASM_MUL_SET(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth %[l], %[b] \n\t" \
- "muls %[l], r6, %[l] \n\t" \
- /* al * bh */ \
- "lsrs r5, %[b], #16 \n\t" \
- "muls r6, r5, r6 \n\t" \
- "lsrs %[h], r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "movs %[o], #0 \n\t" \
- "adcs %[h], %[h], %[o] \n\t" \
- /* ah * bh */ \
- "lsrs r6, %[a], #16 \n\t" \
- "muls r5, r6, r5 \n\t" \
- "adds %[h], %[h], r5 \n\t" \
- /* ah * bl */ \
- "uxth r5, %[b] \n\t" \
- "muls r6, r5, r6 \n\t" \
- "lsrs r5, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "cc" \
- )
- #if !defined(WOLFSSL_SP_SMALL) && !defined(DEBUG)
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r7, %[b] \n\t" \
- "muls r7, r6, r7 \n\t" \
- "adds %[l], %[l], r7 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- /* al * bh */ \
- "lsrs r7, %[b], #16 \n\t" \
- "muls r6, r7, r6 \n\t" \
- "lsrs r7, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r7 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- /* ah * bh */ \
- "lsrs r6, %[a], #16 \n\t" \
- "lsrs r7, %[b], #16 \n\t" \
- "muls r7, r6, r7 \n\t" \
- "adds %[h], %[h], r7 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- /* ah * bl */ \
- "uxth r7, %[b] \n\t" \
- "muls r6, r7, r6 \n\t" \
- "lsrs r7, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r7 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "r7", "cc" \
- )
- #else
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r5, %[b] \n\t" \
- "muls r5, r6, r5 \n\t" \
- "adds %[l], %[l], r5 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- /* al * bh */ \
- "lsrs r5, %[b], #16 \n\t" \
- "muls r6, r5, r6 \n\t" \
- "lsrs r5, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- /* ah * bh */ \
- "lsrs r6, %[a], #16 \n\t" \
- "lsrs r5, %[b], #16 \n\t" \
- "muls r5, r6, r5 \n\t" \
- "adds %[h], %[h], r5 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- /* ah * bl */ \
- "uxth r5, %[b] \n\t" \
- "muls r6, r5, r6 \n\t" \
- "lsrs r5, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "cc" \
- )
- #endif
- /* Multiply va by vb and add double size result into: vh | vl */
- #define SP_ASM_MUL_ADD_NO(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r4, %[b] \n\t" \
- "muls r4, r6, r4 \n\t" \
- "adds %[l], %[l], r4 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- /* al * bh */ \
- "lsrs r4, %[b], #16 \n\t" \
- "muls r6, r4, r6 \n\t" \
- "lsrs r4, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r4 \n\t" \
- /* ah * bh */ \
- "lsrs r6, %[a], #16 \n\t" \
- "lsrs r4, %[b], #16 \n\t" \
- "muls r4, r6, r4 \n\t" \
- "adds %[h], %[h], r4 \n\t" \
- /* ah * bl */ \
- "uxth r4, %[b] \n\t" \
- "muls r6, r4, r6 \n\t" \
- "lsrs r4, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r4 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r4", "r5", "r6", "cc" \
- )
- #if !defined(WOLFSSL_SP_SMALL) && !defined(DEBUG)
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r7, %[b] \n\t" \
- "muls r7, r6, r7 \n\t" \
- "adds %[l], %[l], r7 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- "adds %[l], %[l], r7 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- /* al * bh */ \
- "lsrs r7, %[b], #16 \n\t" \
- "muls r6, r7, r6 \n\t" \
- "lsrs r7, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r7 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r7 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- /* ah * bh */ \
- "lsrs r6, %[a], #16 \n\t" \
- "lsrs r7, %[b], #16 \n\t" \
- "muls r7, r6, r7 \n\t" \
- "adds %[h], %[h], r7 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- "adds %[h], %[h], r7 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- /* ah * bl */ \
- "uxth r7, %[b] \n\t" \
- "muls r6, r7, r6 \n\t" \
- "lsrs r7, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r7 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r7 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "r7", "cc" \
- )
- #else
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "movs r8, %[a] \n\t" \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r5, %[b] \n\t" \
- "muls r5, r6, r5 \n\t" \
- "adds %[l], %[l], r5 \n\t" \
- "movs %[a], #0 \n\t" \
- "adcs %[h], %[h], %[a] \n\t" \
- "adcs %[o], %[o], %[a] \n\t" \
- "adds %[l], %[l], r5 \n\t" \
- "adcs %[h], %[h], %[a] \n\t" \
- "adcs %[o], %[o], %[a] \n\t" \
- /* al * bh */ \
- "lsrs r5, %[b], #16 \n\t" \
- "muls r6, r5, r6 \n\t" \
- "lsrs r5, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- "adcs %[o], %[o], %[a] \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- "adcs %[o], %[o], %[a] \n\t" \
- /* ah * bh */ \
- "movs %[a], r8 \n\t" \
- "lsrs r6, %[a], #16 \n\t" \
- "lsrs r5, %[b], #16 \n\t" \
- "muls r5, r6, r5 \n\t" \
- "adds %[h], %[h], r5 \n\t" \
- "movs %[a], #0 \n\t" \
- "adcs %[o], %[o], %[a] \n\t" \
- "adds %[h], %[h], r5 \n\t" \
- "adcs %[o], %[o], %[a] \n\t" \
- /* ah * bl */ \
- "uxth r5, %[b] \n\t" \
- "muls r6, r5, r6 \n\t" \
- "lsrs r5, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- "adcs %[o], %[o], %[a] \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- "adcs %[o], %[o], %[a] \n\t" \
- "movs %[a], r8 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "r8", "cc" \
- )
- #endif
- #ifndef DEBUG
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r7, %[b] \n\t" \
- "muls r7, r6, r7 \n\t" \
- "adds %[l], %[l], r7 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- "adds %[l], %[l], r7 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- /* al * bh */ \
- "lsrs r7, %[b], #16 \n\t" \
- "muls r6, r7, r6 \n\t" \
- "lsrs r7, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r7 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r7 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- /* ah * bh */ \
- "lsrs r6, %[a], #16 \n\t" \
- "lsrs r7, %[b], #16 \n\t" \
- "muls r7, r6, r7 \n\t" \
- "adds %[h], %[h], r7 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- "adds %[h], %[h], r7 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- /* ah * bl */ \
- "uxth r7, %[b] \n\t" \
- "muls r6, r7, r6 \n\t" \
- "lsrs r7, r6, #16 \n\t" \
- "lsls r6, r6, #16 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r7 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r7 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "r7", "cc" \
- )
- #else
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "movs r8, %[a] \n\t" \
- /* al * bl */ \
- "uxth r5, %[a] \n\t" \
- "uxth r6, %[b] \n\t" \
- "muls r6, r5, r6 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "movs %[a], #0 \n\t" \
- "adcs %[h], %[h], %[a] \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], %[a] \n\t" \
- /* al * bh */ \
- "lsrs r6, %[b], #16 \n\t" \
- "muls r5, r6, r5 \n\t" \
- "lsrs r6, r5, #16 \n\t" \
- "lsls r5, r5, #16 \n\t" \
- "adds %[l], %[l], r5 \n\t" \
- "adcs %[h], %[h], r6 \n\t" \
- "adds %[l], %[l], r5 \n\t" \
- "adcs %[h], %[h], r6 \n\t" \
- "adcs %[o], %[o], %[a] \n\t" \
- /* ah * bh */ \
- "movs %[a], r8 \n\t" \
- "lsrs r5, %[a], #16 \n\t" \
- "lsrs r6, %[b], #16 \n\t" \
- "muls r6, r5, r6 \n\t" \
- "movs %[a], #0 \n\t" \
- "adds %[h], %[h], r6 \n\t" \
- "adcs %[o], %[o], %[a] \n\t" \
- "adds %[h], %[h], r6 \n\t" \
- "adcs %[o], %[o], %[a] \n\t" \
- /* ah * bl */ \
- "uxth r6, %[b] \n\t" \
- "muls r5, r6, r5 \n\t" \
- "lsrs r6, r5, #16 \n\t" \
- "lsls r5, r5, #16 \n\t" \
- "adds %[l], %[l], r5 \n\t" \
- "adcs %[h], %[h], r6 \n\t" \
- "adcs %[o], %[o], %[a] \n\t" \
- "adds %[l], %[l], r5 \n\t" \
- "adcs %[h], %[h], r6 \n\t" \
- "adcs %[o], %[o], %[a] \n\t" \
- "movs %[a], r8 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "r8", "cc" \
- )
- #endif
- /* Square va and store double size result in: vh | vl */
- #define SP_ASM_SQR(vl, vh, va) \
- __asm__ __volatile__ ( \
- "lsrs r5, %[a], #16 \n\t" \
- "uxth r6, %[a] \n\t" \
- "mov %[l], r6 \n\t" \
- "mov %[h], r5 \n\t" \
- /* al * al */ \
- "muls %[l], %[l], %[l] \n\t" \
- /* ah * ah */ \
- "muls %[h], %[h], %[h] \n\t" \
- /* 2 * al * ah */ \
- "muls r6, r5, r6 \n\t" \
- "lsrs r5, r6, #15 \n\t" \
- "lsls r6, r6, #17 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- : [h] "+l" (vh), [l] "+l" (vl) \
- : [a] "l" (va) \
- : "r5", "r6", "cc" \
- )
- /* Square va and add double size result into: vo | vh | vl */
- #define SP_ASM_SQR_ADD(vl, vh, vo, va) \
- __asm__ __volatile__ ( \
- "lsrs r4, %[a], #16 \n\t" \
- "uxth r6, %[a] \n\t" \
- /* al * al */ \
- "muls r6, r6, r6 \n\t" \
- /* ah * ah */ \
- "muls r4, r4, r4 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r4 \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- "lsrs r4, %[a], #16 \n\t" \
- "uxth r6, %[a] \n\t" \
- /* 2 * al * ah */ \
- "muls r6, r4, r6 \n\t" \
- "lsrs r4, r6, #15 \n\t" \
- "lsls r6, r6, #17 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r4 \n\t" \
- "adcs %[o], %[o], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va) \
- : "r4", "r5", "r6", "cc" \
- )
- /* Square va and add double size result into: vh | vl */
- #define SP_ASM_SQR_ADD_NO(vl, vh, va) \
- __asm__ __volatile__ ( \
- "lsrs r5, %[a], #16 \n\t" \
- "uxth r6, %[a] \n\t" \
- /* al * al */ \
- "muls r6, r6, r6 \n\t" \
- /* ah * ah */ \
- "muls r5, r5, r5 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- "lsrs r5, %[a], #16 \n\t" \
- "uxth r6, %[a] \n\t" \
- /* 2 * al * ah */ \
- "muls r6, r5, r6 \n\t" \
- "lsrs r5, r6, #15 \n\t" \
- "lsls r6, r6, #17 \n\t" \
- "adds %[l], %[l], r6 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh) \
- : [a] "l" (va) \
- : "r5", "r6", "cc" \
- )
- /* Add va into: vh | vl */
- #define SP_ASM_ADDC(vl, vh, va) \
- __asm__ __volatile__ ( \
- "adds %[l], %[l], %[a] \n\t" \
- "movs r5, #0 \n\t" \
- "adcs %[h], %[h], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh) \
- : [a] "l" (va) \
- : "r5", "cc" \
- )
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB(vl, vh, va) \
- __asm__ __volatile__ ( \
- "subs %[l], %[l], %[a] \n\t" \
- "movs r5, #0 \n\t" \
- "sbcs %[h], %[h], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh) \
- : [a] "l" (va) \
- : "r5", "cc" \
- )
- /* Add two times vc | vb | va into vo | vh | vl */
- #define SP_ASM_ADD_DBL_3(vl, vh, vo, va, vb, vc) \
- __asm__ __volatile__ ( \
- "adds %[l], %[l], %[a] \n\t" \
- "adcs %[h], %[h], %[b] \n\t" \
- "adcs %[o], %[o], %[c] \n\t" \
- "adds %[l], %[l], %[a] \n\t" \
- "adcs %[h], %[h], %[b] \n\t" \
- "adcs %[o], %[o], %[c] \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb), [c] "l" (vc) \
- : "cc" \
- )
- #elif defined(__GNUC__)
- /* Multiply va by vb and store double size result in: vh | vl */
- #define SP_ASM_MUL(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth %[l], %[b] \n\t" \
- "mul %[l], r6 \n\t" \
- /* al * bh */ \
- "lsr r4, %[b], #16 \n\t" \
- "mul r6, r4 \n\t" \
- "lsr %[h], r6, #16 \n\t" \
- "lsl r6, r6, #16 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "mov r5, #0 \n\t" \
- "adc %[h], r5 \n\t" \
- /* ah * bh */ \
- "lsr r6, %[a], #16 \n\t" \
- "mul r4, r6 \n\t" \
- "add %[h], %[h], r4 \n\t" \
- /* ah * bl */ \
- "uxth r4, %[b] \n\t" \
- "mul r6, r4 \n\t" \
- "lsr r4, r6, #16 \n\t" \
- "lsl r6, r6, #16 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r4 \n\t" \
- : [h] "+l" (vh), [l] "+l" (vl) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r4", "r5", "r6", "cc" \
- )
- /* Multiply va by vb and store double size result in: vo | vh | vl */
- #define SP_ASM_MUL_SET(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth %[l], %[b] \n\t" \
- "mul %[l], r6 \n\t" \
- /* al * bh */ \
- "lsr r5, %[b], #16 \n\t" \
- "mul r6, r5 \n\t" \
- "lsr %[h], r6, #16 \n\t" \
- "lsl r6, r6, #16 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "mov %[o], #0 \n\t" \
- "adc %[h], %[o] \n\t" \
- /* ah * bh */ \
- "lsr r6, %[a], #16 \n\t" \
- "mul r5, r6 \n\t" \
- "add %[h], %[h], r5 \n\t" \
- /* ah * bl */ \
- "uxth r5, %[b] \n\t" \
- "mul r6, r5 \n\t" \
- "lsr r5, r6, #16 \n\t" \
- "lsl r6, r6, #16 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "cc" \
- )
- #if !defined(WOLFSSL_SP_SMALL) && !defined(DEBUG)
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r7, %[b] \n\t" \
- "mul r7, r6 \n\t" \
- "add %[l], %[l], r7 \n\t" \
- "mov r5, #0 \n\t" \
- "adc %[h], r5 \n\t" \
- "adc %[o], r5 \n\t" \
- /* al * bh */ \
- "lsr r7, %[b], #16 \n\t" \
- "mul r6, r7 \n\t" \
- "lsr r7, r6, #16 \n\t" \
- "lsl r6, r6, #16 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r7 \n\t" \
- "adc %[o], r5 \n\t" \
- /* ah * bh */ \
- "lsr r6, %[a], #16 \n\t" \
- "lsr r7, %[b], #16 \n\t" \
- "mul r7, r6 \n\t" \
- "add %[h], %[h], r7 \n\t" \
- "adc %[o], r5 \n\t" \
- /* ah * bl */ \
- "uxth r7, %[b] \n\t" \
- "mul r6, r7 \n\t" \
- "lsr r7, r6, #16 \n\t" \
- "lsl r6, r6, #16 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r7 \n\t" \
- "adc %[o], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "r7", "cc" \
- )
- #else
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r5, %[b] \n\t" \
- "mul r5, r6 \n\t" \
- "add %[l], %[l], r5 \n\t" \
- "mov r5, #0 \n\t" \
- "adc %[h], r5 \n\t" \
- "adc %[o], r5 \n\t" \
- /* al * bh */ \
- "lsr r5, %[b], #16 \n\t" \
- "mul r6, r5 \n\t" \
- "lsr r5, r6, #16 \n\t" \
- "lsl r6, r6, #16 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r5 \n\t" \
- "mov r5, #0 \n\t" \
- "adc %[o], r5 \n\t" \
- /* ah * bh */ \
- "lsr r6, %[a], #16 \n\t" \
- "lsr r5, %[b], #16 \n\t" \
- "mul r5, r6 \n\t" \
- "add %[h], %[h], r5 \n\t" \
- "mov r5, #0 \n\t" \
- "adc %[o], r5 \n\t" \
- /* ah * bl */ \
- "uxth r5, %[b] \n\t" \
- "mul r6, r5 \n\t" \
- "lsr r5, r6, #16 \n\t" \
- "lsl r6, r6, #16 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r5 \n\t" \
- "mov r5, #0 \n\t" \
- "adc %[o], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "cc" \
- )
- #endif
- /* Multiply va by vb and add double size result into: vh | vl */
- #define SP_ASM_MUL_ADD_NO(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r4, %[b] \n\t" \
- "mul r4, r6 \n\t" \
- "add %[l], %[l], r4 \n\t" \
- "mov r5, #0 \n\t" \
- "adc %[h], r5 \n\t" \
- /* al * bh */ \
- "lsr r4, %[b], #16 \n\t" \
- "mul r6, r4 \n\t" \
- "lsr r4, r6, #16 \n\t" \
- "lsl r6, r6, #16 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r4 \n\t" \
- /* ah * bh */ \
- "lsr r6, %[a], #16 \n\t" \
- "lsr r4, %[b], #16 \n\t" \
- "mul r4, r6 \n\t" \
- "add %[h], %[h], r4 \n\t" \
- /* ah * bl */ \
- "uxth r4, %[b] \n\t" \
- "mul r6, r4 \n\t" \
- "lsr r4, r6, #16 \n\t" \
- "lsl r6, r6, #16 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r4 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r4", "r5", "r6", "cc" \
- )
- #if !defined(WOLFSSL_SP_SMALL) && !defined(DEBUG)
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r7, %[b] \n\t" \
- "mul r7, r6 \n\t" \
- "add %[l], %[l], r7 \n\t" \
- "mov r5, #0 \n\t" \
- "adc %[h], r5 \n\t" \
- "adc %[o], r5 \n\t" \
- "add %[l], %[l], r7 \n\t" \
- "adc %[h], r5 \n\t" \
- "adc %[o], r5 \n\t" \
- /* al * bh */ \
- "lsr r7, %[b], #16 \n\t" \
- "mul r6, r7 \n\t" \
- "lsr r7, r6, #16 \n\t" \
- "lsl r6, r6, #16 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r7 \n\t" \
- "adc %[o], r5 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r7 \n\t" \
- "adc %[o], r5 \n\t" \
- /* ah * bh */ \
- "lsr r6, %[a], #16 \n\t" \
- "lsr r7, %[b], #16 \n\t" \
- "mul r7, r6 \n\t" \
- "add %[h], %[h], r7 \n\t" \
- "adc %[o], r5 \n\t" \
- "add %[h], %[h], r7 \n\t" \
- "adc %[o], r5 \n\t" \
- /* ah * bl */ \
- "uxth r7, %[b] \n\t" \
- "mul r6, r7 \n\t" \
- "lsr r7, r6, #16 \n\t" \
- "lsl r6, r6, #16 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r7 \n\t" \
- "adc %[o], r5 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r7 \n\t" \
- "adc %[o], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "r7", "cc" \
- )
- #else
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mov r8, %[a] \n\t" \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r5, %[b] \n\t" \
- "mul r5, r6 \n\t" \
- "add %[l], %[l], r5 \n\t" \
- "mov %[a], #0 \n\t" \
- "adc %[h], %[a] \n\t" \
- "adc %[o], %[a] \n\t" \
- "add %[l], %[l], r5 \n\t" \
- "adc %[h], %[a] \n\t" \
- "adc %[o], %[a] \n\t" \
- /* al * bh */ \
- "lsr r5, %[b], #16 \n\t" \
- "mul r6, r5 \n\t" \
- "lsr r5, r6, #16 \n\t" \
- "lsl r6, r6, #16 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r5 \n\t" \
- "adc %[o], %[a] \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r5 \n\t" \
- "adc %[o], %[a] \n\t" \
- /* ah * bh */ \
- "mov %[a], r8 \n\t" \
- "lsr r6, %[a], #16 \n\t" \
- "lsr r5, %[b], #16 \n\t" \
- "mul r5, r6 \n\t" \
- "add %[h], %[h], r5 \n\t" \
- "mov %[a], #0 \n\t" \
- "adc %[o], %[a] \n\t" \
- "add %[h], %[h], r5 \n\t" \
- "adc %[o], %[a] \n\t" \
- /* ah * bl */ \
- "uxth r5, %[b] \n\t" \
- "mul r6, r5 \n\t" \
- "lsr r5, r6, #16 \n\t" \
- "lsl r6, r6, #16 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r5 \n\t" \
- "adc %[o], %[a] \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r5 \n\t" \
- "adc %[o], %[a] \n\t" \
- "mov %[a], r8 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "r8", "cc" \
- )
- #endif
- #ifndef DEBUG
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- /* al * bl */ \
- "uxth r6, %[a] \n\t" \
- "uxth r7, %[b] \n\t" \
- "mul r7, r6 \n\t" \
- "add %[l], %[l], r7 \n\t" \
- "mov r5, #0 \n\t" \
- "adc %[h], r5 \n\t" \
- "add %[l], %[l], r7 \n\t" \
- "adc %[h], r5 \n\t" \
- /* al * bh */ \
- "lsr r7, %[b], #16 \n\t" \
- "mul r6, r7 \n\t" \
- "lsr r7, r6, #16 \n\t" \
- "lsl r6, r6, #16 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r7 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r7 \n\t" \
- "adc %[o], r5 \n\t" \
- /* ah * bh */ \
- "lsr r6, %[a], #16 \n\t" \
- "lsr r7, %[b], #16 \n\t" \
- "mul r7, r6 \n\t" \
- "add %[h], %[h], r7 \n\t" \
- "adc %[o], r5 \n\t" \
- "add %[h], %[h], r7 \n\t" \
- "adc %[o], r5 \n\t" \
- /* ah * bl */ \
- "uxth r7, %[b] \n\t" \
- "mul r6, r7 \n\t" \
- "lsr r7, r6, #16 \n\t" \
- "lsl r6, r6, #16 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r7 \n\t" \
- "adc %[o], r5 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r7 \n\t" \
- "adc %[o], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "r7", "cc" \
- )
- #else
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mov r8, %[a] \n\t" \
- /* al * bl */ \
- "uxth r5, %[a] \n\t" \
- "uxth r6, %[b] \n\t" \
- "mul r6, r5 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "mov %[a], #0 \n\t" \
- "adc %[h], %[a] \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], %[a] \n\t" \
- /* al * bh */ \
- "lsr r6, %[b], #16 \n\t" \
- "mul r5, r6 \n\t" \
- "lsr r6, r5, #16 \n\t" \
- "lsl r5, r5, #16 \n\t" \
- "add %[l], %[l], r5 \n\t" \
- "adc %[h], r6 \n\t" \
- "add %[l], %[l], r5 \n\t" \
- "adc %[h], r6 \n\t" \
- "adc %[o], %[a] \n\t" \
- /* ah * bh */ \
- "mov %[a], r8 \n\t" \
- "lsr r5, %[a], #16 \n\t" \
- "lsr r6, %[b], #16 \n\t" \
- "mul r6, r5 \n\t" \
- "mov %[a], #0 \n\t" \
- "add %[h], %[h], r6 \n\t" \
- "adc %[o], %[a] \n\t" \
- "add %[h], %[h], r6 \n\t" \
- "adc %[o], %[a] \n\t" \
- /* ah * bl */ \
- "uxth r6, %[b] \n\t" \
- "mul r5, r6 \n\t" \
- "lsr r6, r5, #16 \n\t" \
- "lsl r5, r5, #16 \n\t" \
- "add %[l], %[l], r5 \n\t" \
- "adc %[h], r6 \n\t" \
- "adc %[o], %[a] \n\t" \
- "add %[l], %[l], r5 \n\t" \
- "adc %[h], r6 \n\t" \
- "adc %[o], %[a] \n\t" \
- "mov %[a], r8 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb) \
- : "r5", "r6", "r8", "cc" \
- )
- #endif
- /* Square va and store double size result in: vh | vl */
- #define SP_ASM_SQR(vl, vh, va) \
- __asm__ __volatile__ ( \
- "lsr r5, %[a], #16 \n\t" \
- "uxth r6, %[a] \n\t" \
- "mov %[l], r6 \n\t" \
- "mov %[h], r5 \n\t" \
- /* al * al */ \
- "mul %[l], %[l] \n\t" \
- /* ah * ah */ \
- "mul %[h], %[h] \n\t" \
- /* 2 * al * ah */ \
- "mul r6, r5 \n\t" \
- "lsr r5, r6, #15 \n\t" \
- "lsl r6, r6, #17 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r5 \n\t" \
- : [h] "+l" (vh), [l] "+l" (vl) \
- : [a] "l" (va) \
- : "r5", "r6", "cc" \
- )
- /* Square va and add double size result into: vo | vh | vl */
- #define SP_ASM_SQR_ADD(vl, vh, vo, va) \
- __asm__ __volatile__ ( \
- "lsr r4, %[a], #16 \n\t" \
- "uxth r6, %[a] \n\t" \
- /* al * al */ \
- "mul r6, r6 \n\t" \
- /* ah * ah */ \
- "mul r4, r4 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r4 \n\t" \
- "mov r5, #0 \n\t" \
- "adc %[o], r5 \n\t" \
- "lsr r4, %[a], #16 \n\t" \
- "uxth r6, %[a] \n\t" \
- /* 2 * al * ah */ \
- "mul r6, r4 \n\t" \
- "lsr r4, r6, #15 \n\t" \
- "lsl r6, r6, #17 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r4 \n\t" \
- "adc %[o], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va) \
- : "r4", "r5", "r6", "cc" \
- )
- /* Square va and add double size result into: vh | vl */
- #define SP_ASM_SQR_ADD_NO(vl, vh, va) \
- __asm__ __volatile__ ( \
- "lsr r5, %[a], #16 \n\t" \
- "uxth r6, %[a] \n\t" \
- /* al * al */ \
- "mul r6, r6 \n\t" \
- /* ah * ah */ \
- "mul r5, r5 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r5 \n\t" \
- "lsr r5, %[a], #16 \n\t" \
- "uxth r6, %[a] \n\t" \
- /* 2 * al * ah */ \
- "mul r6, r5 \n\t" \
- "lsr r5, r6, #15 \n\t" \
- "lsl r6, r6, #17 \n\t" \
- "add %[l], %[l], r6 \n\t" \
- "adc %[h], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh) \
- : [a] "l" (va) \
- : "r5", "r6", "cc" \
- )
- /* Add va into: vh | vl */
- #define SP_ASM_ADDC(vl, vh, va) \
- __asm__ __volatile__ ( \
- "add %[l], %[l], %[a] \n\t" \
- "mov r5, #0 \n\t" \
- "adc %[h], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh) \
- : [a] "l" (va) \
- : "r5", "cc" \
- )
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB(vl, vh, va) \
- __asm__ __volatile__ ( \
- "sub %[l], %[l], %[a] \n\t" \
- "mov r5, #0 \n\t" \
- "sbc %[h], r5 \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh) \
- : [a] "l" (va) \
- : "r5", "cc" \
- )
- /* Add two times vc | vb | va into vo | vh | vl */
- #define SP_ASM_ADD_DBL_3(vl, vh, vo, va, vb, vc) \
- __asm__ __volatile__ ( \
- "add %[l], %[l], %[a] \n\t" \
- "adc %[h], %[b] \n\t" \
- "adc %[o], %[c] \n\t" \
- "add %[l], %[l], %[a] \n\t" \
- "adc %[h], %[b] \n\t" \
- "adc %[o], %[c] \n\t" \
- : [l] "+l" (vl), [h] "+l" (vh), [o] "+l" (vo) \
- : [a] "l" (va), [b] "l" (vb), [c] "l" (vc) \
- : "cc" \
- )
- #endif
- #ifdef WOLFSSL_SP_DIV_WORD_HALF
- /* Divide a two digit number by a digit number and return. (hi | lo) / d
- *
- * No division instruction used - does operation bit by bit.
- * Constant time.
- *
- * @param [in] hi SP integer digit. High digit of the dividend.
- * @param [in] lo SP integer digit. Lower digit of the dividend.
- * @param [in] d SP integer digit. Number to divide by.
- * @return The division result.
- */
- static WC_INLINE sp_int_digit sp_div_word(sp_int_digit hi, sp_int_digit lo,
- sp_int_digit d)
- {
- __asm__ __volatile__ (
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsrs r3, %[d], #24\n\t"
- #else
- "lsr r3, %[d], #24\n\t"
- #endif
- "beq 2%=f\n\t"
- "\n1%=:\n\t"
- "movs r3, #0\n\t"
- "b 3%=f\n\t"
- "\n2%=:\n\t"
- "mov r3, #8\n\t"
- "\n3%=:\n\t"
- "movs r4, #31\n\t"
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "subs r4, r4, r3\n\t"
- #else
- "sub r4, r4, r3\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsls %[d], %[d], r3\n\t"
- #else
- "lsl %[d], %[d], r3\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsls %[hi], %[hi], r3\n\t"
- #else
- "lsl %[hi], %[hi], r3\n\t"
- #endif
- "mov r5, %[lo]\n\t"
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsrs r5, r5, r4\n\t"
- #else
- "lsr r5, r5, r4\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsls %[lo], %[lo], r3\n\t"
- #else
- "lsl %[lo], %[lo], r3\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsrs r5, r5, #1\n\t"
- #else
- "lsr r5, r5, #1\n\t"
- #endif
- #if defined(WOLFSSL_KEIL)
- "orrs %[hi], %[hi], r5\n\t"
- #elif defined(__clang__)
- "orrs %[hi], r5\n\t"
- #else
- "orr %[hi], r5\n\t"
- #endif
- "movs r3, #0\n\t"
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsrs r5, %[d], #1\n\t"
- #else
- "lsr r5, %[d], #1\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r5, r5, #1\n\t"
- #else
- "add r5, r5, #1\n\t"
- #endif
- "mov r8, %[lo]\n\t"
- "mov r9, %[hi]\n\t"
- /* Do top 32 */
- "movs r6, r5\n\t"
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "subs r6, r6, %[hi]\n\t"
- #else
- "sub r6, r6, %[hi]\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "sbcs r6, r6, r6\n\t"
- #elif defined(__clang__)
- "sbcs r6, r6\n\t"
- #else
- "sbc r6, r6\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r3, r3, r3\n\t"
- #else
- "add r3, r3, r3\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "subs r3, r3, r6\n\t"
- #else
- "sub r3, r3, r6\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "ands r6, r6, r5\n\t"
- #elif defined(__clang__)
- "ands r6, r5\n\t"
- #else
- "and r6, r5\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "subs %[hi], %[hi], r6\n\t"
- #else
- "sub %[hi], %[hi], r6\n\t"
- #endif
- "movs r4, #29\n\t"
- "\n"
- "L_sp_div_word_loop%=:\n\t"
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsls %[lo], %[lo], #1\n\t"
- #else
- "lsl %[lo], %[lo], #1\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "adcs %[hi], %[hi], %[hi]\n\t"
- #elif defined(__clang__)
- "adcs %[hi], %[hi]\n\t"
- #else
- "adc %[hi], %[hi]\n\t"
- #endif
- "movs r6, r5\n\t"
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "subs r6, r6, %[hi]\n\t"
- #else
- "sub r6, r6, %[hi]\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "sbcs r6, r6, r6\n\t"
- #elif defined(__clang__)
- "sbcs r6, r6\n\t"
- #else
- "sbc r6, r6\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r3, r3, r3\n\t"
- #else
- "add r3, r3, r3\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "subs r3, r3, r6\n\t"
- #else
- "sub r3, r3, r6\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "ands r6, r6, r5\n\t"
- #elif defined(__clang__)
- "ands r6, r5\n\t"
- #else
- "and r6, r5\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "subs %[hi], %[hi], r6\n\t"
- #else
- "sub %[hi], %[hi], r6\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "subs r4, r4, #1\n\t"
- #else
- "sub r4, r4, #1\n\t"
- #endif
- "bpl L_sp_div_word_loop%=\n\t"
- "movs r7, #0\n\t"
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r3, r3, r3\n\t"
- #else
- "add r3, r3, r3\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r3, r3, #1\n\t"
- #else
- "add r3, r3, #1\n\t"
- #endif
- /* r * d - Start */
- "uxth %[hi], r3\n\t"
- "uxth r4, %[d]\n\t"
- #ifdef WOLFSSL_KEIL
- "muls r4, %[hi], r4\n\t"
- #elif defined(__clang__)
- "muls r4, %[hi]\n\t"
- #else
- "mul r4, %[hi]\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsrs r6, %[d], #16\n\t"
- #else
- "lsr r6, %[d], #16\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "muls %[hi], r6, %[hi]\n\t"
- #elif defined(__clang__)
- "muls %[hi], r6\n\t"
- #else
- "mul %[hi], r6\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsrs r5, %[hi], #16\n\t"
- #else
- "lsr r5, %[hi], #16\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsls %[hi], %[hi], #16\n\t"
- #else
- "lsl %[hi], %[hi], #16\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r4, r4, %[hi]\n\t"
- #else
- "add r4, r4, %[hi]\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "adcs r5, r5, r7\n\t"
- #elif defined(__clang__)
- "adcs r5, r7\n\t"
- #else
- "adc r5, r7\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsrs %[hi], r3, #16\n\t"
- #else
- "lsr %[hi], r3, #16\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "muls r6, %[hi], r6\n\t"
- #elif defined(__clang__)
- "muls r6, %[hi]\n\t"
- #else
- "mul r6, %[hi]\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r5, r5, r6\n\t"
- #else
- "add r5, r5, r6\n\t"
- #endif
- "uxth r6, %[d]\n\t"
- #ifdef WOLFSSL_KEIL
- "muls %[hi], r6, %[hi]\n\t"
- #elif defined(__clang__)
- "muls %[hi], r6\n\t"
- #else
- "mul %[hi], r6\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsrs r6, %[hi], #16\n\t"
- #else
- "lsr r6, %[hi], #16\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsls %[hi], %[hi], #16\n\t"
- #else
- "lsl %[hi], %[hi], #16\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r4, r4, %[hi]\n\t"
- #else
- "add r4, r4, %[hi]\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "adcs r5, r5, r6\n\t"
- #elif defined(__clang__)
- "adcs r5, r6\n\t"
- #else
- "adc r5, r6\n\t"
- #endif
- /* r * d - Done */
- "mov %[hi], r8\n\t"
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "subs %[hi], %[hi], r4\n\t"
- #else
- "sub %[hi], %[hi], r4\n\t"
- #endif
- "movs r4, %[hi]\n\t"
- "mov %[hi], r9\n\t"
- #ifdef WOLFSSL_KEIL
- "sbcs %[hi], %[hi], r5\n\t"
- #elif defined(__clang__)
- "sbcs %[hi], r5\n\t"
- #else
- "sbc %[hi], r5\n\t"
- #endif
- "movs r5, %[hi]\n\t"
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r3, r3, r5\n\t"
- #else
- "add r3, r3, r5\n\t"
- #endif
- /* r * d - Start */
- "uxth %[hi], r3\n\t"
- "uxth r4, %[d]\n\t"
- #ifdef WOLFSSL_KEIL
- "muls r4, %[hi], r4\n\t"
- #elif defined(__clang__)
- "muls r4, %[hi]\n\t"
- #else
- "mul r4, %[hi]\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsrs r6, %[d], #16\n\t"
- #else
- "lsr r6, %[d], #16\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "muls %[hi], r6, %[hi]\n\t"
- #elif defined(__clang__)
- "muls %[hi], r6\n\t"
- #else
- "mul %[hi], r6\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsrs r5, %[hi], #16\n\t"
- #else
- "lsr r5, %[hi], #16\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsls %[hi], %[hi], #16\n\t"
- #else
- "lsl %[hi], %[hi], #16\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r4, r4, %[hi]\n\t"
- #else
- "add r4, r4, %[hi]\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "adcs r5, r5, r7\n\t"
- #elif defined(__clang__)
- "adcs r5, r7\n\t"
- #else
- "adc r5, r7\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsrs %[hi], r3, #16\n\t"
- #else
- "lsr %[hi], r3, #16\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "muls r6, %[hi], r6\n\t"
- #elif defined(__clang__)
- "muls r6, %[hi]\n\t"
- #else
- "mul r6, %[hi]\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r5, r5, r6\n\t"
- #else
- "add r5, r5, r6\n\t"
- #endif
- "uxth r6, %[d]\n\t"
- #ifdef WOLFSSL_KEIL
- "muls %[hi], r6, %[hi]\n\t"
- #elif defined(__clang__)
- "muls %[hi], r6\n\t"
- #else
- "mul %[hi], r6\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsrs r6, %[hi], #16\n\t"
- #else
- "lsr r6, %[hi], #16\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsls %[hi], %[hi], #16\n\t"
- #else
- "lsl %[hi], %[hi], #16\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r4, r4, %[hi]\n\t"
- #else
- "add r4, r4, %[hi]\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "adcs r5, r5, r6\n\t"
- #elif defined(__clang__)
- "adcs r5, r6\n\t"
- #else
- "adc r5, r6\n\t"
- #endif
- /* r * d - Done */
- "mov %[hi], r8\n\t"
- "mov r6, r9\n\t"
- #ifdef WOLFSSL_KEIL
- "subs r4, %[hi], r4\n\t"
- #else
- #ifdef __clang__
- "subs r4, %[hi], r4\n\t"
- #else
- "sub r4, %[hi], r4\n\t"
- #endif
- #endif
- #ifdef WOLFSSL_KEIL
- "sbcs r6, r6, r5\n\t"
- #elif defined(__clang__)
- "sbcs r6, r5\n\t"
- #else
- "sbc r6, r5\n\t"
- #endif
- "movs r5, r6\n\t"
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r3, r3, r5\n\t"
- #else
- "add r3, r3, r5\n\t"
- #endif
- /* r * d - Start */
- "uxth %[hi], r3\n\t"
- "uxth r4, %[d]\n\t"
- #ifdef WOLFSSL_KEIL
- "muls r4, %[hi], r4\n\t"
- #elif defined(__clang__)
- "muls r4, %[hi]\n\t"
- #else
- "mul r4, %[hi]\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsrs r6, %[d], #16\n\t"
- #else
- "lsr r6, %[d], #16\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "muls %[hi], r6, %[hi]\n\t"
- #elif defined(__clang__)
- "muls %[hi], r6\n\t"
- #else
- "mul %[hi], r6\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsrs r5, %[hi], #16\n\t"
- #else
- "lsr r5, %[hi], #16\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsls %[hi], %[hi], #16\n\t"
- #else
- "lsl %[hi], %[hi], #16\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r4, r4, %[hi]\n\t"
- #else
- "add r4, r4, %[hi]\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "adcs r5, r5, r7\n\t"
- #elif defined(__clang__)
- "adcs r5, r7\n\t"
- #else
- "adc r5, r7\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsrs %[hi], r3, #16\n\t"
- #else
- "lsr %[hi], r3, #16\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "muls r6, %[hi], r6\n\t"
- #elif defined(__clang__)
- "muls r6, %[hi]\n\t"
- #else
- "mul r6, %[hi]\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r5, r5, r6\n\t"
- #else
- "add r5, r5, r6\n\t"
- #endif
- "uxth r6, %[d]\n\t"
- #ifdef WOLFSSL_KEIL
- "muls %[hi], r6, %[hi]\n\t"
- #elif defined(__clang__)
- "muls %[hi], r6\n\t"
- #else
- "mul %[hi], r6\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsrs r6, %[hi], #16\n\t"
- #else
- "lsr r6, %[hi], #16\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "lsls %[hi], %[hi], #16\n\t"
- #else
- "lsl %[hi], %[hi], #16\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r4, r4, %[hi]\n\t"
- #else
- "add r4, r4, %[hi]\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "adcs r5, r5, r6\n\t"
- #elif defined(__clang__)
- "adcs r5, r6\n\t"
- #else
- "adc r5, r6\n\t"
- #endif
- /* r * d - Done */
- "mov %[hi], r8\n\t"
- "mov r6, r9\n\t"
- #ifdef WOLFSSL_KEIL
- "subs r4, %[hi], r4\n\t"
- #else
- #ifdef __clang__
- "subs r4, %[hi], r4\n\t"
- #else
- "sub r4, %[hi], r4\n\t"
- #endif
- #endif
- #ifdef WOLFSSL_KEIL
- "sbcs r6, r6, r5\n\t"
- #elif defined(__clang__)
- "sbcs r6, r5\n\t"
- #else
- "sbc r6, r5\n\t"
- #endif
- "movs r5, r6\n\t"
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "adds r3, r3, r5\n\t"
- #else
- "add r3, r3, r5\n\t"
- #endif
- "movs r6, %[d]\n\t"
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "subs r6, r6, r4\n\t"
- #else
- "sub r6, r6, r4\n\t"
- #endif
- #ifdef WOLFSSL_KEIL
- "sbcs r6, r6, r6\n\t"
- #elif defined(__clang__)
- "sbcs r6, r6\n\t"
- #else
- "sbc r6, r6\n\t"
- #endif
- #if defined(__clang__) || defined(WOLFSSL_KEIL)
- "subs r3, r3, r6\n\t"
- #else
- "sub r3, r3, r6\n\t"
- #endif
- "movs %[hi], r3\n\t"
- : [hi] "+l" (hi), [lo] "+l" (lo), [d] "+l" (d)
- :
- : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "cc"
- );
- return (uint32_t)(size_t)hi;
- }
- #define SP_ASM_DIV_WORD
- #endif /* !WOLFSSL_SP_DIV_WORD_HALF */
- #define SP_INT_ASM_AVAILABLE
- #endif /* WOLFSSL_SP_ARM_THUMB && SP_WORD_SIZE == 32 */
- #if defined(WOLFSSL_SP_PPC64) && SP_WORD_SIZE == 64
- /*
- * CPU: PPC64
- */
- /* Multiply va by vb and store double size result in: vh | vl */
- #define SP_ASM_MUL(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "mulld %[l], %[a], %[b] \n\t" \
- "mulhdu %[h], %[a], %[b] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va), [b] "r" (vb) \
- : "memory" \
- )
- /* Multiply va by vb and store double size result in: vo | vh | vl */
- #define SP_ASM_MUL_SET(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mulhdu %[h], %[a], %[b] \n\t" \
- "mulld %[l], %[a], %[b] \n\t" \
- "li %[o], 0 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "=r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : \
- )
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mulld 16, %[a], %[b] \n\t" \
- "mulhdu 17, %[a], %[b] \n\t" \
- "addc %[l], %[l], 16 \n\t" \
- "adde %[h], %[h], 17 \n\t" \
- "addze %[o], %[o] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "16", "17", "cc" \
- )
- /* Multiply va by vb and add double size result into: vh | vl */
- #define SP_ASM_MUL_ADD_NO(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "mulld 16, %[a], %[b] \n\t" \
- "mulhdu 17, %[a], %[b] \n\t" \
- "addc %[l], %[l], 16 \n\t" \
- "adde %[h], %[h], 17 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va), [b] "r" (vb) \
- : "16", "17", "cc" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mulld 16, %[a], %[b] \n\t" \
- "mulhdu 17, %[a], %[b] \n\t" \
- "addc %[l], %[l], 16 \n\t" \
- "adde %[h], %[h], 17 \n\t" \
- "addze %[o], %[o] \n\t" \
- "addc %[l], %[l], 16 \n\t" \
- "adde %[h], %[h], 17 \n\t" \
- "addze %[o], %[o] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "16", "17", "cc" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mulld 16, %[a], %[b] \n\t" \
- "mulhdu 17, %[a], %[b] \n\t" \
- "addc %[l], %[l], 16 \n\t" \
- "adde %[h], %[h], 17 \n\t" \
- "addc %[l], %[l], 16 \n\t" \
- "adde %[h], %[h], 17 \n\t" \
- "addze %[o], %[o] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "16", "17", "cc" \
- )
- /* Square va and store double size result in: vh | vl */
- #define SP_ASM_SQR(vl, vh, va) \
- __asm__ __volatile__ ( \
- "mulld %[l], %[a], %[a] \n\t" \
- "mulhdu %[h], %[a], %[a] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va) \
- : "memory" \
- )
- /* Square va and add double size result into: vo | vh | vl */
- #define SP_ASM_SQR_ADD(vl, vh, vo, va) \
- __asm__ __volatile__ ( \
- "mulld 16, %[a], %[a] \n\t" \
- "mulhdu 17, %[a], %[a] \n\t" \
- "addc %[l], %[l], 16 \n\t" \
- "adde %[h], %[h], 17 \n\t" \
- "addze %[o], %[o] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va) \
- : "16", "17", "cc" \
- )
- /* Square va and add double size result into: vh | vl */
- #define SP_ASM_SQR_ADD_NO(vl, vh, va) \
- __asm__ __volatile__ ( \
- "mulld 16, %[a], %[a] \n\t" \
- "mulhdu 17, %[a], %[a] \n\t" \
- "addc %[l], %[l], 16 \n\t" \
- "adde %[h], %[h], 17 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "16", "17", "cc" \
- )
- /* Add va into: vh | vl */
- #define SP_ASM_ADDC(vl, vh, va) \
- __asm__ __volatile__ ( \
- "addc %[l], %[l], %[a] \n\t" \
- "addze %[h], %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "cc" \
- )
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB(vl, vh, va) \
- __asm__ __volatile__ ( \
- "subfc %[l], %[a], %[l] \n\t" \
- "li 16, 0 \n\t" \
- "subfe %[h], 16, %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "16", "cc" \
- )
- /* Add two times vc | vb | va into vo | vh | vl */
- #define SP_ASM_ADD_DBL_3(vl, vh, vo, va, vb, vc) \
- __asm__ __volatile__ ( \
- "addc %[l], %[l], %[a] \n\t" \
- "adde %[h], %[h], %[b] \n\t" \
- "adde %[o], %[o], %[c] \n\t" \
- "addc %[l], %[l], %[a] \n\t" \
- "adde %[h], %[h], %[b] \n\t" \
- "adde %[o], %[o], %[c] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb), [c] "r" (vc) \
- : "cc" \
- )
- /* Count leading zeros. */
- #define SP_ASM_LZCNT(va, vn) \
- __asm__ __volatile__ ( \
- "cntlzd %[n], %[a] \n\t" \
- : [n] "=r" (vn) \
- : [a] "r" (va) \
- : \
- )
- #define SP_INT_ASM_AVAILABLE
- #endif /* WOLFSSL_SP_PPC64 && SP_WORD_SIZE == 64 */
- #if defined(WOLFSSL_SP_PPC) && SP_WORD_SIZE == 32
- /*
- * CPU: PPC 32-bit
- */
- /* Multiply va by vb and store double size result in: vh | vl */
- #define SP_ASM_MUL(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "mullw %[l], %[a], %[b] \n\t" \
- "mulhwu %[h], %[a], %[b] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va), [b] "r" (vb) \
- : "memory" \
- )
- /* Multiply va by vb and store double size result in: vo | vh | vl */
- #define SP_ASM_MUL_SET(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mulhwu %[h], %[a], %[b] \n\t" \
- "mullw %[l], %[a], %[b] \n\t" \
- "li %[o], 0 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "=r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- )
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mullw 16, %[a], %[b] \n\t" \
- "mulhwu 17, %[a], %[b] \n\t" \
- "addc %[l], %[l], 16 \n\t" \
- "adde %[h], %[h], 17 \n\t" \
- "addze %[o], %[o] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "16", "17", "cc" \
- )
- /* Multiply va by vb and add double size result into: vh | vl */
- #define SP_ASM_MUL_ADD_NO(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "mullw 16, %[a], %[b] \n\t" \
- "mulhwu 17, %[a], %[b] \n\t" \
- "addc %[l], %[l], 16 \n\t" \
- "adde %[h], %[h], 17 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va), [b] "r" (vb) \
- : "16", "17", "cc" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mullw 16, %[a], %[b] \n\t" \
- "mulhwu 17, %[a], %[b] \n\t" \
- "addc %[l], %[l], 16 \n\t" \
- "adde %[h], %[h], 17 \n\t" \
- "addze %[o], %[o] \n\t" \
- "addc %[l], %[l], 16 \n\t" \
- "adde %[h], %[h], 17 \n\t" \
- "addze %[o], %[o] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "16", "17", "cc" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mullw 16, %[a], %[b] \n\t" \
- "mulhwu 17, %[a], %[b] \n\t" \
- "addc %[l], %[l], 16 \n\t" \
- "adde %[h], %[h], 17 \n\t" \
- "addc %[l], %[l], 16 \n\t" \
- "adde %[h], %[h], 17 \n\t" \
- "addze %[o], %[o] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "16", "17", "cc" \
- )
- /* Square va and store double size result in: vh | vl */
- #define SP_ASM_SQR(vl, vh, va) \
- __asm__ __volatile__ ( \
- "mullw %[l], %[a], %[a] \n\t" \
- "mulhwu %[h], %[a], %[a] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va) \
- : "memory" \
- )
- /* Square va and add double size result into: vo | vh | vl */
- #define SP_ASM_SQR_ADD(vl, vh, vo, va) \
- __asm__ __volatile__ ( \
- "mullw 16, %[a], %[a] \n\t" \
- "mulhwu 17, %[a], %[a] \n\t" \
- "addc %[l], %[l], 16 \n\t" \
- "adde %[h], %[h], 17 \n\t" \
- "addze %[o], %[o] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va) \
- : "16", "17", "cc" \
- )
- /* Square va and add double size result into: vh | vl */
- #define SP_ASM_SQR_ADD_NO(vl, vh, va) \
- __asm__ __volatile__ ( \
- "mullw 16, %[a], %[a] \n\t" \
- "mulhwu 17, %[a], %[a] \n\t" \
- "addc %[l], %[l], 16 \n\t" \
- "adde %[h], %[h], 17 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "16", "17", "cc" \
- )
- /* Add va into: vh | vl */
- #define SP_ASM_ADDC(vl, vh, va) \
- __asm__ __volatile__ ( \
- "addc %[l], %[l], %[a] \n\t" \
- "addze %[h], %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "cc" \
- )
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB(vl, vh, va) \
- __asm__ __volatile__ ( \
- "subfc %[l], %[a], %[l] \n\t" \
- "li 16, 0 \n\t" \
- "subfe %[h], 16, %[h] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "16", "cc" \
- )
- /* Add two times vc | vb | va into vo | vh | vl */
- #define SP_ASM_ADD_DBL_3(vl, vh, vo, va, vb, vc) \
- __asm__ __volatile__ ( \
- "addc %[l], %[l], %[a] \n\t" \
- "adde %[h], %[h], %[b] \n\t" \
- "adde %[o], %[o], %[c] \n\t" \
- "addc %[l], %[l], %[a] \n\t" \
- "adde %[h], %[h], %[b] \n\t" \
- "adde %[o], %[o], %[c] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb), [c] "r" (vc) \
- : "cc" \
- )
- /* Count leading zeros. */
- #define SP_ASM_LZCNT(va, vn) \
- __asm__ __volatile__ ( \
- "cntlzw %[n], %[a] \n\t" \
- : [n] "=r" (vn) \
- : [a] "r" (va) \
- )
- #define SP_INT_ASM_AVAILABLE
- #endif /* WOLFSSL_SP_PPC && SP_WORD_SIZE == 64 */
- #if defined(WOLFSSL_SP_MIPS64) && SP_WORD_SIZE == 64
- /*
- * CPU: MIPS 64-bit
- */
- /* Multiply va by vb and store double size result in: vh | vl */
- #define SP_ASM_MUL(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "dmultu %[a], %[b] \n\t" \
- "mflo %[l] \n\t" \
- "mfhi %[h] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va), [b] "r" (vb) \
- : "memory", "$lo", "$hi" \
- )
- /* Multiply va by vb and store double size result in: vo | vh | vl */
- #define SP_ASM_MUL_SET(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "dmultu %[a], %[b] \n\t" \
- "mflo %[l] \n\t" \
- "mfhi %[h] \n\t" \
- "move %[o], $0 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "=r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "$lo", "$hi" \
- )
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "dmultu %[a], %[b] \n\t" \
- "mflo $10 \n\t" \
- "mfhi $11 \n\t" \
- "daddu %[l], %[l], $10 \n\t" \
- "sltu $12, %[l], $10 \n\t" \
- "daddu %[h], %[h], $12 \n\t" \
- "sltu $12, %[h], $12 \n\t" \
- "daddu %[o], %[o], $12 \n\t" \
- "daddu %[h], %[h], $11 \n\t" \
- "sltu $12, %[h], $11 \n\t" \
- "daddu %[o], %[o], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "$10", "$11", "$12", "$lo", "$hi" \
- )
- /* Multiply va by vb and add double size result into: vh | vl */
- #define SP_ASM_MUL_ADD_NO(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "dmultu %[a], %[b] \n\t" \
- "mflo $10 \n\t" \
- "mfhi $11 \n\t" \
- "daddu %[l], %[l], $10 \n\t" \
- "sltu $12, %[l], $10 \n\t" \
- "daddu %[h], %[h], $11 \n\t" \
- "daddu %[h], %[h], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va), [b] "r" (vb) \
- : "$10", "$11", "$12", "$lo", "$hi" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "dmultu %[a], %[b] \n\t" \
- "mflo $10 \n\t" \
- "mfhi $11 \n\t" \
- "daddu %[l], %[l], $10 \n\t" \
- "sltu $12, %[l], $10 \n\t" \
- "daddu %[h], %[h], $12 \n\t" \
- "sltu $12, %[h], $12 \n\t" \
- "daddu %[o], %[o], $12 \n\t" \
- "daddu %[h], %[h], $11 \n\t" \
- "sltu $12, %[h], $11 \n\t" \
- "daddu %[o], %[o], $12 \n\t" \
- "daddu %[l], %[l], $10 \n\t" \
- "sltu $12, %[l], $10 \n\t" \
- "daddu %[h], %[h], $12 \n\t" \
- "sltu $12, %[h], $12 \n\t" \
- "daddu %[o], %[o], $12 \n\t" \
- "daddu %[h], %[h], $11 \n\t" \
- "sltu $12, %[h], $11 \n\t" \
- "daddu %[o], %[o], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "$10", "$11", "$12", "$lo", "$hi" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "dmultu %[a], %[b] \n\t" \
- "mflo $10 \n\t" \
- "mfhi $11 \n\t" \
- "daddu %[l], %[l], $10 \n\t" \
- "sltu $12, %[l], $10 \n\t" \
- "daddu %[h], %[h], $11 \n\t" \
- "daddu %[h], %[h], $12 \n\t" \
- "daddu %[l], %[l], $10 \n\t" \
- "sltu $12, %[l], $10 \n\t" \
- "daddu %[h], %[h], $12 \n\t" \
- "sltu $12, %[h], $12 \n\t" \
- "daddu %[o], %[o], $12 \n\t" \
- "daddu %[h], %[h], $11 \n\t" \
- "sltu $12, %[h], $11 \n\t" \
- "daddu %[o], %[o], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "$10", "$11", "$12", "$lo", "$hi" \
- )
- /* Square va and store double size result in: vh | vl */
- #define SP_ASM_SQR(vl, vh, va) \
- __asm__ __volatile__ ( \
- "dmultu %[a], %[a] \n\t" \
- "mflo %[l] \n\t" \
- "mfhi %[h] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va) \
- : "memory", "$lo", "$hi" \
- )
- /* Square va and add double size result into: vo | vh | vl */
- #define SP_ASM_SQR_ADD(vl, vh, vo, va) \
- __asm__ __volatile__ ( \
- "dmultu %[a], %[a] \n\t" \
- "mflo $10 \n\t" \
- "mfhi $11 \n\t" \
- "daddu %[l], %[l], $10 \n\t" \
- "sltu $12, %[l], $10 \n\t" \
- "daddu %[h], %[h], $12 \n\t" \
- "sltu $12, %[h], $12 \n\t" \
- "daddu %[o], %[o], $12 \n\t" \
- "daddu %[h], %[h], $11 \n\t" \
- "sltu $12, %[h], $11 \n\t" \
- "daddu %[o], %[o], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va) \
- : "$10", "$11", "$12", "$lo", "$hi" \
- )
- /* Square va and add double size result into: vh | vl */
- #define SP_ASM_SQR_ADD_NO(vl, vh, va) \
- __asm__ __volatile__ ( \
- "dmultu %[a], %[a] \n\t" \
- "mflo $10 \n\t" \
- "mfhi $11 \n\t" \
- "daddu %[l], %[l], $10 \n\t" \
- "sltu $12, %[l], $10 \n\t" \
- "daddu %[h], %[h], $11 \n\t" \
- "daddu %[h], %[h], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "$10", "$11", "$12", "$lo", "$hi" \
- )
- /* Add va into: vh | vl */
- #define SP_ASM_ADDC(vl, vh, va) \
- __asm__ __volatile__ ( \
- "daddu %[l], %[l], %[a] \n\t" \
- "sltu $12, %[l], %[a] \n\t" \
- "daddu %[h], %[h], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "$12" \
- )
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB(vl, vh, va) \
- __asm__ __volatile__ ( \
- "move $12, %[l] \n\t" \
- "dsubu %[l], $12, %[a] \n\t" \
- "sltu $12, $12, %[l] \n\t" \
- "dsubu %[h], %[h], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "$12" \
- )
- /* Add two times vc | vb | va into vo | vh | vl */
- #define SP_ASM_ADD_DBL_3(vl, vh, vo, va, vb, vc) \
- __asm__ __volatile__ ( \
- "daddu %[l], %[l], %[a] \n\t" \
- "sltu $12, %[l], %[a] \n\t" \
- "daddu %[h], %[h], $12 \n\t" \
- "sltu $12, %[h], $12 \n\t" \
- "daddu %[o], %[o], $12 \n\t" \
- "daddu %[h], %[h], %[b] \n\t" \
- "sltu $12, %[h], %[b] \n\t" \
- "daddu %[o], %[o], %[c] \n\t" \
- "daddu %[o], %[o], $12 \n\t" \
- "daddu %[l], %[l], %[a] \n\t" \
- "sltu $12, %[l], %[a] \n\t" \
- "daddu %[h], %[h], $12 \n\t" \
- "sltu $12, %[h], $12 \n\t" \
- "daddu %[o], %[o], $12 \n\t" \
- "daddu %[h], %[h], %[b] \n\t" \
- "sltu $12, %[h], %[b] \n\t" \
- "daddu %[o], %[o], %[c] \n\t" \
- "daddu %[o], %[o], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb), [c] "r" (vc) \
- : "$12" \
- )
- #define SP_INT_ASM_AVAILABLE
- #endif /* WOLFSSL_SP_MIPS64 && SP_WORD_SIZE == 64 */
- #if defined(WOLFSSL_SP_MIPS) && SP_WORD_SIZE == 32
- /*
- * CPU: MIPS 32-bit
- */
- /* Multiply va by vb and store double size result in: vh | vl */
- #define SP_ASM_MUL(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "multu %[a], %[b] \n\t" \
- "mflo %[l] \n\t" \
- "mfhi %[h] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va), [b] "r" (vb) \
- : "memory", "%lo", "%hi" \
- )
- /* Multiply va by vb and store double size result in: vo | vh | vl */
- #define SP_ASM_MUL_SET(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "multu %[a], %[b] \n\t" \
- "mflo %[l] \n\t" \
- "mfhi %[h] \n\t" \
- "move %[o], $0 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "=r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "%lo", "%hi" \
- )
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "multu %[a], %[b] \n\t" \
- "mflo $10 \n\t" \
- "mfhi $11 \n\t" \
- "addu %[l], %[l], $10 \n\t" \
- "sltu $12, %[l], $10 \n\t" \
- "addu %[h], %[h], $12 \n\t" \
- "sltu $12, %[h], $12 \n\t" \
- "addu %[o], %[o], $12 \n\t" \
- "addu %[h], %[h], $11 \n\t" \
- "sltu $12, %[h], $11 \n\t" \
- "addu %[o], %[o], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "$10", "$11", "$12", "%lo", "%hi" \
- )
- /* Multiply va by vb and add double size result into: vh | vl */
- #define SP_ASM_MUL_ADD_NO(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "multu %[a], %[b] \n\t" \
- "mflo $10 \n\t" \
- "mfhi $11 \n\t" \
- "addu %[l], %[l], $10 \n\t" \
- "sltu $12, %[l], $10 \n\t" \
- "addu %[h], %[h], $11 \n\t" \
- "addu %[h], %[h], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va), [b] "r" (vb) \
- : "$10", "$11", "$12", "%lo", "%hi" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "multu %[a], %[b] \n\t" \
- "mflo $10 \n\t" \
- "mfhi $11 \n\t" \
- "addu %[l], %[l], $10 \n\t" \
- "sltu $12, %[l], $10 \n\t" \
- "addu %[h], %[h], $12 \n\t" \
- "sltu $12, %[h], $12 \n\t" \
- "addu %[o], %[o], $12 \n\t" \
- "addu %[h], %[h], $11 \n\t" \
- "sltu $12, %[h], $11 \n\t" \
- "addu %[o], %[o], $12 \n\t" \
- "addu %[l], %[l], $10 \n\t" \
- "sltu $12, %[l], $10 \n\t" \
- "addu %[h], %[h], $12 \n\t" \
- "sltu $12, %[h], $12 \n\t" \
- "addu %[o], %[o], $12 \n\t" \
- "addu %[h], %[h], $11 \n\t" \
- "sltu $12, %[h], $11 \n\t" \
- "addu %[o], %[o], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "$10", "$11", "$12", "%lo", "%hi" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "multu %[a], %[b] \n\t" \
- "mflo $10 \n\t" \
- "mfhi $11 \n\t" \
- "addu %[l], %[l], $10 \n\t" \
- "sltu $12, %[l], $10 \n\t" \
- "addu %[h], %[h], $11 \n\t" \
- "addu %[h], %[h], $12 \n\t" \
- "addu %[l], %[l], $10 \n\t" \
- "sltu $12, %[l], $10 \n\t" \
- "addu %[h], %[h], $12 \n\t" \
- "sltu $12, %[h], $12 \n\t" \
- "addu %[o], %[o], $12 \n\t" \
- "addu %[h], %[h], $11 \n\t" \
- "sltu $12, %[h], $11 \n\t" \
- "addu %[o], %[o], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "$10", "$11", "$12", "%lo", "%hi" \
- )
- /* Square va and store double size result in: vh | vl */
- #define SP_ASM_SQR(vl, vh, va) \
- __asm__ __volatile__ ( \
- "multu %[a], %[a] \n\t" \
- "mflo %[l] \n\t" \
- "mfhi %[h] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va) \
- : "memory", "%lo", "%hi" \
- )
- /* Square va and add double size result into: vo | vh | vl */
- #define SP_ASM_SQR_ADD(vl, vh, vo, va) \
- __asm__ __volatile__ ( \
- "multu %[a], %[a] \n\t" \
- "mflo $10 \n\t" \
- "mfhi $11 \n\t" \
- "addu %[l], %[l], $10 \n\t" \
- "sltu $12, %[l], $10 \n\t" \
- "addu %[h], %[h], $12 \n\t" \
- "sltu $12, %[h], $12 \n\t" \
- "addu %[o], %[o], $12 \n\t" \
- "addu %[h], %[h], $11 \n\t" \
- "sltu $12, %[h], $11 \n\t" \
- "addu %[o], %[o], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va) \
- : "$10", "$11", "$12", "%lo", "%hi" \
- )
- /* Square va and add double size result into: vh | vl */
- #define SP_ASM_SQR_ADD_NO(vl, vh, va) \
- __asm__ __volatile__ ( \
- "multu %[a], %[a] \n\t" \
- "mflo $10 \n\t" \
- "mfhi $11 \n\t" \
- "addu %[l], %[l], $10 \n\t" \
- "sltu $12, %[l], $10 \n\t" \
- "addu %[h], %[h], $11 \n\t" \
- "addu %[h], %[h], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "$10", "$11", "$12", "%lo", "%hi" \
- )
- /* Add va into: vh | vl */
- #define SP_ASM_ADDC(vl, vh, va) \
- __asm__ __volatile__ ( \
- "addu %[l], %[l], %[a] \n\t" \
- "sltu $12, %[l], %[a] \n\t" \
- "addu %[h], %[h], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "$12" \
- )
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB(vl, vh, va) \
- __asm__ __volatile__ ( \
- "move $12, %[l] \n\t" \
- "subu %[l], $12, %[a] \n\t" \
- "sltu $12, $12, %[l] \n\t" \
- "subu %[h], %[h], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "$12" \
- )
- /* Add two times vc | vb | va into vo | vh | vl */
- #define SP_ASM_ADD_DBL_3(vl, vh, vo, va, vb, vc) \
- __asm__ __volatile__ ( \
- "addu %[l], %[l], %[a] \n\t" \
- "sltu $12, %[l], %[a] \n\t" \
- "addu %[h], %[h], $12 \n\t" \
- "sltu $12, %[h], $12 \n\t" \
- "addu %[o], %[o], $12 \n\t" \
- "addu %[h], %[h], %[b] \n\t" \
- "sltu $12, %[h], %[b] \n\t" \
- "addu %[o], %[o], %[c] \n\t" \
- "addu %[o], %[o], $12 \n\t" \
- "addu %[l], %[l], %[a] \n\t" \
- "sltu $12, %[l], %[a] \n\t" \
- "addu %[h], %[h], $12 \n\t" \
- "sltu $12, %[h], $12 \n\t" \
- "addu %[o], %[o], $12 \n\t" \
- "addu %[h], %[h], %[b] \n\t" \
- "sltu $12, %[h], %[b] \n\t" \
- "addu %[o], %[o], %[c] \n\t" \
- "addu %[o], %[o], $12 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb), [c] "r" (vc) \
- : "$12" \
- )
- #define SP_INT_ASM_AVAILABLE
- #endif /* WOLFSSL_SP_MIPS && SP_WORD_SIZE == 32 */
- #if defined(WOLFSSL_SP_RISCV64) && SP_WORD_SIZE == 64
- /*
- * CPU: RISCV 64-bit
- */
- /* Multiply va by vb and store double size result in: vh | vl */
- #define SP_ASM_MUL(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "mul %[l], %[a], %[b] \n\t" \
- "mulhu %[h], %[a], %[b] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va), [b] "r" (vb) \
- : "memory" \
- )
- /* Multiply va by vb and store double size result in: vo | vh | vl */
- #define SP_ASM_MUL_SET(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mulhu %[h], %[a], %[b] \n\t" \
- "mul %[l], %[a], %[b] \n\t" \
- "add %[o], zero, zero \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "=r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : \
- )
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mul a5, %[a], %[b] \n\t" \
- "mulhu a6, %[a], %[b] \n\t" \
- "add %[l], %[l], a5 \n\t" \
- "sltu a7, %[l], a5 \n\t" \
- "add %[h], %[h], a7 \n\t" \
- "sltu a7, %[h], a7 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[h], %[h], a6 \n\t" \
- "sltu a7, %[h], a6 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "a5", "a6", "a7" \
- )
- /* Multiply va by vb and add double size result into: vh | vl */
- #define SP_ASM_MUL_ADD_NO(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "mul a5, %[a], %[b] \n\t" \
- "mulhu a6, %[a], %[b] \n\t" \
- "add %[l], %[l], a5 \n\t" \
- "sltu a7, %[l], a5 \n\t" \
- "add %[h], %[h], a6 \n\t" \
- "add %[h], %[h], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va), [b] "r" (vb) \
- : "a5", "a6", "a7" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mul a5, %[a], %[b] \n\t" \
- "mulhu a6, %[a], %[b] \n\t" \
- "add %[l], %[l], a5 \n\t" \
- "sltu a7, %[l], a5 \n\t" \
- "add %[h], %[h], a7 \n\t" \
- "sltu a7, %[h], a7 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[h], %[h], a6 \n\t" \
- "sltu a7, %[h], a6 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[l], %[l], a5 \n\t" \
- "sltu a7, %[l], a5 \n\t" \
- "add %[h], %[h], a7 \n\t" \
- "sltu a7, %[h], a7 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[h], %[h], a6 \n\t" \
- "sltu a7, %[h], a6 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "a5", "a6", "a7" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mul a5, %[a], %[b] \n\t" \
- "mulhu a6, %[a], %[b] \n\t" \
- "add %[l], %[l], a5 \n\t" \
- "sltu a7, %[l], a5 \n\t" \
- "add %[h], %[h], a6 \n\t" \
- "add %[h], %[h], a7 \n\t" \
- "add %[l], %[l], a5 \n\t" \
- "sltu a7, %[l], a5 \n\t" \
- "add %[h], %[h], a7 \n\t" \
- "sltu a7, %[h], a7 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[h], %[h], a6 \n\t" \
- "sltu a7, %[h], a6 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "a5", "a6", "a7" \
- )
- /* Square va and store double size result in: vh | vl */
- #define SP_ASM_SQR(vl, vh, va) \
- __asm__ __volatile__ ( \
- "mul %[l], %[a], %[a] \n\t" \
- "mulhu %[h], %[a], %[a] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va) \
- : "memory" \
- )
- /* Square va and add double size result into: vo | vh | vl */
- #define SP_ASM_SQR_ADD(vl, vh, vo, va) \
- __asm__ __volatile__ ( \
- "mul a5, %[a], %[a] \n\t" \
- "mulhu a6, %[a], %[a] \n\t" \
- "add %[l], %[l], a5 \n\t" \
- "sltu a7, %[l], a5 \n\t" \
- "add %[h], %[h], a7 \n\t" \
- "sltu a7, %[h], a7 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[h], %[h], a6 \n\t" \
- "sltu a7, %[h], a6 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va) \
- : "a5", "a6", "a7" \
- )
- /* Square va and add double size result into: vh | vl */
- #define SP_ASM_SQR_ADD_NO(vl, vh, va) \
- __asm__ __volatile__ ( \
- "mul a5, %[a], %[a] \n\t" \
- "mulhu a6, %[a], %[a] \n\t" \
- "add %[l], %[l], a5 \n\t" \
- "sltu a7, %[l], a5 \n\t" \
- "add %[h], %[h], a6 \n\t" \
- "add %[h], %[h], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "a5", "a6", "a7" \
- )
- /* Add va into: vh | vl */
- #define SP_ASM_ADDC(vl, vh, va) \
- __asm__ __volatile__ ( \
- "add %[l], %[l], %[a] \n\t" \
- "sltu a7, %[l], %[a] \n\t" \
- "add %[h], %[h], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "a7" \
- )
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB(vl, vh, va) \
- __asm__ __volatile__ ( \
- "add a7, %[l], zero \n\t" \
- "sub %[l], a7, %[a] \n\t" \
- "sltu a7, a7, %[l] \n\t" \
- "sub %[h], %[h], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "a7" \
- )
- /* Add two times vc | vb | va into vo | vh | vl */
- #define SP_ASM_ADD_DBL_3(vl, vh, vo, va, vb, vc) \
- __asm__ __volatile__ ( \
- "add %[l], %[l], %[a] \n\t" \
- "sltu a7, %[l], %[a] \n\t" \
- "add %[h], %[h], a7 \n\t" \
- "sltu a7, %[h], a7 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[h], %[h], %[b] \n\t" \
- "sltu a7, %[h], %[b] \n\t" \
- "add %[o], %[o], %[c] \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[l], %[l], %[a] \n\t" \
- "sltu a7, %[l], %[a] \n\t" \
- "add %[h], %[h], a7 \n\t" \
- "sltu a7, %[h], a7 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[h], %[h], %[b] \n\t" \
- "sltu a7, %[h], %[b] \n\t" \
- "add %[o], %[o], %[c] \n\t" \
- "add %[o], %[o], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb), [c] "r" (vc) \
- : "a7" \
- )
- #define SP_INT_ASM_AVAILABLE
- #endif /* WOLFSSL_SP_RISCV64 && SP_WORD_SIZE == 64 */
- #if defined(WOLFSSL_SP_RISCV32) && SP_WORD_SIZE == 32
- /*
- * CPU: RISCV 32-bit
- */
- /* Multiply va by vb and store double size result in: vh | vl */
- #define SP_ASM_MUL(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "mul %[l], %[a], %[b] \n\t" \
- "mulhu %[h], %[a], %[b] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va), [b] "r" (vb) \
- : "memory" \
- )
- /* Multiply va by vb and store double size result in: vo | vh | vl */
- #define SP_ASM_MUL_SET(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mulhu %[h], %[a], %[b] \n\t" \
- "mul %[l], %[a], %[b] \n\t" \
- "add %[o], zero, zero \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "=r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : \
- )
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mul a5, %[a], %[b] \n\t" \
- "mulhu a6, %[a], %[b] \n\t" \
- "add %[l], %[l], a5 \n\t" \
- "sltu a7, %[l], a5 \n\t" \
- "add %[h], %[h], a7 \n\t" \
- "sltu a7, %[h], a7 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[h], %[h], a6 \n\t" \
- "sltu a7, %[h], a6 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "a5", "a6", "a7" \
- )
- /* Multiply va by vb and add double size result into: vh | vl */
- #define SP_ASM_MUL_ADD_NO(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "mul a5, %[a], %[b] \n\t" \
- "mulhu a6, %[a], %[b] \n\t" \
- "add %[l], %[l], a5 \n\t" \
- "sltu a7, %[l], a5 \n\t" \
- "add %[h], %[h], a6 \n\t" \
- "add %[h], %[h], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va), [b] "r" (vb) \
- : "a5", "a6", "a7" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mul a5, %[a], %[b] \n\t" \
- "mulhu a6, %[a], %[b] \n\t" \
- "add %[l], %[l], a5 \n\t" \
- "sltu a7, %[l], a5 \n\t" \
- "add %[h], %[h], a7 \n\t" \
- "sltu a7, %[h], a7 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[h], %[h], a6 \n\t" \
- "sltu a7, %[h], a6 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[l], %[l], a5 \n\t" \
- "sltu a7, %[l], a5 \n\t" \
- "add %[h], %[h], a7 \n\t" \
- "sltu a7, %[h], a7 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[h], %[h], a6 \n\t" \
- "sltu a7, %[h], a6 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "a5", "a6", "a7" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "mul a5, %[a], %[b] \n\t" \
- "mulhu a6, %[a], %[b] \n\t" \
- "add %[l], %[l], a5 \n\t" \
- "sltu a7, %[l], a5 \n\t" \
- "add %[h], %[h], a6 \n\t" \
- "add %[h], %[h], a7 \n\t" \
- "add %[l], %[l], a5 \n\t" \
- "sltu a7, %[l], a5 \n\t" \
- "add %[h], %[h], a7 \n\t" \
- "sltu a7, %[h], a7 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[h], %[h], a6 \n\t" \
- "sltu a7, %[h], a6 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "a5", "a6", "a7" \
- )
- /* Square va and store double size result in: vh | vl */
- #define SP_ASM_SQR(vl, vh, va) \
- __asm__ __volatile__ ( \
- "mul %[l], %[a], %[a] \n\t" \
- "mulhu %[h], %[a], %[a] \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va) \
- : "memory" \
- )
- /* Square va and add double size result into: vo | vh | vl */
- #define SP_ASM_SQR_ADD(vl, vh, vo, va) \
- __asm__ __volatile__ ( \
- "mul a5, %[a], %[a] \n\t" \
- "mulhu a6, %[a], %[a] \n\t" \
- "add %[l], %[l], a5 \n\t" \
- "sltu a7, %[l], a5 \n\t" \
- "add %[h], %[h], a7 \n\t" \
- "sltu a7, %[h], a7 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[h], %[h], a6 \n\t" \
- "sltu a7, %[h], a6 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va) \
- : "a5", "a6", "a7" \
- )
- /* Square va and add double size result into: vh | vl */
- #define SP_ASM_SQR_ADD_NO(vl, vh, va) \
- __asm__ __volatile__ ( \
- "mul a5, %[a], %[a] \n\t" \
- "mulhu a6, %[a], %[a] \n\t" \
- "add %[l], %[l], a5 \n\t" \
- "sltu a7, %[l], a5 \n\t" \
- "add %[h], %[h], a6 \n\t" \
- "add %[h], %[h], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "a5", "a6", "a7" \
- )
- /* Add va into: vh | vl */
- #define SP_ASM_ADDC(vl, vh, va) \
- __asm__ __volatile__ ( \
- "add %[l], %[l], %[a] \n\t" \
- "sltu a7, %[l], %[a] \n\t" \
- "add %[h], %[h], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "a7" \
- )
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB(vl, vh, va) \
- __asm__ __volatile__ ( \
- "add a7, %[l], zero \n\t" \
- "sub %[l], a7, %[a] \n\t" \
- "sltu a7, a7, %[l] \n\t" \
- "sub %[h], %[h], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "a7" \
- )
- /* Add two times vc | vb | va into vo | vh | vl */
- #define SP_ASM_ADD_DBL_3(vl, vh, vo, va, vb, vc) \
- __asm__ __volatile__ ( \
- "add %[l], %[l], %[a] \n\t" \
- "sltu a7, %[l], %[a] \n\t" \
- "add %[h], %[h], a7 \n\t" \
- "sltu a7, %[h], a7 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[h], %[h], %[b] \n\t" \
- "sltu a7, %[h], %[b] \n\t" \
- "add %[o], %[o], %[c] \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[l], %[l], %[a] \n\t" \
- "sltu a7, %[l], %[a] \n\t" \
- "add %[h], %[h], a7 \n\t" \
- "sltu a7, %[h], a7 \n\t" \
- "add %[o], %[o], a7 \n\t" \
- "add %[h], %[h], %[b] \n\t" \
- "sltu a7, %[h], %[b] \n\t" \
- "add %[o], %[o], %[c] \n\t" \
- "add %[o], %[o], a7 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb), [c] "r" (vc) \
- : "a7" \
- )
- #define SP_INT_ASM_AVAILABLE
- #endif /* WOLFSSL_SP_RISCV32 && SP_WORD_SIZE == 32 */
- #if defined(WOLFSSL_SP_S390X) && SP_WORD_SIZE == 64
- /*
- * CPU: Intel s390x
- */
- /* Multiply va by vb and store double size result in: vh | vl */
- #define SP_ASM_MUL(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "lgr %%r1, %[a] \n\t" \
- "mlgr %%r0, %[b] \n\t" \
- "lgr %[l], %%r1 \n\t" \
- "lgr %[h], %%r0 \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va), [b] "r" (vb) \
- : "memory", "r0", "r1" \
- )
- /* Multiply va by vb and store double size result in: vo | vh | vl */
- #define SP_ASM_MUL_SET(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "lgr %%r1, %[a] \n\t" \
- "mlgr %%r0, %[b] \n\t" \
- "lghi %[o], 0 \n\t" \
- "lgr %[l], %%r1 \n\t" \
- "lgr %[h], %%r0 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "=r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "r0", "r1" \
- )
- /* Multiply va by vb and add double size result into: vo | vh | vl */
- #define SP_ASM_MUL_ADD(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "lghi %%r10, 0 \n\t" \
- "lgr %%r1, %[a] \n\t" \
- "mlgr %%r0, %[b] \n\t" \
- "algr %[l], %%r1 \n\t" \
- "alcgr %[h], %%r0 \n\t" \
- "alcgr %[o], %%r10 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "r0", "r1", "r10", "cc" \
- )
- /* Multiply va by vb and add double size result into: vh | vl */
- #define SP_ASM_MUL_ADD_NO(vl, vh, va, vb) \
- __asm__ __volatile__ ( \
- "lgr %%r1, %[a] \n\t" \
- "mlgr %%r0, %[b] \n\t" \
- "algr %[l], %%r1 \n\t" \
- "alcgr %[h], %%r0 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va), [b] "r" (vb) \
- : "r0", "r1", "cc" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl */
- #define SP_ASM_MUL_ADD2(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "lghi %%r10, 0 \n\t" \
- "lgr %%r1, %[a] \n\t" \
- "mlgr %%r0, %[b] \n\t" \
- "algr %[l], %%r1 \n\t" \
- "alcgr %[h], %%r0 \n\t" \
- "alcgr %[o], %%r10 \n\t" \
- "algr %[l], %%r1 \n\t" \
- "alcgr %[h], %%r0 \n\t" \
- "alcgr %[o], %%r10 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "r0", "r1", "r10", "cc" \
- )
- /* Multiply va by vb and add double size result twice into: vo | vh | vl
- * Assumes first add will not overflow vh | vl
- */
- #define SP_ASM_MUL_ADD2_NO(vl, vh, vo, va, vb) \
- __asm__ __volatile__ ( \
- "lghi %%r10, 0 \n\t" \
- "lgr %%r1, %[a] \n\t" \
- "mlgr %%r0, %[b] \n\t" \
- "algr %[l], %%r1 \n\t" \
- "alcgr %[h], %%r0 \n\t" \
- "algr %[l], %%r1 \n\t" \
- "alcgr %[h], %%r0 \n\t" \
- "alcgr %[o], %%r10 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb) \
- : "r0", "r1", "r10", "cc" \
- )
- /* Square va and store double size result in: vh | vl */
- #define SP_ASM_SQR(vl, vh, va) \
- __asm__ __volatile__ ( \
- "lgr %%r1, %[a] \n\t" \
- "mlgr %%r0, %%r1 \n\t" \
- "lgr %[l], %%r1 \n\t" \
- "lgr %[h], %%r0 \n\t" \
- : [h] "+r" (vh), [l] "+r" (vl) \
- : [a] "r" (va) \
- : "memory", "r0", "r1" \
- )
- /* Square va and add double size result into: vo | vh | vl */
- #define SP_ASM_SQR_ADD(vl, vh, vo, va) \
- __asm__ __volatile__ ( \
- "lghi %%r10, 0 \n\t" \
- "lgr %%r1, %[a] \n\t" \
- "mlgr %%r0, %%r1 \n\t" \
- "algr %[l], %%r1 \n\t" \
- "alcgr %[h], %%r0 \n\t" \
- "alcgr %[o], %%r10 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va) \
- : "r0", "r1", "r10", "cc" \
- )
- /* Square va and add double size result into: vh | vl */
- #define SP_ASM_SQR_ADD_NO(vl, vh, va) \
- __asm__ __volatile__ ( \
- "lgr %%r1, %[a] \n\t" \
- "mlgr %%r0, %%r1 \n\t" \
- "algr %[l], %%r1 \n\t" \
- "alcgr %[h], %%r0 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "r0", "r1", "cc" \
- )
- /* Add va into: vh | vl */
- #define SP_ASM_ADDC(vl, vh, va) \
- __asm__ __volatile__ ( \
- "lghi %%r10, 0 \n\t" \
- "algr %[l], %[a] \n\t" \
- "alcgr %[h], %%r10 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "r10", "cc" \
- )
- /* Sub va from: vh | vl */
- #define SP_ASM_SUBB(vl, vh, va) \
- __asm__ __volatile__ ( \
- "lghi %%r10, 0 \n\t" \
- "slgr %[l], %[a] \n\t" \
- "slbgr %[h], %%r10 \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh) \
- : [a] "r" (va) \
- : "r10", "cc" \
- )
- /* Add two times vc | vb | va into vo | vh | vl */
- #define SP_ASM_ADD_DBL_3(vl, vh, vo, va, vb, vc) \
- __asm__ __volatile__ ( \
- "algr %[l], %[a] \n\t" \
- "alcgr %[h], %[b] \n\t" \
- "alcgr %[o], %[c] \n\t" \
- "algr %[l], %[a] \n\t" \
- "alcgr %[h], %[b] \n\t" \
- "alcgr %[o], %[c] \n\t" \
- : [l] "+r" (vl), [h] "+r" (vh), [o] "+r" (vo) \
- : [a] "r" (va), [b] "r" (vb), [c] "r" (vc) \
- : "cc" \
- )
- #define SP_INT_ASM_AVAILABLE
- #endif /* WOLFSSL_SP_S390X && SP_WORD_SIZE == 64 */
- #ifdef SP_INT_ASM_AVAILABLE
- #ifndef SP_INT_NO_ASM
- #define SQR_MUL_ASM
- #endif
- #ifndef SP_ASM_ADDC_REG
- #define SP_ASM_ADDC_REG SP_ASM_ADDC
- #endif /* SP_ASM_ADDC_REG */
- #ifndef SP_ASM_SUBB_REG
- #define SP_ASM_SUBB_REG SP_ASM_SUBB
- #endif /* SP_ASM_ADDC_REG */
- #endif /* SQR_MUL_ASM */
- #endif /* !WOLFSSL_NO_ASM */
- #if (!defined(NO_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || \
- !defined(NO_DSA) || !defined(NO_DH) || \
- (defined(HAVE_ECC) && defined(HAVE_COMP_KEY)) || defined(OPENSSL_EXTRA) || \
- (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_PUBLIC_ONLY))
- #ifndef WC_NO_CACHE_RESISTANT
- /* Mask of address for constant time operations. */
- const size_t sp_off_on_addr[2] =
- {
- (size_t) 0,
- (size_t)-1
- };
- #endif
- #endif
- #if defined(WOLFSSL_HAVE_SP_DH) || defined(WOLFSSL_HAVE_SP_RSA)
- #ifdef __cplusplus
- extern "C" {
- #endif
- /* Modular exponentiation implementations using Single Precision. */
- WOLFSSL_LOCAL int sp_ModExp_1024(sp_int* base, sp_int* exp, sp_int* mod,
- sp_int* res);
- WOLFSSL_LOCAL int sp_ModExp_1536(sp_int* base, sp_int* exp, sp_int* mod,
- sp_int* res);
- WOLFSSL_LOCAL int sp_ModExp_2048(sp_int* base, sp_int* exp, sp_int* mod,
- sp_int* res);
- WOLFSSL_LOCAL int sp_ModExp_3072(sp_int* base, sp_int* exp, sp_int* mod,
- sp_int* res);
- WOLFSSL_LOCAL int sp_ModExp_4096(sp_int* base, sp_int* exp, sp_int* mod,
- sp_int* res);
- #ifdef __cplusplus
- } /* extern "C" */
- #endif
- #endif /* WOLFSSL_HAVE_SP_DH || WOLFSSL_HAVE_SP_RSA */
- #if defined(WOLFSSL_SP_MATH_ALL) || defined(WOLFSSL_HAVE_SP_DH) || \
- defined(OPENSSL_ALL)
- static int _sp_mont_red(sp_int* a, const sp_int* m, sp_int_digit mp);
- #endif
- #if defined(WOLFSSL_SP_MATH_ALL) || defined(WOLFSSL_HAVE_SP_DH) || \
- defined(WOLFCRYPT_HAVE_ECCSI) || defined(WOLFCRYPT_HAVE_SAKKE) || \
- defined(OPENSSL_ALL)
- static void _sp_mont_setup(const sp_int* m, sp_int_digit* rho);
- #endif
- /* Determine when mp_add_d is required. */
- #if !defined(NO_PWDBASED) || defined(WOLFSSL_KEY_GEN) || !defined(NO_DH) || \
- !defined(NO_DSA) || \
- (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- defined(OPENSSL_EXTRA)
- #define WOLFSSL_SP_ADD_D
- #endif
- /* Determine when mp_sub_d is required. */
- #if (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- !defined(NO_DH) || defined(HAVE_ECC) || !defined(NO_DSA)
- #define WOLFSSL_SP_SUB_D
- #endif
- /* Determine when mp_read_radix with a radix of 10 is required. */
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(NO_RSA) && \
- !defined(WOLFSSL_RSA_VERIFY_ONLY)) || defined(HAVE_ECC) || \
- !defined(NO_DSA) || defined(OPENSSL_EXTRA)
- #define WOLFSSL_SP_READ_RADIX_16
- #endif
- /* Determine when mp_read_radix with a radix of 10 is required. */
- #if defined(WOLFSSL_SP_MATH_ALL) && !defined(NO_RSA) && \
- !defined(WOLFSSL_RSA_VERIFY_ONLY)
- #define WOLFSSL_SP_READ_RADIX_10
- #endif
- /* Determine when mp_invmod is required. */
- #if defined(HAVE_ECC) || !defined(NO_DSA) || defined(OPENSSL_EXTRA) || \
- (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY))
- #define WOLFSSL_SP_INVMOD
- #endif
- /* Determine when mp_invmod_mont_ct is required. */
- #if defined(WOLFSSL_SP_MATH_ALL) && defined(HAVE_ECC)
- #define WOLFSSL_SP_INVMOD_MONT_CT
- #endif
- /* Determine when mp_prime_gen is required. */
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || !defined(NO_DH) || \
- (!defined(NO_RSA) && defined(WOLFSSL_KEY_GEN))
- #define WOLFSSL_SP_PRIME_GEN
- #endif
- /* Set the multi-precision number to zero.
- *
- * Assumes a is not NULL.
- *
- * @param [out] a SP integer to set to zero.
- */
- static void _sp_zero(sp_int* a)
- {
- sp_int_minimal* am = (sp_int_minimal *)a;
- am->used = 0;
- am->dp[0] = 0;
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- am->sign = MP_ZPOS;
- #endif
- }
- /* Initialize the multi-precision number to be zero with a given max size.
- *
- * @param [out] a SP integer.
- * @param [in] size Number of words to say are available.
- */
- static void _sp_init_size(sp_int* a, unsigned int size)
- {
- volatile sp_int_minimal* am = (sp_int_minimal *)a;
- #ifdef HAVE_WOLF_BIGINT
- wc_bigint_init((struct WC_BIGINT*)&am->raw);
- #endif
- _sp_zero((sp_int*)am);
- am->size = size;
- }
- /* Initialize the multi-precision number to be zero with a given max size.
- *
- * @param [out] a SP integer.
- * @param [in] size Number of words to say are available.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a is NULL.
- */
- int sp_init_size(sp_int* a, unsigned int size)
- {
- int err = MP_OKAY;
- /* Validate parameters. Don't use size more than max compiled. */
- if ((a == NULL) || ((size <= 0) || (size > SP_INT_DIGITS))) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- _sp_init_size(a, size);
- }
- return err;
- }
- /* Initialize the multi-precision number to be zero.
- *
- * @param [out] a SP integer.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a is NULL.
- */
- int sp_init(sp_int* a)
- {
- int err = MP_OKAY;
- /* Validate parameter. */
- if (a == NULL) {
- err = MP_VAL;
- }
- else {
- /* Assume complete sp_int with SP_INT_DIGITS digits. */
- _sp_init_size(a, SP_INT_DIGITS);
- }
- return err;
- }
- #if !defined(WOLFSSL_RSA_PUBLIC_ONLY) || !defined(NO_DH) || defined(HAVE_ECC)
- /* Initialize up to six multi-precision numbers to be zero.
- *
- * @param [out] n1 SP integer.
- * @param [out] n2 SP integer.
- * @param [out] n3 SP integer.
- * @param [out] n4 SP integer.
- * @param [out] n5 SP integer.
- * @param [out] n6 SP integer.
- *
- * @return MP_OKAY on success.
- */
- int sp_init_multi(sp_int* n1, sp_int* n2, sp_int* n3, sp_int* n4, sp_int* n5,
- sp_int* n6)
- {
- /* Initialize only those pointers that are valid. */
- if (n1 != NULL) {
- _sp_init_size(n1, SP_INT_DIGITS);
- }
- if (n2 != NULL) {
- _sp_init_size(n2, SP_INT_DIGITS);
- }
- if (n3 != NULL) {
- _sp_init_size(n3, SP_INT_DIGITS);
- }
- if (n4 != NULL) {
- _sp_init_size(n4, SP_INT_DIGITS);
- }
- if (n5 != NULL) {
- _sp_init_size(n5, SP_INT_DIGITS);
- }
- if (n6 != NULL) {
- _sp_init_size(n6, SP_INT_DIGITS);
- }
- return MP_OKAY;
- }
- #endif /* !WOLFSSL_RSA_PUBLIC_ONLY || !NO_DH || HAVE_ECC */
- /* Free the memory allocated in the multi-precision number.
- *
- * @param [in] a SP integer.
- */
- void sp_free(sp_int* a)
- {
- if (a != NULL) {
- #ifdef HAVE_WOLF_BIGINT
- wc_bigint_free(&a->raw);
- #endif
- }
- }
- #if (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- !defined(NO_DH) || defined(HAVE_ECC)
- /* Grow multi-precision number to be able to hold l digits.
- * This function does nothing as the number of digits is fixed.
- *
- * @param [in,out] a SP integer.
- * @param [in] l Number of digits to grow to.
- *
- * @return MP_OKAY on success
- * @return MP_MEM if the number of digits requested is more than available.
- */
- int sp_grow(sp_int* a, int l)
- {
- int err = MP_OKAY;
- /* Validate parameter. */
- if ((a == NULL) || (l < 0)) {
- err = MP_VAL;
- }
- /* Ensure enough words allocated for grow. */
- if ((err == MP_OKAY) && ((unsigned int)l > a->size)) {
- err = MP_MEM;
- }
- if (err == MP_OKAY) {
- unsigned int i;
- /* Put in zeros up to the new length. */
- for (i = a->used; i < (unsigned int)l; i++) {
- a->dp[i] = 0;
- }
- }
- return err;
- }
- #endif /* (!NO_RSA && !WOLFSSL_RSA_VERIFY_ONLY) || !NO_DH || HAVE_ECC */
- #if (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- defined(HAVE_ECC)
- /* Set the multi-precision number to zero.
- *
- * @param [out] a SP integer to set to zero.
- */
- void sp_zero(sp_int* a)
- {
- /* Make an sp_int with valid pointer zero. */
- if (a != NULL) {
- _sp_zero(a);
- }
- }
- #endif /* (!NO_RSA && !WOLFSSL_RSA_VERIFY_ONLY) || HAVE_ECC */
- /* Clear the data from the multi-precision number, set to zero and free.
- *
- * @param [out] a SP integer.
- */
- void sp_clear(sp_int* a)
- {
- /* Clear when valid pointer passed in. */
- if (a != NULL) {
- unsigned int i;
- /* Only clear the digits being used. */
- for (i = 0; i < a->used; i++) {
- a->dp[i] = 0;
- }
- /* Set back to zero and free. */
- _sp_zero(a);
- sp_free(a);
- }
- }
- #if !defined(NO_RSA) || !defined(NO_DH) || defined(HAVE_ECC) || \
- !defined(NO_DSA) || defined(WOLFSSL_SP_PRIME_GEN)
- /* Ensure the data in the multi-precision number is zeroed.
- *
- * Use when security sensitive data needs to be wiped.
- *
- * @param [in] a SP integer.
- */
- void sp_forcezero(sp_int* a)
- {
- /* Zeroize when a vald pointer passed in. */
- if (a != NULL) {
- /* Ensure all data zeroized - data not zeroed when used decreases. */
- ForceZero(a->dp, a->size * SP_WORD_SIZEOF);
- /* Set back to zero. */
- #ifdef HAVE_WOLF_BIGINT
- /* Zeroize the raw data as well. */
- wc_bigint_zero(&a->raw);
- #endif
- /* Make value zero and free. */
- _sp_zero(a);
- sp_free(a);
- }
- }
- #endif /* !WOLFSSL_RSA_VERIFY_ONLY || !NO_DH || HAVE_ECC */
- #if defined(WOLFSSL_SP_MATH_ALL) || !defined(NO_DH) || defined(HAVE_ECC) || \
- !defined(NO_RSA) || defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY)
- /* Copy value of multi-precision number a into r.
- *
- * @param [in] a SP integer - source.
- * @param [out] r SP integer - destination.
- */
- static void _sp_copy(const sp_int* a, sp_int* r)
- {
- /* Copy words across. */
- if (a->used == 0) {
- r->dp[0] = 0;
- }
- else {
- XMEMCPY(r->dp, a->dp, a->used * SP_WORD_SIZEOF);
- }
- /* Set number of used words in result. */
- r->used = a->used;
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Set sign of result. */
- r->sign = a->sign;
- #endif
- }
- /* Copy value of multi-precision number a into r.
- *
- * @param [in] a SP integer - source.
- * @param [out] r SP integer - destination.
- *
- * @return MP_OKAY on success.
- */
- int sp_copy(const sp_int* a, sp_int* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- /* Only copy if different pointers. */
- if (a != r) {
- /* Validated space in result. */
- if ((err == MP_OKAY) && (a->used > r->size)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- _sp_copy(a, r);
- }
- }
- return err;
- }
- #endif
- #if ((defined(WOLFSSL_SP_MATH_ALL) && ((!defined(WOLFSSL_RSA_VERIFY_ONLY) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || !defined(NO_DH))) || \
- defined(OPENSSL_ALL)) && defined(WC_PROTECT_ENCRYPTED_MEM)
- /* Copy 2 numbers into two results based on y. Copy a fixed number of digits.
- *
- * Constant time implementation.
- * When y is 0, r1 = a2 and r2 = a1.
- * When y is 1, r1 = a1 and r2 = a2.
- *
- * @param [in] a1 First number to copy.
- * @param [in] a2 Second number to copy.
- * @param [out] r1 First result number to copy into.
- * @param [out] r2 Second result number to copy into.
- * @param [in] y Indicates which number goes into which result number.
- * @param [in] used Number of digits to copy.
- */
- static void _sp_copy_2_ct(const sp_int* a1, const sp_int* a2, sp_int* r1,
- sp_int* r2, int y, unsigned int used)
- {
- unsigned int i;
- /* Copy data - constant time. */
- for (i = 0; i < used; i++) {
- r1->dp[i] = (a1->dp[i] & ((sp_digit)wc_off_on_addr[y ])) +
- (a2->dp[i] & ((sp_digit)wc_off_on_addr[y^1]));
- r2->dp[i] = (a1->dp[i] & ((sp_digit)wc_off_on_addr[y^1])) +
- (a2->dp[i] & ((sp_digit)wc_off_on_addr[y ]));
- }
- /* Copy used. */
- r1->used = (a1->used & ((int)wc_off_on_addr[y ])) +
- (a2->used & ((int)wc_off_on_addr[y^1]));
- r2->used = (a1->used & ((int)wc_off_on_addr[y^1])) +
- (a2->used & ((int)wc_off_on_addr[y ]));
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Copy sign. */
- r1->sign = (a1->sign & ((int)wc_off_on_addr[y ])) +
- (a2->sign & ((int)wc_off_on_addr[y^1]));
- r2->sign = (a1->sign & ((int)wc_off_on_addr[y^1])) +
- (a2->sign & ((int)wc_off_on_addr[y ]));
- #endif
- }
- #endif
- #if defined(WOLFSSL_SP_MATH_ALL) || (defined(HAVE_ECC) && defined(FP_ECC))
- /* Initializes r and copies in value from a.
- *
- * @param [out] r SP integer - destination.
- * @param [in] a SP integer - source.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or r is NULL.
- */
- int sp_init_copy(sp_int* r, const sp_int* a)
- {
- int err;
- /* Initialize r and copy value in a into it. */
- err = sp_init(r);
- if (err == MP_OKAY) {
- err = sp_copy(a, r);
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL || (HAVE_ECC && FP_ECC) */
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- !defined(NO_DH) || !defined(NO_DSA)
- /* Exchange the values in a and b.
- *
- * Avoid using this API as three copy operations are performed.
- *
- * @param [in,out] a SP integer to swap.
- * @param [in,out] b SP integer to swap.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or b is NULL.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_exch(sp_int* a, sp_int* b)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (b == NULL)) {
- err = MP_VAL;
- }
- /* Check space for a in b and b in a. */
- if ((err == MP_OKAY) && ((a->size < b->used) || (b->size < a->used))) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Declare temporary for swapping. */
- DECL_SP_INT(t, a->used);
- /* Create temporary for swapping. */
- ALLOC_SP_INT(t, a->used, err, NULL);
- if (err == MP_OKAY) {
- /* Cache allocated size of a and b. */
- unsigned int asize = a->size;
- unsigned int bsize = b->size;
- /* Copy all of SP int: t <- a, a <- b, b <- t. */
- XMEMCPY(t, a, MP_INT_SIZEOF(a->used));
- XMEMCPY(a, b, MP_INT_SIZEOF(b->used));
- XMEMCPY(b, t, MP_INT_SIZEOF(t->used));
- /* Put back size of a and b. */
- a->size = asize;
- b->size = bsize;
- }
- FREE_SP_INT(t, NULL);
- }
- return err;
- }
- #endif /* (WOLFSSL_SP_MATH_ALL && !WOLFSSL_RSA_VERIFY_ONLY) || !NO_DH ||
- * !NO_DSA */
- #if defined(HAVE_ECC) && defined(ECC_TIMING_RESISTANT) && \
- !defined(WC_NO_CACHE_RESISTANT)
- /* Conditional swap of SP int values in constant time.
- *
- * @param [in] a First SP int to conditionally swap.
- * @param [in] b Second SP int to conditionally swap.
- * @param [in] cnt Count of words to copy.
- * @param [in] swap When value is 1 then swap.
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_cond_swap_ct(sp_int* a, sp_int* b, int cnt, int swap)
- {
- unsigned int i;
- int err = MP_OKAY;
- sp_int_digit mask = (sp_int_digit)0 - (sp_int_digit)swap;
- DECL_SP_INT(t, (size_t)cnt);
- /* Allocate temporary to hold masked xor of a and b. */
- ALLOC_SP_INT(t, cnt, err, NULL);
- if (err == MP_OKAY) {
- /* XOR other fields in sp_int into temp - mask set when swapping. */
- t->used = (a->used ^ b->used) & (unsigned int)mask;
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- t->sign = (a->sign ^ b->sign) & (unsigned int)mask;
- #endif
- /* XOR requested words into temp - mask set when swapping. */
- for (i = 0; i < (unsigned int)cnt; i++) {
- t->dp[i] = (a->dp[i] ^ b->dp[i]) & mask;
- }
- /* XOR temporary - when mask set then result will be b. */
- a->used ^= t->used;
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- a->sign ^= t->sign;
- #endif
- for (i = 0; i < (unsigned int)cnt; i++) {
- a->dp[i] ^= t->dp[i];
- }
- /* XOR temporary - when mask set then result will be a. */
- b->used ^= t->used;
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- b->sign ^= b->sign;
- #endif
- for (i = 0; i < (unsigned int)cnt; i++) {
- b->dp[i] ^= t->dp[i];
- }
- }
- FREE_SP_INT(t, NULL);
- return err;
- }
- #endif /* HAVE_ECC && ECC_TIMING_RESISTANT && !WC_NO_CACHE_RESISTANT */
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Calculate the absolute value of the multi-precision number.
- *
- * @param [in] a SP integer to calculate absolute value of.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or r is NULL.
- */
- int sp_abs(const sp_int* a, sp_int* r)
- {
- int err;
- /* Copy a into r - copy fails when r is NULL. */
- err = sp_copy(a, r);
- if (err == MP_OKAY) {
- r->sign = MP_ZPOS;
- }
- return err;
- }
- #endif /* WOLFSSL_SP_INT_NEGATIVE */
- #if defined(WOLFSSL_SP_MATH_ALL) || !defined(NO_DH) || defined(HAVE_ECC) || \
- (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY))
- /* Compare absolute value of two multi-precision numbers.
- *
- * @param [in] a SP integer.
- * @param [in] b SP integer.
- *
- * @return MP_GT when a is greater than b.
- * @return MP_LT when a is less than b.
- * @return MP_EQ when a is equals b.
- */
- static int _sp_cmp_abs(const sp_int* a, const sp_int* b)
- {
- int ret = MP_EQ;
- /* Check number of words first. */
- if (a->used > b->used) {
- ret = MP_GT;
- }
- else if (a->used < b->used) {
- ret = MP_LT;
- }
- else {
- int i;
- /* Starting from most significant word, compare words.
- * Stop when different and set comparison return.
- */
- for (i = (int)(a->used - 1); i >= 0; i--) {
- if (a->dp[i] > b->dp[i]) {
- ret = MP_GT;
- break;
- }
- else if (a->dp[i] < b->dp[i]) {
- ret = MP_LT;
- break;
- }
- }
- /* If we made to the end then ret is MP_EQ from initialization. */
- }
- return ret;
- }
- #endif
- #if defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)
- /* Compare absolute value of two multi-precision numbers.
- *
- * Pointers are compared such that NULL is less than not NULL.
- *
- * @param [in] a SP integer.
- * @param [in] b SP integer.
- *
- * @return MP_GT when a is greater than b.
- * @return MP_LT when a is less than b.
- * @return MP_EQ when a equals b.
- */
- int sp_cmp_mag(const sp_int* a, const sp_int* b)
- {
- int ret;
- /* Do pointer checks first. Both NULL returns equal. */
- if (a == b) {
- ret = MP_EQ;
- }
- /* Nothing is smaller than something. */
- else if (a == NULL) {
- ret = MP_LT;
- }
- /* Something is larger than nothing. */
- else if (b == NULL) {
- ret = MP_GT;
- }
- else
- {
- /* Compare values - a and b are not NULL. */
- ret = _sp_cmp_abs(a, b);
- }
- return ret;
- }
- #endif
- #if defined(WOLFSSL_SP_MATH_ALL) || defined(HAVE_ECC) || !defined(NO_DSA) || \
- defined(OPENSSL_EXTRA) || !defined(NO_DH) || \
- (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY))
- /* Compare two multi-precision numbers.
- *
- * Assumes a and b are not NULL.
- *
- * @param [in] a SP integer.
- * @param [in] a SP integer.
- *
- * @return MP_GT when a is greater than b.
- * @return MP_LT when a is less than b.
- * @return MP_EQ when a is equals b.
- */
- static int _sp_cmp(const sp_int* a, const sp_int* b)
- {
- int ret;
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Check sign first. */
- if (a->sign > b->sign) {
- ret = MP_LT;
- }
- else if (a->sign < b->sign) {
- ret = MP_GT;
- }
- else /* (a->sign == b->sign) */ {
- #endif
- /* Compare values. */
- ret = _sp_cmp_abs(a, b);
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- if (a->sign == MP_NEG) {
- /* MP_GT = 1, MP_LT = -1, MP_EQ = 0
- * Swapping MP_GT and MP_LT results.
- */
- ret = -ret;
- }
- }
- #endif
- return ret;
- }
- #endif
- #if (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- !defined(NO_DSA) || defined(HAVE_ECC) || !defined(NO_DH) || \
- defined(WOLFSSL_SP_MATH_ALL)
- /* Compare two multi-precision numbers.
- *
- * Pointers are compared such that NULL is less than not NULL.
- *
- * @param [in] a SP integer.
- * @param [in] a SP integer.
- *
- * @return MP_GT when a is greater than b.
- * @return MP_LT when a is less than b.
- * @return MP_EQ when a is equals b.
- */
- int sp_cmp(const sp_int* a, const sp_int* b)
- {
- int ret;
- /* Check pointers first. Both NULL returns equal. */
- if (a == b) {
- ret = MP_EQ;
- }
- /* Nothing is smaller than something. */
- else if (a == NULL) {
- ret = MP_LT;
- }
- /* Something is larger than nothing. */
- else if (b == NULL) {
- ret = MP_GT;
- }
- else
- {
- /* Compare values - a and b are not NULL. */
- ret = _sp_cmp(a, b);
- }
- return ret;
- }
- #endif
- /*************************
- * Bit check/set functions
- *************************/
- #if (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- (defined(WOLFSSL_SP_MATH_ALL) && defined(HAVE_ECC)) || \
- defined(OPENSSL_EXTRA)
- /* Check if a bit is set
- *
- * When a is NULL, result is 0.
- *
- * @param [in] a SP integer.
- * @param [in] b Bit position to check.
- *
- * @return 0 when bit is not set.
- * @return 1 when bit is set.
- */
- int sp_is_bit_set(const sp_int* a, unsigned int b)
- {
- int ret = 0;
- /* Index of word. */
- unsigned int i = b >> SP_WORD_SHIFT;
- /* Check parameters. */
- if ((a != NULL) && (i < a->used)) {
- /* Shift amount to get bit down to index 0. */
- unsigned int s = b & SP_WORD_MASK;
- /* Get and mask bit. */
- ret = (int)((a->dp[i] >> s) & (sp_int_digit)1);
- }
- return ret;
- }
- #endif /* (!NO_RSA && !WOLFSSL_RSA_VERIFY_ONLY) ||
- * (WOLFSSL_SP_MATH_ALL && HAVE_ECC) */
- /* Count the number of bits in the multi-precision number.
- *
- * When a is NULL, result is 0.
- *
- * @param [in] a SP integer.
- *
- * @return Number of bits in the SP integer value.
- */
- int sp_count_bits(const sp_int* a)
- {
- int n = -1;
- /* Check parameter. */
- if ((a != NULL) && (a->used > 0)) {
- /* Get index of last word. */
- n = (int)(a->used - 1);
- /* Don't count leading zeros. */
- while ((n >= 0) && (a->dp[n] == 0)) {
- n--;
- }
- }
- /* -1 indicates SP integer value was zero. */
- if (n < 0) {
- n = 0;
- }
- else {
- /* Get the most significant word. */
- sp_int_digit d = a->dp[n];
- /* Count of bits up to last word. */
- n *= SP_WORD_SIZE;
- #ifdef SP_ASM_HI_BIT_SET_IDX
- {
- sp_int_digit hi;
- /* Get index of highest set bit. */
- SP_ASM_HI_BIT_SET_IDX(d, hi);
- /* Add bits up to and including index. */
- n += (int)hi + 1;
- }
- #elif defined(SP_ASM_LZCNT)
- {
- sp_int_digit lz;
- /* Count number of leading zeros in highest non-zero digit. */
- SP_ASM_LZCNT(d, lz);
- /* Add non-leading zero bits count. */
- n += SP_WORD_SIZE - (int)lz;
- }
- #else
- /* Check if top word has more than half the bits set. */
- if (d > SP_HALF_MAX) {
- /* Set count to a full last word. */
- n += SP_WORD_SIZE;
- /* Don't count leading zero bits. */
- while ((d & ((sp_int_digit)1 << (SP_WORD_SIZE - 1))) == 0) {
- n--;
- d <<= 1;
- }
- }
- else {
- /* Add to count until highest set bit is shifted out. */
- while (d != 0) {
- n++;
- d >>= 1;
- }
- }
- #endif
- }
- return n;
- }
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || !defined(NO_DH) || \
- (defined(HAVE_ECC) && defined(FP_ECC)) || \
- (!defined(NO_RSA) && defined(WOLFSSL_KEY_GEN))
- /* Number of entries in array of number of least significant zero bits. */
- #define SP_LNZ_CNT 16
- /* Number of bits the array checks. */
- #define SP_LNZ_BITS 4
- /* Mask to apply to check with array. */
- #define SP_LNZ_MASK 0xf
- /* Number of least significant zero bits in first SP_LNZ_CNT numbers. */
- static const int sp_lnz[SP_LNZ_CNT] = {
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
- };
- /* Count the number of least significant zero bits.
- *
- * When a is not NULL, result is 0.
- *
- * @param [in] a SP integer to use.
- *
- * @return Number of least significant zero bits.
- */
- #if !defined(HAVE_ECC) || !defined(HAVE_COMP_KEY)
- static
- #endif /* !HAVE_ECC || HAVE_COMP_KEY */
- int sp_cnt_lsb(const sp_int* a)
- {
- unsigned int bc = 0;
- /* Check for number with a value. */
- if ((a != NULL) && (!sp_iszero(a))) {
- unsigned int i;
- unsigned int j;
- /* Count least significant words that are zero. */
- for (i = 0; i < a->used && a->dp[i] == 0; i++, bc += SP_WORD_SIZE) {
- }
- /* Use 4-bit table to get count. */
- for (j = 0; j < SP_WORD_SIZE; j += SP_LNZ_BITS) {
- /* Get number of lesat significant 0 bits in nibble. */
- int cnt = sp_lnz[(a->dp[i] >> j) & SP_LNZ_MASK];
- /* Done if not all 4 bits are zero. */
- if (cnt != 4) {
- /* Add checked bits and count in last 4 bits checked. */
- bc += j + (unsigned int)cnt;
- break;
- }
- }
- }
- return (int)bc;
- }
- #endif /* WOLFSSL_SP_MATH_ALL || WOLFSSL_HAVE_SP_DH || (HAVE_ECC && FP_ECC) */
- #if !defined(WOLFSSL_RSA_VERIFY_ONLY) || defined(WOLFSSL_ASN_TEMPLATE) || \
- (defined(WOLFSSL_SP_MATH_ALL) && !defined(NO_ASN))
- /* Determine if the most significant byte of the encoded multi-precision number
- * has the top bit set.
- *
- * When a is NULL, result is 0.
- *
- * @param [in] a SP integer.
- *
- * @return 1 when the top bit of top byte is set.
- * @return 0 when the top bit of top byte is not set.
- */
- int sp_leading_bit(const sp_int* a)
- {
- int bit = 0;
- /* Check if we have a number and value to use. */
- if ((a != NULL) && (a->used > 0)) {
- /* Get top word. */
- sp_int_digit d = a->dp[a->used - 1];
- #if SP_WORD_SIZE > 8
- /* Remove bottom 8 bits until highest 8 bits left. */
- while (d > (sp_int_digit)0xff) {
- d >>= 8;
- }
- #endif
- /* Get the highest bit of the 8-bit value. */
- bit = (int)(d >> 7);
- }
- return bit;
- }
- #endif /* !WOLFSSL_RSA_VERIFY_ONLY */
- #if defined(WOLFSSL_SP_MATH_ALL) || defined(WOLFSSL_HAVE_SP_DH) || \
- defined(HAVE_ECC) || defined(WOLFSSL_KEY_GEN) || defined(OPENSSL_EXTRA) || \
- !defined(NO_RSA)
- /* Set one bit of a: a |= 1 << i
- * The field 'used' is updated in a.
- *
- * @param [in,out] a SP integer to set bit into.
- * @param [in] i Index of bit to set.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a is NULL, index is negative or index is too large.
- */
- int sp_set_bit(sp_int* a, int i)
- {
- int err = MP_OKAY;
- /* Get index of word to set. */
- unsigned int w = (unsigned int)(i >> SP_WORD_SHIFT);
- /* Check for valid number and and space for bit. */
- if ((a == NULL) || (i < 0) || (w >= a->size)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Amount to shift up to set bit in word. */
- unsigned int s = (unsigned int)(i & (SP_WORD_SIZE - 1));
- unsigned int j;
- /* Set to zero all unused words up to and including word to have bit
- * set.
- */
- for (j = a->used; j <= w; j++) {
- a->dp[j] = 0;
- }
- /* Set bit in word. */
- a->dp[w] |= (sp_int_digit)1 << s;
- /* Update used if necessary */
- if (a->used <= w) {
- a->used = w + 1;
- }
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL || WOLFSSL_HAVE_SP_DH || HAVE_ECC ||
- * WOLFSSL_KEY_GEN || OPENSSL_EXTRA || !NO_RSA */
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- defined(WOLFSSL_KEY_GEN) || !defined(NO_DH)
- /* Exponentiate 2 to the power of e: a = 2^e
- * This is done by setting the 'e'th bit.
- *
- * @param [out] a SP integer to hold result.
- * @param [in] e Exponent.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a is NULL, e is negative or 2^exponent is too large.
- */
- int sp_2expt(sp_int* a, int e)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (e < 0)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Set number to zero and then set bit. */
- _sp_zero(a);
- err = sp_set_bit(a, e);
- }
- return err;
- }
- #endif /* (WOLFSSL_SP_MATH_ALL && !WOLFSSL_RSA_VERIFY_ONLY) ||
- * WOLFSSL_KEY_GEN || !NO_DH */
- /**********************
- * Digit/Long functions
- **********************/
- #if defined(WOLFSSL_SP_MATH_ALL) || !defined(NO_RSA) || !defined(NO_DH) || \
- defined(HAVE_ECC)
- /* Set the multi-precision number to be the value of the digit.
- *
- * @param [out] a SP integer to become number.
- * @param [in] d Digit to be set.
- */
- static void _sp_set(sp_int* a, sp_int_digit d)
- {
- /* Use sp_int_minimal to support allocated byte arrays as sp_ints. */
- sp_int_minimal* am = (sp_int_minimal*)a;
- am->dp[0] = d;
- /* d == 0 => used = 0, d > 0 => used = 1 */
- am->used = (d > 0);
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- am->sign = MP_ZPOS;
- #endif
- }
- /* Set the multi-precision number to be the value of the digit.
- *
- * @param [out] a SP integer to become number.
- * @param [in] d Digit to be set.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a is NULL.
- */
- int sp_set(sp_int* a, sp_int_digit d)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if (a == NULL) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- _sp_set(a, d);
- }
- return err;
- }
- #endif
- #if defined(WOLFSSL_SP_MATH_ALL) || !defined(NO_RSA) || defined(OPENSSL_EXTRA)
- /* Set a number into the multi-precision number.
- *
- * Number may be larger than the size of a digit.
- *
- * @param [out] a SP integer to set.
- * @param [in] n Long value to set.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a is NULL.
- */
- int sp_set_int(sp_int* a, unsigned long n)
- {
- int err = MP_OKAY;
- if (a == NULL) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- #if SP_WORD_SIZE < SP_ULONG_BITS
- /* Assign if value first in one word. */
- if (n <= (sp_int_digit)SP_DIGIT_MAX) {
- #endif
- a->dp[0] = (sp_int_digit)n;
- a->used = (n != 0);
- #if SP_WORD_SIZE < SP_ULONG_BITS
- }
- else {
- unsigned int i;
- /* Assign value word by word. */
- for (i = 0; (i < a->size) && (n > 0); i++,n >>= SP_WORD_SIZE) {
- a->dp[i] = (sp_int_digit)n;
- }
- /* Update number of words used. */
- a->used = i;
- /* Check for overflow. */
- if ((i == a->size) && (n != 0)) {
- err = MP_VAL;
- }
- }
- #endif
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- a->sign = MP_ZPOS;
- #endif
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL || !NO_RSA */
- #if defined(WOLFSSL_SP_MATH_ALL) || \
- (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- !defined(NO_DH) || defined(HAVE_ECC)
- /* Compare a one digit number with a multi-precision number.
- *
- * When a is NULL, MP_LT is returned.
- *
- * @param [in] a SP integer to compare.
- * @param [in] d Digit to compare with.
- *
- * @return MP_GT when a is greater than d.
- * @return MP_LT when a is less than d.
- * @return MP_EQ when a is equals d.
- */
- int sp_cmp_d(const sp_int* a, sp_int_digit d)
- {
- int ret = MP_EQ;
- /* No SP integer is always less - even when d is zero. */
- if (a == NULL) {
- ret = MP_LT;
- }
- else
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Check sign first. */
- if (a->sign == MP_NEG) {
- ret = MP_LT;
- }
- else
- #endif
- {
- /* Check if SP integer as more than one word. */
- if (a->used > 1) {
- ret = MP_GT;
- }
- /* Special case for zero. */
- else if (a->used == 0) {
- if (d != 0) {
- ret = MP_LT;
- }
- /* ret initialized to equal. */
- }
- else {
- /* The single word in the SP integer can now be compared with d. */
- if (a->dp[0] > d) {
- ret = MP_GT;
- }
- else if (a->dp[0] < d) {
- ret = MP_LT;
- }
- /* ret initialized to equal. */
- }
- }
- return ret;
- }
- #endif
- #if defined(WOLFSSL_SP_ADD_D) || (defined(WOLFSSL_SP_INT_NEGATIVE) && \
- defined(WOLFSSL_SP_SUB_D)) || defined(WOLFSSL_SP_READ_RADIX_10)
- /* Add a one digit number to the multi-precision number.
- *
- * @param [in] a SP integer be added to.
- * @param [in] d Digit to add.
- * @param [out] r SP integer to store result in.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when result is too large for fixed size dp array.
- */
- static int _sp_add_d(const sp_int* a, sp_int_digit d, sp_int* r)
- {
- int err = MP_OKAY;
- /* Special case of zero means we want result to have a digit when not adding
- * zero. */
- if (a->used == 0) {
- r->dp[0] = d;
- r->used = (d > 0);
- }
- else {
- unsigned int i = 0;
- sp_int_digit a0 = a->dp[0];
- /* Set used of result - updated if overflow seen. */
- r->used = a->used;
- r->dp[0] = a0 + d;
- /* Check for carry. */
- if (r->dp[0] < a0) {
- /* Do carry through all words. */
- for (++i; i < a->used; i++) {
- r->dp[i] = a->dp[i] + 1;
- if (r->dp[i] != 0) {
- break;
- }
- }
- /* Add another word if required. */
- if (i == a->used) {
- /* Check result has enough space for another word. */
- if (i < r->size) {
- r->used++;
- r->dp[i] = 1;
- }
- else {
- err = MP_VAL;
- }
- }
- }
- /* When result is not the same as input, copy rest of digits. */
- if ((err == MP_OKAY) && (r != a)) {
- /* Copy any words that didn't update with carry. */
- for (++i; i < a->used; i++) {
- r->dp[i] = a->dp[i];
- }
- }
- }
- return err;
- }
- #endif /* WOLFSSL_SP_ADD_D || (WOLFSSL_SP_INT_NEGATIVE && WOLFSSL_SP_SUB_D) ||
- * defined(WOLFSSL_SP_READ_RADIX_10) */
- #if (defined(WOLFSSL_SP_INT_NEGATIVE) && defined(WOLFSSL_SP_ADD_D)) || \
- defined(WOLFSSL_SP_SUB_D) || defined(WOLFSSL_SP_INVMOD) || \
- defined(WOLFSSL_SP_INVMOD_MONT_CT) || (defined(WOLFSSL_SP_PRIME_GEN) && \
- !defined(WC_NO_RNG))
- /* Sub a one digit number from the multi-precision number.
- *
- * @param [in] a SP integer be subtracted from.
- * @param [in] d Digit to subtract.
- * @param [out] r SP integer to store result in.
- */
- static void _sp_sub_d(const sp_int* a, sp_int_digit d, sp_int* r)
- {
- /* Set result used to be same as input. Updated with clamp. */
- r->used = a->used;
- /* Only possible when not handling negatives. */
- if (a->used == 0) {
- /* Set result to zero as no negative support. */
- r->dp[0] = 0;
- }
- else {
- unsigned int i = 0;
- sp_int_digit a0 = a->dp[0];
- r->dp[0] = a0 - d;
- /* Check for borrow. */
- if (r->dp[0] > a0) {
- /* Do borrow through all words. */
- for (++i; i < a->used; i++) {
- r->dp[i] = a->dp[i] - 1;
- if (r->dp[i] != SP_DIGIT_MAX) {
- break;
- }
- }
- }
- /* When result is not the same as input, copy rest of digits. */
- if (r != a) {
- /* Copy any words that didn't update with borrow. */
- for (++i; i < a->used; i++) {
- r->dp[i] = a->dp[i];
- }
- }
- /* Remove leading zero words. */
- sp_clamp(r);
- }
- }
- #endif /* (WOLFSSL_SP_INT_NEGATIVE && WOLFSSL_SP_ADD_D) || WOLFSSL_SP_SUB_D
- * WOLFSSL_SP_INVMOD || WOLFSSL_SP_INVMOD_MONT_CT ||
- * WOLFSSL_SP_PRIME_GEN */
- #ifdef WOLFSSL_SP_ADD_D
- /* Add a one digit number to the multi-precision number.
- *
- * @param [in] a SP integer be added to.
- * @param [in] d Digit to add.
- * @param [out] r SP integer to store result in.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when result is too large for fixed size dp array.
- */
- int sp_add_d(const sp_int* a, sp_int_digit d, sp_int* r)
- {
- int err = MP_OKAY;
- /* Check validity of parameters. */
- if ((a == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- #ifndef WOLFSSL_SP_INT_NEGATIVE
- /* Check for space in result especially when carry adds a new word. */
- if ((err == MP_OKAY) && (a->used + 1 > r->size)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Positive only so just use internal function. */
- err = _sp_add_d(a, d, r);
- }
- #else
- /* Check for space in result especially when carry adds a new word. */
- if ((err == MP_OKAY) && (a->sign == MP_ZPOS) && (a->used + 1 > r->size)) {
- err = MP_VAL;
- }
- /* Check for space in result - no carry but borrow possible. */
- if ((err == MP_OKAY) && (a->sign == MP_NEG) && (a->used > r->size)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- if (a->sign == MP_ZPOS) {
- /* Positive, so use internal function. */
- r->sign = MP_ZPOS;
- err = _sp_add_d(a, d, r);
- }
- else if ((a->used > 1) || (a->dp[0] > d)) {
- /* Negative value bigger than digit so subtract digit. */
- r->sign = MP_NEG;
- _sp_sub_d(a, d, r);
- }
- else {
- /* Negative value smaller or equal to digit. */
- r->sign = MP_ZPOS;
- /* Subtract negative value from digit. */
- r->dp[0] = d - a->dp[0];
- /* Result is a digit equal to or greater than zero. */
- r->used = (r->dp[0] > 0);
- }
- }
- #endif
- return err;
- }
- #endif /* WOLFSSL_SP_ADD_D */
- #ifdef WOLFSSL_SP_SUB_D
- /* Sub a one digit number from the multi-precision number.
- *
- * @param [in] a SP integer be subtracted from.
- * @param [in] d Digit to subtract.
- * @param [out] r SP integer to store result in.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or r is NULL.
- */
- int sp_sub_d(const sp_int* a, sp_int_digit d, sp_int* r)
- {
- int err = MP_OKAY;
- /* Check validity of parameters. */
- if ((a == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- #ifndef WOLFSSL_SP_INT_NEGATIVE
- /* Check for space in result. */
- if ((err == MP_OKAY) && (a->used > r->size)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Positive only so just use internal function. */
- _sp_sub_d(a, d, r);
- }
- #else
- /* Check for space in result especially when borrow adds a new word. */
- if ((err == MP_OKAY) && (a->sign == MP_NEG) && (a->used + 1 > r->size)) {
- err = MP_VAL;
- }
- /* Check for space in result - no carry but borrow possible. */
- if ((err == MP_OKAY) && (a->sign == MP_ZPOS) && (a->used > r->size)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- if (a->sign == MP_NEG) {
- /* Subtracting from negative use internal add. */
- r->sign = MP_NEG;
- err = _sp_add_d(a, d, r);
- }
- else if ((a->used > 1) || (a->dp[0] >= d)) {
- /* Positive number greater than or equal to digit - subtract digit.
- */
- r->sign = MP_ZPOS;
- _sp_sub_d(a, d, r);
- }
- else {
- /* Positive value smaller than digit. */
- r->sign = MP_NEG;
- /* Subtract positive value from digit. */
- r->dp[0] = d - a->dp[0];
- /* Result is a digit equal to or greater than zero. */
- r->used = 1;
- }
- }
- #endif
- return err;
- }
- #endif /* WOLFSSL_SP_SUB_D */
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- defined(WOLFSSL_SP_SMALL) && (defined(WOLFSSL_SP_MATH_ALL) || \
- !defined(NO_DH) || defined(HAVE_ECC) || \
- (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY))) || \
- (defined(WOLFSSL_KEY_GEN) && !defined(NO_RSA))
- /* Multiply a by digit n and put result into r shifting up o digits.
- * r = (a * n) << (o * SP_WORD_SIZE)
- *
- * @param [in] a SP integer to be multiplied.
- * @param [in] d SP digit to multiply by.
- * @param [out] r SP integer result.
- * @param [in] o Number of digits to move result up by.
- * @return MP_OKAY on success.
- * @return MP_VAL when result is too large for sp_int.
- */
- static int _sp_mul_d(const sp_int* a, sp_int_digit d, sp_int* r, unsigned int o)
- {
- int err = MP_OKAY;
- unsigned int i;
- #ifndef SQR_MUL_ASM
- sp_int_word t = 0;
- #else
- sp_int_digit l = 0;
- sp_int_digit h = 0;
- #endif
- #ifdef WOLFSSL_SP_SMALL
- /* Zero out offset words. */
- for (i = 0; i < o; i++) {
- r->dp[i] = 0;
- }
- #else
- /* Don't use the offset. Only when doing small code size div. */
- (void)o;
- #endif
- /* Multiply each word of a by n. */
- for (i = 0; i < a->used; i++, o++) {
- #ifndef SQR_MUL_ASM
- /* Add product to top word of previous result. */
- t += (sp_int_word)a->dp[i] * d;
- /* Store low word. */
- r->dp[o] = (sp_int_digit)t;
- /* Move top word down. */
- t >>= SP_WORD_SIZE;
- #else
- /* Multiply and add into low and high from previous result.
- * No overflow of possible with add. */
- SP_ASM_MUL_ADD_NO(l, h, a->dp[i], d);
- /* Store low word. */
- r->dp[o] = l;
- /* Move high word into low word and set high word to 0. */
- l = h;
- h = 0;
- #endif
- }
- /* Check whether new word to be appended to result. */
- #ifndef SQR_MUL_ASM
- if (t > 0)
- #else
- if (l > 0)
- #endif
- {
- /* Validate space available in result. */
- if (o == r->size) {
- err = MP_VAL;
- }
- else {
- /* Store new top word. */
- #ifndef SQR_MUL_ASM
- r->dp[o++] = (sp_int_digit)t;
- #else
- r->dp[o++] = l;
- #endif
- }
- }
- /* Update number of words in result. */
- r->used = o;
- /* In case n is zero. */
- sp_clamp(r);
- return err;
- }
- #endif /* (WOLFSSL_SP_MATH_ALL && !WOLFSSL_RSA_VERIFY_ONLY) ||
- * WOLFSSL_SP_SMALL || (WOLFSSL_KEY_GEN && !NO_RSA) */
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- (defined(WOLFSSL_KEY_GEN) && !defined(NO_RSA))
- /* Multiply a by digit n and put result into r. r = a * n
- *
- * @param [in] a SP integer to multiply.
- * @param [in] n Digit to multiply by.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or b is NULL, or a has maximum number of digits used.
- */
- int sp_mul_d(const sp_int* a, sp_int_digit d, sp_int* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- /* Check space for product result - _sp_mul_d checks when new word added. */
- if ((err == MP_OKAY) && (a->used > r->size)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- err = _sp_mul_d(a, d, r, 0);
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Update sign. */
- if (d == 0) {
- r->sign = MP_ZPOS;
- }
- else {
- r->sign = a->sign;
- }
- #endif
- }
- return err;
- }
- #endif /* (WOLFSSL_SP_MATH_ALL && !WOLFSSL_RSA_VERIFY_ONLY) ||
- * (WOLFSSL_KEY_GEN && !NO_RSA) */
- /* Predefine complicated rules of when to compile in sp_div_d and sp_mod_d. */
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || \
- defined(OPENSSL_EXTRA) || defined(WC_MP_TO_RADIX)
- #define WOLFSSL_SP_DIV_D
- #endif
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- !defined(NO_DH) || \
- (defined(HAVE_ECC) && (defined(FP_ECC) || defined(HAVE_COMP_KEY))) || \
- (!defined(NO_RSA) && defined(WOLFSSL_KEY_GEN))
- #define WOLFSSL_SP_MOD_D
- #endif
- #if (defined(WOLFSSL_SP_MATH_ALL) || !defined(NO_DH) || defined(HAVE_ECC) || \
- (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY))) || \
- defined(WOLFSSL_SP_DIV_D) || defined(WOLFSSL_SP_MOD_D)
- #ifndef SP_ASM_DIV_WORD
- /* Divide a two digit number by a digit number and return. (hi | lo) / d
- *
- * @param [in] hi SP integer digit. High digit of the dividend.
- * @param [in] lo SP integer digit. Lower digit of the dividend.
- * @param [in] d SP integer digit. Number to divide by.
- * @return The division result.
- */
- static WC_INLINE sp_int_digit sp_div_word(sp_int_digit hi, sp_int_digit lo,
- sp_int_digit d)
- {
- #ifdef WOLFSSL_SP_DIV_WORD_HALF
- sp_int_digit r;
- /* Trial division using half of the bits in d. */
- /* Check for shortcut when no high word set. */
- if (hi == 0) {
- r = lo / d;
- }
- else {
- /* Half the bits of d. */
- sp_int_digit divh = d >> SP_HALF_SIZE;
- /* Number to divide in one value. */
- sp_int_word w = ((sp_int_word)hi << SP_WORD_SIZE) | lo;
- sp_int_word trial;
- sp_int_digit r2;
- /* Calculation for top SP_WORD_SIZE / 2 bits of dividend. */
- /* Divide high word by top half of divisor. */
- r = hi / divh;
- /* When result too big then assume only max value. */
- if (r > SP_HALF_MAX) {
- r = SP_HALF_MAX;
- }
- /* Shift up result for trial division calucation. */
- r <<= SP_HALF_SIZE;
- /* Calculate trial value. */
- trial = r * (sp_int_word)d;
- /* Decrease r while trial is too big. */
- while (trial > w) {
- r -= (sp_int_digit)1 << SP_HALF_SIZE;
- trial -= (sp_int_word)d << SP_HALF_SIZE;
- }
- /* Subtract trial. */
- w -= trial;
- /* Calculation for remaining second SP_WORD_SIZE / 2 bits. */
- /* Divide top SP_WORD_SIZE of remainder by top half of divisor. */
- r2 = ((sp_int_digit)(w >> SP_HALF_SIZE)) / divh;
- /* Calculate trial value. */
- trial = r2 * (sp_int_word)d;
- /* Decrease r while trial is too big. */
- while (trial > w) {
- r2--;
- trial -= d;
- }
- /* Subtract trial. */
- w -= trial;
- /* Update result. */
- r += r2;
- /* Calculation for remaining bottom SP_WORD_SIZE bits. */
- r2 = ((sp_int_digit)w) / d;
- /* Update result. */
- r += r2;
- }
- return r;
- #else
- sp_int_word w;
- sp_int_digit r;
- /* Use built-in divide. */
- w = ((sp_int_word)hi << SP_WORD_SIZE) | lo;
- w /= d;
- r = (sp_int_digit)w;
- return r;
- #endif /* WOLFSSL_SP_DIV_WORD_HALF */
- }
- #endif /* !SP_ASM_DIV_WORD */
- #endif /* WOLFSSL_SP_MATH_ALL || !NO_DH || HAVE_ECC ||
- * (!NO_RSA && !WOLFSSL_RSA_VERIFY_ONLY) */
- #if (defined(WOLFSSL_SP_DIV_D) || defined(WOLFSSL_SP_MOD_D)) && \
- !defined(WOLFSSL_SP_SMALL)
- #if SP_WORD_SIZE == 64
- /* 2^64 / 3 */
- #define SP_DIV_3_CONST 0x5555555555555555L
- /* 2^64 / 10 */
- #define SP_DIV_10_CONST 0x1999999999999999L
- #elif SP_WORD_SIZE == 32
- /* 2^32 / 3 */
- #define SP_DIV_3_CONST 0x55555555
- /* 2^32 / 10 */
- #define SP_DIV_10_CONST 0x19999999
- #elif SP_WORD_SIZE == 16
- /* 2^16 / 3 */
- #define SP_DIV_3_CONST 0x5555
- /* 2^16 / 10 */
- #define SP_DIV_10_CONST 0x1999
- #elif SP_WORD_SIZE == 8
- /* 2^8 / 3 */
- #define SP_DIV_3_CONST 0x55
- /* 2^8 / 10 */
- #define SP_DIV_10_CONST 0x19
- #endif
- #if !defined(WOLFSSL_SP_SMALL) && (SP_WORD_SIZE < 64)
- /* Divide by 3: r = a / 3 and rem = a % 3
- *
- * Used in checking prime: (a % 3) == 0?.
- *
- * @param [in] a SP integer to be divided.
- * @param [out] r SP integer that is the quotient. May be NULL.
- * @param [out] rem SP integer that is the remainder. May be NULL.
- */
- static void _sp_div_3(const sp_int* a, sp_int* r, sp_int_digit* rem)
- {
- #ifndef SQR_MUL_ASM
- sp_int_word t;
- sp_int_digit tt;
- #else
- sp_int_digit l = 0;
- sp_int_digit tt = 0;
- sp_int_digit t = SP_DIV_3_CONST;
- sp_int_digit lm = 0;
- sp_int_digit hm = 0;
- #endif
- sp_int_digit tr = 0;
- /* Quotient fixup. */
- static const unsigned char sp_r6[6] = { 0, 0, 0, 1, 1, 1 };
- /* Remainder fixup. */
- static const unsigned char sp_rem6[6] = { 0, 1, 2, 0, 1, 2 };
- /* Check whether only mod value needed. */
- if (r == NULL) {
- unsigned int i;
- /* 2^2 mod 3 = 4 mod 3 = 1.
- * => 2^(2*n) mod 3 = (2^2 mod 3)^n mod 3 = 1^n mod 3 = 1
- * => (2^(2*n) * x) mod 3 = (2^(2*n) mod 3) * (x mod 3) = x mod 3
- *
- * Calculate mod 3 on sum of digits as SP_WORD_SIZE is a multiple of 2.
- */
- #ifndef SQR_MUL_ASM
- t = 0;
- /* Sum the digits. */
- for (i = 0; i < a->used; i++) {
- t += a->dp[i];
- }
- /* Sum digits of sum. */
- t = (t >> SP_WORD_SIZE) + (t & SP_MASK);
- /* Get top digit after multipling by (2^SP_WORD_SIZE) / 3. */
- tt = (sp_int_digit)((t * SP_DIV_3_CONST) >> SP_WORD_SIZE);
- /* Subtract trial division. */
- tr = (sp_int_digit)(t - (sp_int_word)tt * 3);
- #else
- /* Sum the digits. */
- for (i = 0; i < a->used; i++) {
- SP_ASM_ADDC_REG(l, tr, a->dp[i]);
- }
- /* Sum digits of sum - can get carry. */
- SP_ASM_ADDC_REG(l, tt, tr);
- /* Multiply digit by (2^SP_WORD_SIZE) / 3. */
- SP_ASM_MUL(lm, hm, l, t);
- /* Add remainder multiplied by (2^SP_WORD_SIZE) / 3 to top digit. */
- hm += tt * SP_DIV_3_CONST;
- /* Subtract trial division from digit. */
- tr = l - (hm * 3);
- #endif
- /* tr is 0..5 but need 0..2 */
- /* Fix up remainder. */
- tr = sp_rem6[tr];
- *rem = tr;
- }
- /* At least result needed - remainder is calculated anyway. */
- else {
- int i;
- /* Divide starting at most significant word down to least. */
- for (i = (int)(a->used - 1); i >= 0; i--) {
- #ifndef SQR_MUL_ASM
- /* Combine remainder from last operation with this word. */
- t = ((sp_int_word)tr << SP_WORD_SIZE) | a->dp[i];
- /* Get top digit after multipling by (2^SP_WORD_SIZE) / 3. */
- tt = (sp_int_digit)((t * SP_DIV_3_CONST) >> SP_WORD_SIZE);
- /* Subtract trial division. */
- tr = (sp_int_digit)(t - (sp_int_word)tt * 3);
- #else
- /* Multiply digit by (2^SP_WORD_SIZE) / 3. */
- SP_ASM_MUL(l, tt, a->dp[i], t);
- /* Add remainder multiplied by (2^SP_WORD_SIZE) / 3 to top digit. */
- tt += tr * SP_DIV_3_CONST;
- /* Subtract trial division from digit. */
- tr = a->dp[i] - (tt * 3);
- #endif
- /* tr is 0..5 but need 0..2 */
- /* Fix up result. */
- tt += sp_r6[tr];
- /* Fix up remainder. */
- tr = sp_rem6[tr];
- /* Store result of digit divided by 3. */
- r->dp[i] = tt;
- }
- /* Set the used amount to maximal amount. */
- r->used = a->used;
- /* Remove leading zeros. */
- sp_clamp(r);
- /* Return remainder if required. */
- if (rem != NULL) {
- *rem = tr;
- }
- }
- }
- #endif /* !(WOLFSSL_SP_SMALL && (SP_WORD_SIZE < 64) */
- /* Divide by 10: r = a / 10 and rem = a % 10
- *
- * Used when writing with a radix of 10 - decimal number.
- *
- * @param [in] a SP integer to be divided.
- * @param [out] r SP integer that is the quotient. May be NULL.
- * @param [out] rem SP integer that is the remainder. May be NULL.
- */
- static void _sp_div_10(const sp_int* a, sp_int* r, sp_int_digit* rem)
- {
- int i;
- #ifndef SQR_MUL_ASM
- sp_int_word t;
- sp_int_digit tt;
- #else
- sp_int_digit l = 0;
- sp_int_digit tt = 0;
- sp_int_digit t = SP_DIV_10_CONST;
- #endif
- sp_int_digit tr = 0;
- /* Check whether only mod value needed. */
- if (r == NULL) {
- /* Divide starting at most significant word down to least. */
- for (i = (int)(a->used - 1); i >= 0; i--) {
- #ifndef SQR_MUL_ASM
- /* Combine remainder from last operation with this word. */
- t = ((sp_int_word)tr << SP_WORD_SIZE) | a->dp[i];
- /* Get top digit after multipling by (2^SP_WORD_SIZE) / 10. */
- tt = (sp_int_digit)((t * SP_DIV_10_CONST) >> SP_WORD_SIZE);
- /* Subtract trial division. */
- tr = (sp_int_digit)(t - (sp_int_word)tt * 10);
- #else
- /* Multiply digit by (2^SP_WORD_SIZE) / 10. */
- SP_ASM_MUL(l, tt, a->dp[i], t);
- /* Add remainder multiplied by (2^SP_WORD_SIZE) / 10 to top digit.
- */
- tt += tr * SP_DIV_10_CONST;
- /* Subtract trial division from digit. */
- tr = a->dp[i] - (tt * 10);
- #endif
- /* tr is 0..99 but need 0..9 */
- /* Fix up remainder. */
- tr = tr % 10;
- }
- *rem = tr;
- }
- /* At least result needed - remainder is calculated anyway. */
- else {
- /* Divide starting at most significant word down to least. */
- for (i = (int)(a->used - 1); i >= 0; i--) {
- #ifndef SQR_MUL_ASM
- /* Combine remainder from last operation with this word. */
- t = ((sp_int_word)tr << SP_WORD_SIZE) | a->dp[i];
- /* Get top digit after multipling by (2^SP_WORD_SIZE) / 10. */
- tt = (sp_int_digit)((t * SP_DIV_10_CONST) >> SP_WORD_SIZE);
- /* Subtract trial division. */
- tr = (sp_int_digit)(t - (sp_int_word)tt * 10);
- #else
- /* Multiply digit by (2^SP_WORD_SIZE) / 10. */
- SP_ASM_MUL(l, tt, a->dp[i], t);
- /* Add remainder multiplied by (2^SP_WORD_SIZE) / 10 to top digit.
- */
- tt += tr * SP_DIV_10_CONST;
- /* Subtract trial division from digit. */
- tr = a->dp[i] - (tt * 10);
- #endif
- /* tr is 0..99 but need 0..9 */
- /* Fix up result. */
- tt += tr / 10;
- /* Fix up remainder. */
- tr %= 10;
- /* Store result of digit divided by 10. */
- r->dp[i] = tt;
- }
- /* Set the used amount to maximal amount. */
- r->used = a->used;
- /* Remove leading zeros. */
- sp_clamp(r);
- /* Return remainder if required. */
- if (rem != NULL) {
- *rem = tr;
- }
- }
- }
- #endif /* (WOLFSSL_SP_DIV_D || WOLFSSL_SP_MOD_D) && !WOLFSSL_SP_SMALL */
- #if defined(WOLFSSL_SP_DIV_D) || defined(WOLFSSL_SP_MOD_D)
- /* Divide by small number: r = a / d and rem = a % d
- *
- * @param [in] a SP integer to be divided.
- * @param [in] d Digit to divide by.
- * @param [out] r SP integer that is the quotient. May be NULL.
- * @param [out] rem SP integer that is the remainder. May be NULL.
- */
- static void _sp_div_small(const sp_int* a, sp_int_digit d, sp_int* r,
- sp_int_digit* rem)
- {
- int i;
- #ifndef SQR_MUL_ASM
- sp_int_word t;
- sp_int_digit tt;
- #else
- sp_int_digit l = 0;
- sp_int_digit tt = 0;
- #endif
- sp_int_digit tr = 0;
- sp_int_digit m = SP_DIGIT_MAX / d;
- #ifndef WOLFSSL_SP_SMALL
- /* Check whether only mod value needed. */
- if (r == NULL) {
- /* Divide starting at most significant word down to least. */
- for (i = (int)(a->used - 1); i >= 0; i--) {
- #ifndef SQR_MUL_ASM
- /* Combine remainder from last operation with this word. */
- t = ((sp_int_word)tr << SP_WORD_SIZE) | a->dp[i];
- /* Get top digit after multipling. */
- tt = (sp_int_digit)((t * m) >> SP_WORD_SIZE);
- /* Subtract trial division. */
- tr = (sp_int_digit)t - (sp_int_digit)(tt * d);
- #else
- /* Multiply digit. */
- SP_ASM_MUL(l, tt, a->dp[i], m);
- /* Add multiplied remainder to top digit. */
- tt += tr * m;
- /* Subtract trial division from digit. */
- tr = a->dp[i] - (tt * d);
- #endif
- /* tr < d * d */
- /* Fix up remainder. */
- tr = tr % d;
- }
- *rem = tr;
- }
- /* At least result needed - remainder is calculated anyway. */
- else
- #endif /* !WOLFSSL_SP_SMALL */
- {
- /* Divide starting at most significant word down to least. */
- for (i = (int)(a->used - 1); i >= 0; i--) {
- #ifndef SQR_MUL_ASM
- /* Combine remainder from last operation with this word. */
- t = ((sp_int_word)tr << SP_WORD_SIZE) | a->dp[i];
- /* Get top digit after multipling. */
- tt = (sp_int_digit)((t * m) >> SP_WORD_SIZE);
- /* Subtract trial division. */
- tr = (sp_int_digit)t - (sp_int_digit)(tt * d);
- #else
- /* Multiply digit. */
- SP_ASM_MUL(l, tt, a->dp[i], m);
- /* Add multiplied remainder to top digit. */
- tt += tr * m;
- /* Subtract trial division from digit. */
- tr = a->dp[i] - (tt * d);
- #endif
- /* tr < d * d */
- /* Fix up result. */
- tt += tr / d;
- /* Fix up remainder. */
- tr %= d;
- /* Store result of dividing the digit. */
- #ifdef WOLFSSL_SP_SMALL
- if (r != NULL)
- #endif
- {
- r->dp[i] = tt;
- }
- }
- #ifdef WOLFSSL_SP_SMALL
- if (r != NULL)
- #endif
- {
- /* Set the used amount to maximal amount. */
- r->used = a->used;
- /* Remove leading zeros. */
- sp_clamp(r);
- }
- /* Return remainder if required. */
- if (rem != NULL) {
- *rem = tr;
- }
- }
- }
- #endif
- #ifdef WOLFSSL_SP_DIV_D
- /* Divide a multi-precision number by a digit size number and calculate
- * remainder.
- * r = a / d; rem = a % d
- *
- * Use trial division algorithm.
- *
- * @param [in] a SP integer to be divided.
- * @param [in] d Digit to divide by.
- * @param [out] r SP integer that is the quotient. May be NULL.
- * @param [out] rem Digit that is the remainder. May be NULL.
- */
- static void _sp_div_d(const sp_int* a, sp_int_digit d, sp_int* r,
- sp_int_digit* rem)
- {
- int i;
- #ifndef SQR_MUL_ASM
- sp_int_word w = 0;
- #else
- sp_int_digit l;
- sp_int_digit h = 0;
- #endif
- sp_int_digit t;
- /* Divide starting at most significant word down to least. */
- for (i = (int)(a->used - 1); i >= 0; i--) {
- #ifndef SQR_MUL_ASM
- /* Combine remainder from last operation with this word and divide. */
- t = sp_div_word((sp_int_digit)w, a->dp[i], d);
- /* Combine remainder from last operation with this word. */
- w = (w << SP_WORD_SIZE) | a->dp[i];
- /* Subtract to get modulo result. */
- w -= (sp_int_word)t * d;
- #else
- /* Get current word. */
- l = a->dp[i];
- /* Combine remainder from last operation with this word and divide. */
- t = sp_div_word(h, l, d);
- /* Subtract to get modulo result. */
- h = l - t * d;
- #endif
- /* Store result of dividing the digit. */
- if (r != NULL) {
- r->dp[i] = t;
- }
- }
- if (r != NULL) {
- /* Set the used amount to maximal amount. */
- r->used = a->used;
- /* Remove leading zeros. */
- sp_clamp(r);
- }
- /* Return remainder if required. */
- if (rem != NULL) {
- #ifndef SQR_MUL_ASM
- *rem = (sp_int_digit)w;
- #else
- *rem = h;
- #endif
- }
- }
- /* Divide a multi-precision number by a digit size number and calculate
- * remainder.
- * r = a / d; rem = a % d
- *
- * @param [in] a SP integer to be divided.
- * @param [in] d Digit to divide by.
- * @param [out] r SP integer that is the quotient. May be NULL.
- * @param [out] rem Digit that is the remainder. May be NULL.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a is NULL or d is 0.
- */
- int sp_div_d(const sp_int* a, sp_int_digit d, sp_int* r, sp_int_digit* rem)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (d == 0)) {
- err = MP_VAL;
- }
- /* Check space for maximal sized result. */
- if ((err == MP_OKAY) && (r != NULL) && (a->used > r->size)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- #if !defined(WOLFSSL_SP_SMALL)
- #if SP_WORD_SIZE < 64
- if (d == 3) {
- /* Fast implementation for divisor of 3. */
- _sp_div_3(a, r, rem);
- }
- else
- #endif
- if (d == 10) {
- /* Fast implementation for divisor of 10 - sp_todecimal(). */
- _sp_div_10(a, r, rem);
- }
- else
- #endif
- if (d <= SP_HALF_MAX) {
- /* For small divisors. */
- _sp_div_small(a, d, r, rem);
- }
- else
- {
- _sp_div_d(a, d, r, rem);
- }
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- if (r != NULL) {
- r->sign = a->sign;
- }
- #endif
- }
- return err;
- }
- #endif /* WOLFSSL_SP_DIV_D */
- #ifdef WOLFSSL_SP_MOD_D
- /* Calculate a modulo the digit d into r: r = a mod d
- *
- * @param [in] a SP integer to reduce.
- * @param [in] d Digit to that is the modulus.
- * @param [out] r Digit that is the result.
- */
- static void _sp_mod_d(const sp_int* a, const sp_int_digit d, sp_int_digit* r)
- {
- int i;
- #ifndef SQR_MUL_ASM
- sp_int_word w = 0;
- #else
- sp_int_digit h = 0;
- #endif
- /* Divide starting at most significant word down to least. */
- for (i = (int)(a->used - 1); i >= 0; i--) {
- #ifndef SQR_MUL_ASM
- /* Combine remainder from last operation with this word and divide. */
- sp_int_digit t = sp_div_word((sp_int_digit)w, a->dp[i], d);
- /* Combine remainder from last operation with this word. */
- w = (w << SP_WORD_SIZE) | a->dp[i];
- /* Subtract to get modulo result. */
- w -= (sp_int_word)t * d;
- #else
- /* Combine remainder from last operation with this word and divide. */
- sp_int_digit t = sp_div_word(h, a->dp[i], d);
- /* Subtract to get modulo result. */
- h = a->dp[i] - t * d;
- #endif
- }
- /* Return remainder. */
- #ifndef SQR_MUL_ASM
- *r = (sp_int_digit)w;
- #else
- *r = h;
- #endif
- }
- /* Calculate a modulo the digit d into r: r = a mod d
- *
- * @param [in] a SP integer to reduce.
- * @param [in] d Digit to that is the modulus.
- * @param [out] r Digit that is the result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a is NULL or d is 0.
- */
- #if !defined(WOLFSSL_SP_MATH_ALL) && (!defined(HAVE_ECC) || \
- !defined(HAVE_COMP_KEY)) && !defined(OPENSSL_EXTRA)
- static
- #endif /* !WOLFSSL_SP_MATH_ALL && (!HAVE_ECC || !HAVE_COMP_KEY) */
- int sp_mod_d(const sp_int* a, sp_int_digit d, sp_int_digit* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (r == NULL) || (d == 0)) {
- err = MP_VAL;
- }
- #if 0
- sp_print(a, "a");
- sp_print_digit(d, "m");
- #endif
- if (err == MP_OKAY) {
- /* Check whether d is a power of 2. */
- if ((d & (d - 1)) == 0) {
- if (a->used == 0) {
- *r = 0;
- }
- else {
- *r = a->dp[0] & (d - 1);
- }
- }
- #if !defined(WOLFSSL_SP_SMALL)
- #if SP_WORD_SIZE < 64
- else if (d == 3) {
- /* Fast implementation for divisor of 3. */
- _sp_div_3(a, NULL, r);
- }
- #endif
- else if (d == 10) {
- /* Fast implementation for divisor of 10. */
- _sp_div_10(a, NULL, r);
- }
- #endif
- else if (d <= SP_HALF_MAX) {
- /* For small divisors. */
- _sp_div_small(a, d, NULL, r);
- }
- else {
- _sp_mod_d(a, d, r);
- }
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- if (a->sign == MP_NEG) {
- *r = d - *r;
- }
- #endif
- }
- #if 0
- sp_print_digit(*r, "rmod");
- #endif
- return err;
- }
- #endif /* WOLFSSL_SP_MOD_D */
- #if defined(HAVE_ECC) || !defined(NO_DSA) || defined(OPENSSL_EXTRA) || \
- (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY))
- /* Divides a by 2 and stores in r: r = a >> 1
- *
- * @param [in] a SP integer to divide.
- * @param [out] r SP integer to hold result.
- */
- static void _sp_div_2(const sp_int* a, sp_int* r)
- {
- int i;
- /* Shift down each word by 1 and include bottom bit of next at top. */
- for (i = 0; i < (int)a->used - 1; i++) {
- r->dp[i] = (a->dp[i] >> 1) | (a->dp[i+1] << (SP_WORD_SIZE - 1));
- }
- /* Last word only needs to be shifted down. */
- r->dp[i] = a->dp[i] >> 1;
- /* Set used to be all words seen. */
- r->used = (unsigned int)i + 1;
- /* Remove leading zeros. */
- sp_clamp(r);
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Same sign in result. */
- r->sign = a->sign;
- #endif
- }
- #if defined(WOLFSSL_SP_MATH_ALL) && defined(HAVE_ECC)
- /* Divides a by 2 and stores in r: r = a >> 1
- *
- * @param [in] a SP integer to divide.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or r is NULL.
- */
- int sp_div_2(const sp_int* a, sp_int* r)
- {
- int err = MP_OKAY;
- /* Only when a public API. */
- if ((a == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- /* Ensure maximal size is supported by result. */
- if ((err == MP_OKAY) && (a->used > r->size)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- _sp_div_2(a, r);
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL && HAVE_ECC */
- #endif /* HAVE_ECC || !NO_DSA || OPENSSL_EXTRA ||
- * (!NO_RSA && !WOLFSSL_RSA_VERIFY_ONLY) */
- #if defined(WOLFSSL_SP_MATH_ALL) && defined(HAVE_ECC)
- /* Divides a by 2 mod m and stores in r: r = (a / 2) mod m
- *
- * r = a / 2 (mod m) - constant time (a < m and positive)
- *
- * @param [in] a SP integer to divide.
- * @param [in] m SP integer that is modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a, m or r is NULL.
- */
- int sp_div_2_mod_ct(const sp_int* a, const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (m == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- /* Check result has enough space for a + m. */
- if ((err == MP_OKAY) && (m->used + 1 > r->size)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- #ifndef SQR_MUL_ASM
- sp_int_word w = 0;
- #else
- sp_int_digit l = 0;
- sp_int_digit h;
- sp_int_digit t;
- #endif
- /* Mask to apply to modulus. */
- sp_int_digit mask = (sp_int_digit)0 - (a->dp[0] & 1);
- unsigned int i;
- #if 0
- sp_print(a, "a");
- sp_print(m, "m");
- #endif
- /* Add a to m, if a is odd, into r in constant time. */
- for (i = 0; i < m->used; i++) {
- /* Mask to apply to a - set when used value at index. */
- sp_int_digit mask_a = (sp_int_digit)0 - (i < a->used);
- #ifndef SQR_MUL_ASM
- /* Conditionally add modulus. */
- w += m->dp[i] & mask;
- /* Conditionally add a. */
- w += a->dp[i] & mask_a;
- /* Store low digit in result. */
- r->dp[i] = (sp_int_digit)w;
- /* Move high digit down. */
- w >>= DIGIT_BIT;
- #else
- /* No high digit. */
- h = 0;
- /* Conditionally use modulus. */
- t = m->dp[i] & mask;
- /* Add with carry modulus. */
- SP_ASM_ADDC_REG(l, h, t);
- /* Conditionally use a. */
- t = a->dp[i] & mask_a;
- /* Add with carry a. */
- SP_ASM_ADDC_REG(l, h, t);
- /* Store low digit in result. */
- r->dp[i] = l;
- /* Move high digit down. */
- l = h;
- #endif
- }
- /* Store carry. */
- #ifndef SQR_MUL_ASM
- r->dp[i] = (sp_int_digit)w;
- #else
- r->dp[i] = l;
- #endif
- /* Used includes carry - set or not. */
- r->used = i + 1;
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- r->sign = MP_ZPOS;
- #endif
- /* Divide conditional sum by 2. */
- _sp_div_2(r, r);
- #if 0
- sp_print(r, "rd2");
- #endif
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL && HAVE_ECC */
- /************************
- * Add/Subtract Functions
- ************************/
- #if !defined(WOLFSSL_RSA_VERIFY_ONLY) || defined(WOLFSSL_SP_INVMOD)
- /* Add offset b to a into r: r = a + (b << (o * SP_WORD_SIZEOF))
- *
- * @param [in] a SP integer to add to.
- * @param [in] b SP integer to add.
- * @param [out] r SP integer to store result in.
- * @param [in] o Number of digits to offset b.
- */
- static void _sp_add_off(const sp_int* a, const sp_int* b, sp_int* r, int o)
- {
- unsigned int i = 0;
- #ifndef SQR_MUL_ASM
- sp_int_word t = 0;
- #else
- sp_int_digit l = 0;
- sp_int_digit h = 0;
- sp_int_digit t = 0;
- #endif
- #ifdef SP_MATH_NEED_ADD_OFF
- unsigned int j;
- /* Copy a into result up to offset. */
- for (; (i < o) && (i < a->used); i++) {
- r->dp[i] = a->dp[i];
- }
- /* Set result to 0 for digits beyonf those in a. */
- for (; i < o; i++) {
- r->dp[i] = 0;
- }
- /* Add each digit from a and b where both have values. */
- for (j = 0; (i < a->used) && (j < b->used); i++, j++) {
- #ifndef SQR_MUL_ASM
- t += a->dp[i];
- t += b->dp[j];
- r->dp[i] = (sp_int_digit)t;
- t >>= SP_WORD_SIZE;
- #else
- t = a->dp[i];
- SP_ASM_ADDC(l, h, t);
- t = b->dp[j];
- SP_ASM_ADDC(l, h, t);
- r->dp[i] = l;
- l = h;
- h = 0;
- #endif
- }
- /* Either a and/or b are out of digits. Add carry and remaining a digits. */
- for (; i < a->used; i++) {
- #ifndef SQR_MUL_ASM
- t += a->dp[i];
- r->dp[i] = (sp_int_digit)t;
- t >>= SP_WORD_SIZE;
- #else
- t = a->dp[i];
- SP_ASM_ADDC(l, h, t);
- r->dp[i] = l;
- l = h;
- h = 0;
- #endif
- }
- /* a is out of digits. Add carry and remaining b digits. */
- for (; j < b->used; i++, j++) {
- #ifndef SQR_MUL_ASM
- t += b->dp[j];
- r->dp[i] = (sp_int_digit)t;
- t >>= SP_WORD_SIZE;
- #else
- t = b->dp[j];
- SP_ASM_ADDC(l, h, t);
- r->dp[i] = l;
- l = h;
- h = 0;
- #endif
- }
- #else
- (void)o;
- /* Add each digit from a and b where both have values. */
- for (; (i < a->used) && (i < b->used); i++) {
- #ifndef SQR_MUL_ASM
- t += a->dp[i];
- t += b->dp[i];
- r->dp[i] = (sp_int_digit)t;
- t >>= SP_WORD_SIZE;
- #else
- t = a->dp[i];
- SP_ASM_ADDC(l, h, t);
- t = b->dp[i];
- SP_ASM_ADDC(l, h, t);
- r->dp[i] = l;
- l = h;
- h = 0;
- #endif
- }
- /* Either a and/or b are out of digits. Add carry and remaining a digits. */
- for (; i < a->used; i++) {
- #ifndef SQR_MUL_ASM
- t += a->dp[i];
- r->dp[i] = (sp_int_digit)t;
- t >>= SP_WORD_SIZE;
- #else
- t = a->dp[i];
- SP_ASM_ADDC(l, h, t);
- r->dp[i] = l;
- l = h;
- h = 0;
- #endif
- }
- /* a is out of digits. Add carry and remaining b digits. */
- for (; i < b->used; i++) {
- #ifndef SQR_MUL_ASM
- t += b->dp[i];
- r->dp[i] = (sp_int_digit)t;
- t >>= SP_WORD_SIZE;
- #else
- t = b->dp[i];
- SP_ASM_ADDC(l, h, t);
- r->dp[i] = l;
- l = h;
- h = 0;
- #endif
- }
- #endif
- /* Set used based on last digit put in. */
- r->used = i;
- /* Put in carry. */
- #ifndef SQR_MUL_ASM
- r->dp[i] = (sp_int_digit)t;
- r->used += (t != 0);
- #else
- r->dp[i] = l;
- r->used += (l != 0);
- #endif
- /* Remove leading zeros. */
- sp_clamp(r);
- }
- #endif /* !WOLFSSL_RSA_VERIFY_ONLY */
- #if defined(WOLFSSL_SP_MATH_ALL) || defined(WOLFSSL_SP_INT_NEGATIVE) || \
- !defined(NO_DH) || defined(HAVE_ECC) || (!defined(NO_RSA) && \
- !defined(WOLFSSL_RSA_VERIFY_ONLY))
- /* Sub offset b from a into r: r = a - (b << (o * SP_WORD_SIZEOF))
- * a must be greater than b.
- *
- * When using offset, r == a is faster.
- *
- * @param [in] a SP integer to subtract from.
- * @param [in] b SP integer to subtract.
- * @param [out] r SP integer to store result in.
- * @param [in] o Number of digits to offset b.
- */
- static void _sp_sub_off(const sp_int* a, const sp_int* b, sp_int* r,
- unsigned int o)
- {
- unsigned int i = 0;
- unsigned int j;
- #ifndef SQR_MUL_ASM
- sp_int_sword t = 0;
- #else
- sp_int_digit l = 0;
- sp_int_digit h = 0;
- #endif
- /* Need to copy digits up to offset into result. */
- if (r != a) {
- for (; (i < o) && (i < a->used); i++) {
- r->dp[i] = a->dp[i];
- }
- }
- else {
- i = o;
- }
- /* Index to add at is the offset now. */
- for (j = 0; (i < a->used) && (j < b->used); i++, j++) {
- #ifndef SQR_MUL_ASM
- /* Add a into and subtract b from current value. */
- t += a->dp[i];
- t -= b->dp[j];
- /* Store low digit in result. */
- r->dp[i] = (sp_int_digit)t;
- /* Move high digit down. */
- t >>= SP_WORD_SIZE;
- #else
- /* Add a into and subtract b from current value. */
- SP_ASM_ADDC(l, h, a->dp[i]);
- SP_ASM_SUBB(l, h, b->dp[j]);
- /* Store low digit in result. */
- r->dp[i] = l;
- /* Move high digit down. */
- l = h;
- /* High digit is 0 when positive or -1 on negative. */
- h = (sp_int_digit)0 - (h >> (SP_WORD_SIZE - 1));
- #endif
- }
- for (; i < a->used; i++) {
- #ifndef SQR_MUL_ASM
- /* Add a into current value. */
- t += a->dp[i];
- /* Store low digit in result. */
- r->dp[i] = (sp_int_digit)t;
- /* Move high digit down. */
- t >>= SP_WORD_SIZE;
- #else
- /* Add a into current value. */
- SP_ASM_ADDC(l, h, a->dp[i]);
- /* Store low digit in result. */
- r->dp[i] = l;
- /* Move high digit down. */
- l = h;
- /* High digit is 0 when positive or -1 on negative. */
- h = (sp_int_digit)0 - (h >> (SP_WORD_SIZE - 1));
- #endif
- }
- /* Set used based on last digit put in. */
- r->used = i;
- /* Remove leading zeros. */
- sp_clamp(r);
- }
- #endif /* WOLFSSL_SP_MATH_ALL || WOLFSSL_SP_INT_NEGATIVE || !NO_DH ||
- * HAVE_ECC || (!NO_RSA && !WOLFSSL_RSA_VERIFY_ONLY) */
- #if !defined(WOLFSSL_RSA_VERIFY_ONLY) || defined(WOLFSSL_SP_INVMOD)
- /* Add b to a into r: r = a + b
- *
- * @param [in] a SP integer to add to.
- * @param [in] b SP integer to add.
- * @param [out] r SP integer to store result in.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a, b, or r is NULL.
- */
- int sp_add(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (b == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- /* Check that r as big as a and b plus one word. */
- if ((err == MP_OKAY) && ((a->used >= r->size) || (b->used >= r->size))) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- #ifndef WOLFSSL_SP_INT_NEGATIVE
- /* Add two positive numbers. */
- _sp_add_off(a, b, r, 0);
- #else
- /* Same sign then add absolute values and use sign. */
- if (a->sign == b->sign) {
- _sp_add_off(a, b, r, 0);
- r->sign = a->sign;
- }
- /* Different sign and abs(a) >= abs(b). */
- else if (_sp_cmp_abs(a, b) != MP_LT) {
- /* Subtract absolute values and use sign of a unless result 0. */
- _sp_sub_off(a, b, r, 0);
- if (sp_iszero(r)) {
- r->sign = MP_ZPOS;
- }
- else {
- r->sign = a->sign;
- }
- }
- /* Different sign and abs(a) < abs(b). */
- else {
- /* Reverse subtract absolute values and use sign of b. */
- _sp_sub_off(b, a, r, 0);
- r->sign = b->sign;
- }
- #endif
- }
- return err;
- }
- #endif /* !WOLFSSL_RSA_VERIFY_ONLY */
- #if defined(WOLFSSL_SP_MATH_ALL) || !defined(NO_DH) || defined(HAVE_ECC) || \
- (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY))
- /* Subtract b from a into r: r = a - b
- *
- * a must be greater than b unless WOLFSSL_SP_INT_NEGATIVE is defined.
- *
- * @param [in] a SP integer to subtract from.
- * @param [in] b SP integer to subtract.
- * @param [out] r SP integer to store result in.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a, b, or r is NULL.
- */
- int sp_sub(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (b == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- /* Check that r as big as a and b plus one word. */
- if ((err == MP_OKAY) && ((a->used >= r->size) || (b->used >= r->size))) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- #ifndef WOLFSSL_SP_INT_NEGATIVE
- /* Subtract positive numbers b from a. */
- _sp_sub_off(a, b, r, 0);
- #else
- /* Different sign. */
- if (a->sign != b->sign) {
- /* Add absolute values and use sign of a. */
- _sp_add_off(a, b, r, 0);
- r->sign = a->sign;
- }
- /* Same sign and abs(a) >= abs(b). */
- else if (_sp_cmp_abs(a, b) != MP_LT) {
- /* Subtract absolute values and use sign of a unless result 0. */
- _sp_sub_off(a, b, r, 0);
- if (sp_iszero(r)) {
- r->sign = MP_ZPOS;
- }
- else {
- r->sign = a->sign;
- }
- }
- /* Same sign and abs(a) < abs(b). */
- else {
- /* Reverse subtract absolute values and use opposite sign of a */
- _sp_sub_off(b, a, r, 0);
- r->sign = 1 - a->sign;
- }
- #endif
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL || !NO_DH || HAVE_ECC ||
- * (!NO_RSA && !WOLFSSL_RSA_VERIFY_ONLY)*/
- /****************************
- * Add/Subtract mod functions
- ****************************/
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- (!defined(WOLFSSL_SP_MATH) && defined(WOLFSSL_CUSTOM_CURVES)) || \
- defined(WOLFCRYPT_HAVE_ECCSI) || defined(WOLFCRYPT_HAVE_SAKKE)
- /* Add two value and reduce: r = (a + b) % m
- *
- * @param [in] a SP integer to add.
- * @param [in] b SP integer to add with.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_addmod(const sp_int* a, const sp_int* b, const sp_int* m,
- sp_int* r)
- {
- int err = MP_OKAY;
- /* Calculate used based on digits used in a and b. */
- unsigned int used = ((a->used >= b->used) ? a->used + 1 : b->used + 1);
- DECL_SP_INT(t, used);
- /* Allocate a temporary SP int to hold sum. */
- ALLOC_SP_INT_SIZE(t, used, err, NULL);
- if (err == MP_OKAY) {
- /* Do sum. */
- err = sp_add(a, b, t);
- }
- if (err == MP_OKAY) {
- /* Mod result. */
- err = sp_mod(t, m, r);
- }
- FREE_SP_INT(t, NULL);
- return err;
- }
- /* Add two value and reduce: r = (a + b) % m
- *
- * @param [in] a SP integer to add.
- * @param [in] b SP integer to add with.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a, b, m or r is NULL.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_addmod(const sp_int* a, const sp_int* b, const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (b == NULL) || (m == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- /* Ensure a and b aren't too big a number to operate on. */
- else if (a->used >= SP_INT_DIGITS) {
- err = MP_VAL;
- }
- else if (b->used >= SP_INT_DIGITS) {
- err = MP_VAL;
- }
- #if 0
- if (err == MP_OKAY) {
- sp_print(a, "a");
- sp_print(b, "b");
- sp_print(m, "m");
- }
- #endif
- if (err == MP_OKAY) {
- /* Do add and modular reduction. */
- err = _sp_addmod(a, b, m, r);
- }
- #if 0
- if (err == MP_OKAY) {
- sp_print(r, "rma");
- }
- #endif
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL || WOLFSSL_CUSTOM_CURVES) ||
- * WOLFCRYPT_HAVE_ECCSI || WOLFCRYPT_HAVE_SAKKE */
- #if defined(WOLFSSL_SP_MATH_ALL) && (!defined(WOLFSSL_RSA_VERIFY_ONLY) || \
- defined(HAVE_ECC))
- /* Sub b from a and reduce: r = (a - b) % m
- * Result is always positive.
- *
- * @param [in] a SP integer to subtract from
- * @param [in] b SP integer to subtract.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_submod(const sp_int* a, const sp_int* b, const sp_int* m,
- sp_int* r)
- {
- int err = MP_OKAY;
- #ifndef WOLFSSL_SP_INT_NEGATIVE
- unsigned int used = ((a->used >= m->used) ?
- ((a->used >= b->used) ? (a->used + 1) : (b->used + 1)) :
- ((b->used >= m->used)) ? (b->used + 1) : (m->used + 1));
- DECL_SP_INT_ARRAY(t, used, 2);
- ALLOC_SP_INT_ARRAY(t, used, 2, err, NULL);
- if (err == MP_OKAY) {
- /* Reduce a to less than m. */
- if (_sp_cmp(a, m) != MP_LT) {
- err = sp_mod(a, m, t[0]);
- a = t[0];
- }
- }
- if (err == MP_OKAY) {
- /* Reduce b to less than m. */
- if (_sp_cmp(b, m) != MP_LT) {
- err = sp_mod(b, m, t[1]);
- b = t[1];
- }
- }
- if (err == MP_OKAY) {
- /* Add m to a if a smaller than b. */
- if (_sp_cmp(a, b) == MP_LT) {
- err = sp_add(a, m, t[0]);
- a = t[0];
- }
- }
- if (err == MP_OKAY) {
- /* Subtract b from a. */
- err = sp_sub(a, b, r);
- }
- FREE_SP_INT_ARRAY(t, NULL);
- #else /* WOLFSSL_SP_INT_NEGATIVE */
- unsigned int used = ((a->used >= b->used) ? a->used + 1 : b->used + 1);
- DECL_SP_INT(t, used);
- ALLOC_SP_INT_SIZE(t, used, err, NULL);
- /* Subtract b from a into temporary. */
- if (err == MP_OKAY) {
- err = sp_sub(a, b, t);
- }
- if (err == MP_OKAY) {
- /* Reduce result mod m into result. */
- err = sp_mod(t, m, r);
- }
- FREE_SP_INT(t, NULL);
- #endif /* WOLFSSL_SP_INT_NEGATIVE */
- return err;
- }
- /* Sub b from a and reduce: r = (a - b) % m
- * Result is always positive.
- *
- * @param [in] a SP integer to subtract from
- * @param [in] b SP integer to subtract.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a, b, m or r is NULL.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_submod(const sp_int* a, const sp_int* b, const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (b == NULL) || (m == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- /* Ensure a, b and m aren't too big a number to operate on. */
- else if (a->used >= SP_INT_DIGITS) {
- err = MP_VAL;
- }
- else if (b->used >= SP_INT_DIGITS) {
- err = MP_VAL;
- }
- else if (m->used >= SP_INT_DIGITS) {
- err = MP_VAL;
- }
- #if 0
- if (err == MP_OKAY) {
- sp_print(a, "a");
- sp_print(b, "b");
- sp_print(m, "m");
- }
- #endif
- if (err == MP_OKAY) {
- /* Do submod. */
- err = _sp_submod(a, b, m, r);
- }
- #if 0
- if (err == MP_OKAY) {
- sp_print(r, "rms");
- }
- #endif
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL */
- #if defined(WOLFSSL_SP_MATH_ALL) && defined(HAVE_ECC)
- /* Add two value and reduce: r = (a + b) % m
- *
- * r = a + b (mod m) - constant time (a < m and b < m, a, b and m are positive)
- *
- * Assumes a, b, m and r are not NULL.
- * m and r must not be the same pointer.
- *
- * @param [in] a SP integer to add.
- * @param [in] b SP integer to add with.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- */
- int sp_addmod_ct(const sp_int* a, const sp_int* b, const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- #ifndef SQR_MUL_ASM
- sp_int_sword w;
- sp_int_sword s;
- #else
- sp_int_digit wl;
- sp_int_digit wh;
- sp_int_digit sl;
- sp_int_digit sh;
- sp_int_digit t;
- #endif
- sp_int_digit mask;
- sp_int_digit mask_a = (sp_int_digit)-1;
- sp_int_digit mask_b = (sp_int_digit)-1;
- unsigned int i;
- /* Check result is as big as modulus. */
- if (m->used > r->size) {
- err = MP_VAL;
- }
- /* Validate parameters. */
- if ((err == MP_OKAY) && (r == m)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- #if 0
- sp_print(a, "a");
- sp_print(b, "b");
- sp_print(m, "m");
- #endif
- /* Add a to b into r. Do the subtract of modulus but don't store result.
- * When subtract result is negative, the overflow will be negative.
- * Only need to subtract mod when result is positive - overflow is
- * positive.
- */
- #ifndef SQR_MUL_ASM
- w = 0;
- s = 0;
- #else
- wl = 0;
- sl = 0;
- sh = 0;
- #endif
- /* Constant time - add modulus digits worth from a and b. */
- for (i = 0; i < m->used; i++) {
- /* Values past 'used' are not initialized. */
- mask_a += (i == a->used);
- mask_b += (i == b->used);
- #ifndef SQR_MUL_ASM
- /* Add next digits from a and b to current value. */
- w += a->dp[i] & mask_a;
- w += b->dp[i] & mask_b;
- /* Store low digit in result. */
- r->dp[i] = (sp_int_digit)w;
- /* Add result to reducing value. */
- s += (sp_int_digit)w;
- /* Subtract next digit of modulus. */
- s -= m->dp[i];
- /* Move high digit of reduced result down. */
- s >>= DIGIT_BIT;
- /* Move high digit of sum result down. */
- w >>= DIGIT_BIT;
- #else
- wh = 0;
- /* Add next digits from a and b to current value. */
- t = a->dp[i] & mask_a;
- SP_ASM_ADDC_REG(wl, wh, t);
- t = b->dp[i] & mask_b;
- SP_ASM_ADDC_REG(wl, wh, t);
- /* Store low digit in result. */
- r->dp[i] = wl;
- /* Add result to reducing value. */
- SP_ASM_ADDC_REG(sl, sh, wl);
- /* Subtract next digit of modulus. */
- SP_ASM_SUBB(sl, sh, m->dp[i]);
- /* Move high digit of reduced result down. */
- sl = sh;
- /* High digit is 0 when positive or -1 on negative. */
- sh = (sp_int_digit)0 - (sh >> (SP_WORD_SIZE-1));
- /* Move high digit of sum result down. */
- wl = wh;
- #endif
- }
- #ifndef SQR_MUL_ASM
- /* Add carry into reduced result. */
- s += (sp_int_digit)w;
- /* s will be positive when subtracting modulus is needed. */
- mask = (sp_int_digit)0 - (s >= 0);
- #else
- /* Add carry into reduced result. */
- SP_ASM_ADDC_REG(sl, sh, wl);
- /* s will be positive when subtracting modulus is needed. */
- mask = (sh >> (SP_WORD_SIZE-1)) - 1;
- #endif
- /* Constant time, conditionally, subtract modulus from sum. */
- #ifndef SQR_MUL_ASM
- w = 0;
- #else
- wl = 0;
- wh = 0;
- #endif
- for (i = 0; i < m->used; i++) {
- #ifndef SQR_MUL_ASM
- /* Add result to current value and conditionally subtract modulus.
- */
- w += r->dp[i];
- w -= m->dp[i] & mask;
- /* Store low digit in result. */
- r->dp[i] = (sp_int_digit)w;
- /* Move high digit of sum result down. */
- w >>= DIGIT_BIT;
- #else
- /* Add result to current value and conditionally subtract modulus.
- */
- SP_ASM_ADDC(wl, wh, r->dp[i]);
- t = m->dp[i] & mask;
- SP_ASM_SUBB_REG(wl, wh, t);
- /* Store low digit in result. */
- r->dp[i] = wl;
- /* Move high digit of sum result down. */
- wl = wh;
- /* High digit is 0 when positive or -1 on negative. */
- wh = (sp_int_digit)0 - (wl >> (SP_WORD_SIZE-1));
- #endif
- }
- /* Result will always have digits equal to or less than those in
- * modulus. */
- r->used = i;
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- r->sign = MP_ZPOS;
- #endif /* WOLFSSL_SP_INT_NEGATIVE */
- /* Remove leading zeros. */
- sp_clamp(r);
- #if 0
- sp_print(r, "rma");
- #endif
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL && HAVE_ECC */
- #if defined(WOLFSSL_SP_MATH_ALL) && defined(HAVE_ECC)
- /* Sub b from a and reduce: r = (a - b) % m
- * Result is always positive.
- *
- * r = a - b (mod m) - constant time (a < m and b < m, a, b and m are positive)
- *
- * Assumes a, b, m and r are not NULL.
- * m and r must not be the same pointer.
- *
- * @param [in] a SP integer to subtract from
- * @param [in] b SP integer to subtract.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- */
- int sp_submod_ct(const sp_int* a, const sp_int* b, const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- #ifndef SQR_MUL_ASM
- sp_int_sword w;
- #else
- sp_int_digit l;
- sp_int_digit h;
- sp_int_digit t;
- #endif
- sp_int_digit mask;
- sp_int_digit mask_a = (sp_int_digit)-1;
- sp_int_digit mask_b = (sp_int_digit)-1;
- unsigned int i;
- /* Check result is as big as modulus plus one digit. */
- if (m->used > r->size) {
- err = MP_VAL;
- }
- /* Validate parameters. */
- if ((err == MP_OKAY) && (r == m)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- #if 0
- sp_print(a, "a");
- sp_print(b, "b");
- sp_print(m, "m");
- #endif
- /* In constant time, subtract b from a putting result in r. */
- #ifndef SQR_MUL_ASM
- w = 0;
- #else
- l = 0;
- h = 0;
- #endif
- for (i = 0; i < m->used; i++) {
- /* Values past 'used' are not initialized. */
- mask_a += (i == a->used);
- mask_b += (i == b->used);
- #ifndef SQR_MUL_ASM
- /* Add a to and subtract b from current value. */
- w += a->dp[i] & mask_a;
- w -= b->dp[i] & mask_b;
- /* Store low digit in result. */
- r->dp[i] = (sp_int_digit)w;
- /* Move high digit down. */
- w >>= DIGIT_BIT;
- #else
- /* Add a and subtract b from current value. */
- t = a->dp[i] & mask_a;
- SP_ASM_ADDC_REG(l, h, t);
- t = b->dp[i] & mask_b;
- SP_ASM_SUBB_REG(l, h, t);
- /* Store low digit in result. */
- r->dp[i] = l;
- /* Move high digit down. */
- l = h;
- /* High digit is 0 when positive or -1 on negative. */
- h = (sp_int_digit)0 - (l >> (SP_WORD_SIZE - 1));
- #endif
- }
- /* When w is negative then we need to add modulus to make result
- * positive. */
- #ifndef SQR_MUL_ASM
- mask = (sp_int_digit)0 - (w < 0);
- #else
- mask = h;
- #endif
- /* Constant time, conditionally, add modulus to difference. */
- #ifndef SQR_MUL_ASM
- w = 0;
- #else
- l = 0;
- #endif
- for (i = 0; i < m->used; i++) {
- #ifndef SQR_MUL_ASM
- /* Add result and conditionally modulus to current value. */
- w += r->dp[i];
- w += m->dp[i] & mask;
- /* Store low digit in result. */
- r->dp[i] = (sp_int_digit)w;
- /* Move high digit down. */
- w >>= DIGIT_BIT;
- #else
- h = 0;
- /* Add result and conditionally modulus to current value. */
- SP_ASM_ADDC(l, h, r->dp[i]);
- t = m->dp[i] & mask;
- SP_ASM_ADDC_REG(l, h, t);
- /* Store low digit in result. */
- r->dp[i] = l;
- /* Move high digit down. */
- l = h;
- #endif
- }
- /* Result will always have digits equal to or less than those in
- * modulus. */
- r->used = i;
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- r->sign = MP_ZPOS;
- #endif /* WOLFSSL_SP_INT_NEGATIVE */
- /* Remove leading zeros. */
- sp_clamp(r);
- #if 0
- sp_print(r, "rms");
- #endif
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL && HAVE_ECC */
- /********************
- * Shifting functoins
- ********************/
- #if !defined(NO_DH) || defined(HAVE_ECC) || (!defined(NO_RSA) && \
- defined(WC_RSA_BLINDING) && !defined(WOLFSSL_RSA_VERIFY_ONLY))
- /* Left shift the multi-precision number by a number of digits.
- *
- * @param [in,out] a SP integer to shift.
- * @param [in] s Number of digits to shift.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a is NULL, s is negative or the result is too big.
- */
- int sp_lshd(sp_int* a, int s)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (s < 0)) {
- err = MP_VAL;
- }
- /* Ensure number has enough digits for operation. */
- if ((err == MP_OKAY) && (a->used + (unsigned int)s > a->size)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Move up digits. */
- XMEMMOVE(a->dp + s, a->dp, a->used * SP_WORD_SIZEOF);
- /* Back fill with zeros. */
- XMEMSET(a->dp, 0, (size_t)s * SP_WORD_SIZEOF);
- /* Update used. */
- a->used += (unsigned int)s;
- /* Remove leading zeros. */
- sp_clamp(a);
- }
- return err;
- }
- #endif
- #if defined(WOLFSSL_SP_MATH_ALL) || !defined(NO_DH) || defined(HAVE_ECC) || \
- (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY))
- /* Left shift the multi-precision number by n bits.
- * Bits may be larger than the word size.
- *
- * Used by sp_mul_2d() and other internal functions.
- *
- * @param [in,out] a SP integer to shift.
- * @param [in] n Number of bits to shift left.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when the result is too big.
- */
- static int sp_lshb(sp_int* a, int n)
- {
- int err = MP_OKAY;
- if (a->used != 0) {
- /* Calculate number of digits to shift. */
- unsigned int s = (unsigned int)n >> SP_WORD_SHIFT;
- /* Ensure number has enough digits for result. */
- if (a->used + s >= a->size) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Get count of bits to move in digit. */
- n &= SP_WORD_MASK;
- /* Check whether this is a complicated case. */
- if (n != 0) {
- unsigned int i;
- /* Shift up starting at most significant digit. */
- /* Get new most significant digit. */
- sp_int_digit v = a->dp[a->used - 1] >> (SP_WORD_SIZE - n);
- /* Shift up each digit. */
- for (i = a->used - 1; i >= 1; i--) {
- a->dp[i + s] = (a->dp[i] << n) |
- (a->dp[i - 1] >> (SP_WORD_SIZE - n));
- }
- /* Shift up least significant digit. */
- a->dp[s] = a->dp[0] << n;
- /* Add new high digit unless zero. */
- if (v != 0) {
- a->dp[a->used + s] = v;
- a->used++;
- }
- }
- /* Only digits to move and ensure not zero. */
- else if (s > 0) {
- /* Move up digits. */
- XMEMMOVE(a->dp + s, a->dp, a->used * SP_WORD_SIZEOF);
- }
- /* Update used digit count. */
- a->used += s;
- /* Back fill with zeros. */
- XMEMSET(a->dp, 0, SP_WORD_SIZEOF * s);
- }
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL || !NO_DH || HAVE_ECC ||
- * (!NO_RSA && !WOLFSSL_RSA_VERIFY_ONLY) */
- #ifdef WOLFSSL_SP_MATH_ALL
- /* Shift a right by c digits: a = a >> (n * SP_WORD_SIZE)
- *
- * @param [in, out] a SP integer to shift.
- * @param [in] c Number of digits to shift.
- */
- void sp_rshd(sp_int* a, int c)
- {
- /* Do shift if we have an SP int. */
- if ((a != NULL) && (c > 0)) {
- /* Make zero if shift removes all digits. */
- if ((unsigned int)c >= a->used) {
- _sp_zero(a);
- }
- else {
- unsigned int i;
- /* Update used digits count. */
- a->used -= (unsigned int)c;
- /* Move digits down. */
- for (i = 0; i < a->used; i++, c++) {
- a->dp[i] = a->dp[c];
- }
- }
- }
- }
- #endif /* WOLFSSL_SP_MATH_ALL */
- #if defined(WOLFSSL_SP_MATH_ALL) || !defined(NO_DH) || defined(HAVE_ECC) || \
- (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- defined(WOLFSSL_HAVE_SP_DH)
- /* Shift a right by n bits into r: r = a >> n
- *
- * @param [in] a SP integer to shift.
- * @param [in] n Number of bits to shift.
- * @param [out] r SP integer to store result in.
- */
- int sp_rshb(const sp_int* a, int n, sp_int* r)
- {
- int err = MP_OKAY;
- /* Number of digits to shift down. */
- unsigned int i = (unsigned int)(n >> SP_WORD_SHIFT);
- if ((a == NULL) || (n < 0)) {
- err = MP_VAL;
- }
- /* Handle case where shifting out all digits. */
- if ((err == MP_OKAY) && (i >= a->used)) {
- _sp_zero(r);
- }
- /* Change callers when more error cases returned. */
- else if ((err == MP_OKAY) && (a->used - i > r->size)) {
- err = MP_VAL;
- }
- else if (err == MP_OKAY) {
- unsigned int j;
- /* Number of bits to shift in digits. */
- n &= SP_WORD_SIZE - 1;
- /* Handle simple case. */
- if (n == 0) {
- /* Set the count of used digits. */
- r->used = a->used - i;
- /* Move digits down. */
- if (r == a) {
- XMEMMOVE(r->dp, r->dp + i, SP_WORD_SIZEOF * r->used);
- }
- else {
- XMEMCPY(r->dp, a->dp + i, SP_WORD_SIZEOF * r->used);
- }
- }
- else {
- /* Move the bits down starting at least significant digit. */
- for (j = 0; i < a->used-1; i++, j++)
- r->dp[j] = (a->dp[i] >> n) | (a->dp[i+1] << (SP_WORD_SIZE - n));
- /* Most significant digit has no higher digit to pull from. */
- r->dp[j] = a->dp[i] >> n;
- /* Set the count of used digits. */
- r->used = j + (r->dp[j] > 0);
- }
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- if (sp_iszero(r)) {
- /* Set zero sign. */
- r->sign = MP_ZPOS;
- }
- else {
- /* Retain sign. */
- r->sign = a->sign;
- }
- #endif
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL || !NO_DH || HAVE_ECC ||
- * (!NO_RSA && !WOLFSSL_RSA_VERIFY_ONLY) || WOLFSSL_HAVE_SP_DH */
- #if defined(WOLFSSL_SP_MATH_ALL) || !defined(NO_DH) || defined(HAVE_ECC) || \
- (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY))
- static void _sp_div_same_size(sp_int* a, const sp_int* d, sp_int* r)
- {
- unsigned int i;
- /* Compare top digits of dividend with those of divisor up to last. */
- for (i = d->used - 1; i > 0; i--) {
- /* Break if top divisor is not equal to dividend. */
- if (a->dp[a->used - d->used + i] != d->dp[i]) {
- break;
- }
- }
- /* Check if top dividend is greater than or equal to divisor. */
- if (a->dp[a->used - d->used + i] >= d->dp[i]) {
- /* Update quotient result. */
- r->dp[a->used - d->used] += 1;
- /* Get 'used' to restore - ensure zeros put into quotient. */
- i = a->used;
- /* Subtract d from top of a. */
- _sp_sub_off(a, d, a, a->used - d->used);
- /* Restore 'used' on remainder. */
- a->used = i;
- }
- }
- /* Divide a by d and return the quotient in r and the remainder in a.
- * r = a / d; a = a % d
- *
- * Note: a is constantly having multiplies of d subtracted.
- *
- * @param [in, out] a SP integer to be divided and remainder on out.
- * @param [in] d SP integer to divide by.
- * @param [out] r SP integer that is the quotient.
- * @param [out] trial SP integer that is product in trial division.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when operation fails - only when compiling small code.
- */
- static int _sp_div_impl(sp_int* a, const sp_int* d, sp_int* r, sp_int* trial)
- {
- int err = MP_OKAY;
- unsigned int i;
- #ifdef WOLFSSL_SP_SMALL
- int c;
- #else
- unsigned int j;
- unsigned int o;
- #ifndef SQR_MUL_ASM
- sp_int_sword sw;
- #else
- sp_int_digit sl;
- sp_int_digit sh;
- sp_int_digit st;
- #endif
- #endif /* WOLFSSL_SP_SMALL */
- sp_int_digit t;
- sp_int_digit dt;
- /* Set result size to clear. */
- r->used = a->used - d->used + 1;
- /* Set all potentially used digits to zero. */
- for (i = 0; i < r->used; i++) {
- r->dp[i] = 0;
- }
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- r->sign = MP_ZPOS;
- #endif
- /* Get the most significant digit (will have top bit set). */
- dt = d->dp[d->used-1];
- /* Handle when a >= d ^ (2 ^ (SP_WORD_SIZE * x)). */
- _sp_div_same_size(a, d, r);
- /* Keep subtracting multiples of d as long as the digit count of a is
- * greater than equal to d.
- */
- for (i = a->used - 1; i >= d->used; i--) {
- /* When top digits equal, guestimate maximum multiplier.
- * Worst case, multiplier is actually SP_DIGIT_MAX - 1.
- * That is, for w (word size in bits) > 1, n > 1, let:
- * a = 2^((n+1)*w-1), d = 2^(n*w-1) + 2^((n-1)*w) - 1, t = 2^w - 2
- * Then,
- * d * t
- * = (2^(n*w-1) + 2^((n-1)*w) - 1) * (2^w - 2)
- * = 2^((n+1)*w-1) - 2^(n*w) + 2^(n*w) - 2^((n-1)*w+1) - 2^w + 2
- * = 2^((n+1)*w-1) - 2^((n-1)*w+1) - 2^w + 2
- * = a - 2^((n-1)*w+1) - 2^w + 2
- * d > 2^((n-1)*w+1) + 2^w - 2, when w > 1, n > 1
- */
- if (a->dp[i] == dt) {
- t = SP_DIGIT_MAX;
- }
- else {
- /* Calculate trial quotient by dividing top word of dividend by top
- * digit of divisor.
- * Some implementations segfault when quotient > SP_DIGIT_MAX.
- * Implementations in assembly, using builtins or using
- * digits only (WOLFSSL_SP_DIV_WORD_HALF).
- */
- t = sp_div_word(a->dp[i], a->dp[i-1], dt);
- }
- #ifdef WOLFSSL_SP_SMALL
- do {
- /* Calculate trial from trial quotient. */
- err = _sp_mul_d(d, t, trial, i - d->used);
- if (err != MP_OKAY) {
- break;
- }
- /* Check if trial is bigger. */
- c = _sp_cmp_abs(trial, a);
- if (c == MP_GT) {
- /* Decrement trial quotient and try again. */
- t--;
- }
- }
- while (c == MP_GT);
- if (err != MP_OKAY) {
- break;
- }
- /* Subtract the trial and add qoutient to result. */
- _sp_sub_off(a, trial, a, 0);
- r->dp[i - d->used] += t;
- /* Handle overflow of digit. */
- if (r->dp[i - d->used] < t) {
- r->dp[i + 1 - d->used]++;
- }
- #else
- /* Index of lowest digit trial is subtracted from. */
- o = i - d->used;
- do {
- #ifndef SQR_MUL_ASM
- sp_int_word tw = 0;
- #else
- sp_int_digit tl = 0;
- sp_int_digit th = 0;
- #endif
- /* Multiply divisor by trial quotient. */
- for (j = 0; j < d->used; j++) {
- #ifndef SQR_MUL_ASM
- tw += (sp_int_word)d->dp[j] * t;
- trial->dp[j] = (sp_int_digit)tw;
- tw >>= SP_WORD_SIZE;
- #else
- SP_ASM_MUL_ADD_NO(tl, th, d->dp[j], t);
- trial->dp[j] = tl;
- tl = th;
- th = 0;
- #endif
- }
- #ifndef SQR_MUL_ASM
- trial->dp[j] = (sp_int_digit)tw;
- #else
- trial->dp[j] = tl;
- #endif
- /* Check trial quotient isn't larger than dividend. */
- for (j = d->used; j > 0; j--) {
- if (trial->dp[j] != a->dp[j + o]) {
- break;
- }
- }
- /* Decrement trial quotient if larger and try again. */
- if (trial->dp[j] > a->dp[j + o]) {
- t--;
- }
- }
- while (trial->dp[j] > a->dp[j + o]);
- #ifndef SQR_MUL_ASM
- sw = 0;
- #else
- sl = 0;
- sh = 0;
- #endif
- /* Subtract trial - don't need to update used. */
- for (j = 0; j <= d->used; j++) {
- #ifndef SQR_MUL_ASM
- sw += a->dp[j + o];
- sw -= trial->dp[j];
- a->dp[j + o] = (sp_int_digit)sw;
- sw >>= SP_WORD_SIZE;
- #else
- st = a->dp[j + o];
- SP_ASM_ADDC(sl, sh, st);
- st = trial->dp[j];
- SP_ASM_SUBB(sl, sh, st);
- a->dp[j + o] = sl;
- sl = sh;
- sh = (sp_int_digit)0 - (sl >> (SP_WORD_SIZE - 1));
- #endif
- }
- r->dp[o] = t;
- #endif /* WOLFSSL_SP_SMALL */
- }
- /* Update used. */
- a->used = i + 1;
- if (a->used == d->used) {
- /* Finish div now that length of dividend is same as divisor. */
- _sp_div_same_size(a, d, r);
- }
- return err;
- }
- /* Divide a by d and return the quotient in r and the remainder in rem.
- * r = a / d; rem = a % d
- *
- * @param [in] a SP integer to be divided.
- * @param [in] d SP integer to divide by.
- * @param [out] r SP integer that is the quotient.
- * @param [out] rem SP integer that is the remainder.
- * @param [in] used Number of digits in temporaries to use.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_div(const sp_int* a, const sp_int* d, sp_int* r, sp_int* rem,
- unsigned int used)
- {
- int err = MP_OKAY;
- int ret;
- int done = 0;
- int s = 0;
- sp_int* sa = NULL;
- sp_int* sd = NULL;
- sp_int* tr = NULL;
- sp_int* trial = NULL;
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- unsigned int signA = MP_ZPOS;
- unsigned int signD = MP_ZPOS;
- #endif /* WOLFSSL_SP_INT_NEGATIVE */
- /* Intermediates will always be less than or equal to dividend. */
- DECL_SP_INT_ARRAY(td, used, 4);
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Cache sign for results. */
- signA = a->sign;
- signD = d->sign;
- #endif /* WOLFSSL_SP_INT_NEGATIVE */
- /* Handle simple case of: dividend < divisor. */
- ret = _sp_cmp_abs(a, d);
- if (ret == MP_LT) {
- /* a = 0 * d + a */
- if ((rem != NULL) && (a != rem)) {
- _sp_copy(a, rem);
- }
- if (r != NULL) {
- _sp_set(r, 0);
- }
- done = 1;
- }
- /* Handle simple case of: dividend == divisor. */
- else if (ret == MP_EQ) {
- /* a = 1 * d + 0 */
- if (rem != NULL) {
- _sp_set(rem, 0);
- }
- if (r != NULL) {
- _sp_set(r, 1);
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- r->sign = (signA == signD) ? MP_ZPOS : MP_NEG;
- #endif /* WOLFSSL_SP_INT_NEGATIVE */
- }
- done = 1;
- }
- else if (sp_count_bits(a) == sp_count_bits(d)) {
- /* a is greater than d but same bit length - subtract. */
- if (rem != NULL) {
- _sp_sub_off(a, d, rem, 0);
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- rem->sign = signA;
- #endif
- }
- if (r != NULL) {
- _sp_set(r, 1);
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- r->sign = (signA == signD) ? MP_ZPOS : MP_NEG;
- #endif /* WOLFSSL_SP_INT_NEGATIVE */
- }
- done = 1;
- }
- /* Allocate temporary 'sp_int's and assign. */
- if ((!done) && (err == MP_OKAY)) {
- #if (defined(WOLFSSL_SMALL_STACK) || defined(SP_ALLOC)) && \
- !defined(WOLFSSL_SP_NO_MALLOC)
- int cnt = 4;
- /* Reuse remainder sp_int where possible. */
- if ((rem != NULL) && (rem != d) && (rem->size > a->used)) {
- sa = rem;
- cnt--;
- }
- /* Reuse result sp_int where possible. */
- if ((r != NULL) && (r != d)) {
- tr = r;
- cnt--;
- }
- /* Macro always has code associated with it and checks err first. */
- ALLOC_SP_INT_ARRAY(td, used, cnt, err, NULL);
- #else
- ALLOC_SP_INT_ARRAY(td, used, 4, err, NULL);
- #endif
- }
- if ((!done) && (err == MP_OKAY)) {
- #if (defined(WOLFSSL_SMALL_STACK) || defined(SP_ALLOC)) && \
- !defined(WOLFSSL_SP_NO_MALLOC)
- int i = 2;
- /* Set to temporary when not reusing. */
- if (sa == NULL) {
- sa = td[i++];
- _sp_init_size(sa, used);
- }
- if (tr == NULL) {
- tr = td[i];
- _sp_init_size(tr, a->used - d->used + 2);
- }
- #else
- sa = td[2];
- tr = td[3];
- _sp_init_size(sa, used);
- _sp_init_size(tr, a->used - d->used + 2);
- #endif
- sd = td[0];
- trial = td[1];
- /* Initialize sizes to minimal values. */
- _sp_init_size(sd, d->used + 1);
- _sp_init_size(trial, used);
- /* Move divisor to top of word. Adjust dividend as well. */
- s = sp_count_bits(d);
- s = SP_WORD_SIZE - (s & SP_WORD_MASK);
- _sp_copy(a, sa);
- /* Only shift if top bit of divisor no set. */
- if (s != SP_WORD_SIZE) {
- err = sp_lshb(sa, s);
- if (err == MP_OKAY) {
- _sp_copy(d, sd);
- d = sd;
- err = sp_lshb(sd, s);
- }
- }
- }
- if ((!done) && (err == MP_OKAY) && (d->used > 0)) {
- /* Do division: tr = sa / d, sa = sa % d. */
- err = _sp_div_impl(sa, d, tr, trial);
- /* Return the remainder if required. */
- if ((err == MP_OKAY) && (rem != NULL)) {
- /* Move result back down if moved up for divisor value. */
- if (s != SP_WORD_SIZE) {
- (void)sp_rshb(sa, s, sa);
- }
- _sp_copy(sa, rem);
- sp_clamp(rem);
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- rem->sign = (rem->used == 0) ? MP_ZPOS : signA;
- #endif
- }
- /* Return the quotient if required. */
- if ((err == MP_OKAY) && (r != NULL)) {
- _sp_copy(tr, r);
- sp_clamp(r);
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- if ((r->used == 0) || (signA == signD)) {
- r->sign = MP_ZPOS;
- }
- else {
- r->sign = MP_NEG;
- }
- #endif /* WOLFSSL_SP_INT_NEGATIVE */
- }
- }
- FREE_SP_INT_ARRAY(td, NULL);
- return err;
- }
- /* Divide a by d and return the quotient in r and the remainder in rem.
- * r = a / d; rem = a % d
- *
- * @param [in] a SP integer to be divided.
- * @param [in] d SP integer to divide by.
- * @param [out] r SP integer that is the quotient.
- * @param [out] rem SP integer that is the remainder.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or d is NULL, r and rem are NULL, or d is 0.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_div(const sp_int* a, const sp_int* d, sp_int* r, sp_int* rem)
- {
- int err = MP_OKAY;
- unsigned int used = 1;
- /* Validate parameters. */
- if ((a == NULL) || (d == NULL) || ((r == NULL) && (rem == NULL))) {
- err = MP_VAL;
- }
- /* a / 0 = infinity. */
- if ((err == MP_OKAY) && sp_iszero(d)) {
- err = MP_VAL;
- }
- /* Ensure quotient result has enough memory. */
- if ((err == MP_OKAY) && (r != NULL) && (r->size < a->used - d->used + 2)) {
- err = MP_VAL;
- }
- if ((err == MP_OKAY) && (rem != NULL)) {
- /* Ensure remainder has enough memory. */
- if ((a->used <= d->used) && (rem->size < a->used + 1)) {
- err = MP_VAL;
- }
- else if ((a->used > d->used) && (rem->size < d->used + 1)) {
- err = MP_VAL;
- }
- }
- if (err == MP_OKAY) {
- if (a->used == SP_INT_DIGITS) {
- /* May need to shift number being divided left into a new word. */
- int bits = SP_WORD_SIZE - (sp_count_bits(d) % SP_WORD_SIZE);
- if ((bits != SP_WORD_SIZE) &&
- (sp_count_bits(a) + bits > SP_INT_DIGITS * SP_WORD_SIZE)) {
- err = MP_VAL;
- }
- else {
- used = SP_INT_DIGITS;
- }
- }
- else {
- used = a->used + 1;
- }
- }
- if (err == MP_OKAY) {
- #if 0
- sp_print(a, "a");
- sp_print(d, "b");
- #endif
- /* Do operation. */
- err = _sp_div(a, d, r, rem, used);
- #if 0
- if (err == MP_OKAY) {
- if (rem != NULL) {
- sp_print(rem, "rdr");
- }
- if (r != NULL) {
- sp_print(r, "rdw");
- }
- }
- #endif
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL || !NO_DH || HAVE_ECC || \
- * (!NO_RSA && !WOLFSSL_RSA_VERIFY_ONLY) */
- #if defined(WOLFSSL_SP_MATH_ALL) || !defined(NO_DH) || defined(HAVE_ECC) || \
- (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY))
- #ifndef FREESCALE_LTC_TFM
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Calculate the remainder of dividing a by m: r = a mod m. r is m.
- *
- * @param [in] a SP integer to reduce.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to store result in.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mod(const sp_int* a, const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- /* Remainder will start as a. */
- DECL_SP_INT(t, (a == NULL) ? 1 : a->used + 1);
- /* In case remainder is modulus - allocate temporary. */
- ALLOC_SP_INT(t, a->used + 1, err, NULL);
- if (err == MP_OKAY) {
- _sp_init_size(t, a->used + 1);
- /* Use divide to calculate remainder and don't get quotient. */
- err = sp_div(a, m, NULL, t);
- }
- if (err == MP_OKAY) {
- /* Make remainder positive and copy into result. */
- if ((!sp_iszero(t)) && (t->sign != m->sign)) {
- err = sp_add(t, m, r);
- }
- else {
- _sp_copy(t, r);
- }
- }
- FREE_SP_INT(t, NULL);
- return err;
- }
- #endif
- /* Calculate the remainder of dividing a by m: r = a mod m.
- *
- * @param [in] a SP integer to reduce.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to store result in.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a, m or r is NULL or m is 0.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_mod(const sp_int* a, const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (m == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- /* Ensure a isn't too big a number to operate on. */
- else if (a->used >= SP_INT_DIGITS) {
- err = MP_VAL;
- }
- #ifndef WOLFSSL_SP_INT_NEGATIVE
- if (err == MP_OKAY) {
- /* Use divide to calculate remainder and don't get quotient. */
- err = sp_div(a, m, NULL, r);
- }
- #else
- if ((err == MP_OKAY) && (r != m)) {
- err = sp_div(a, m, NULL, r);
- if ((err == MP_OKAY) && (!sp_iszero(r)) && (r->sign != m->sign)) {
- err = sp_add(r, m, r);
- }
- }
- else if (err == MP_OKAY) {
- err = _sp_mod(a, m, r);
- }
- #endif /* WOLFSSL_SP_INT_NEGATIVE */
- return err;
- }
- #endif /* !FREESCALE_LTC_TFM */
- #endif /* WOLFSSL_SP_MATH_ALL || !NO_DH || HAVE_ECC || \
- * (!NO_RSA && !WOLFSSL_RSA_VERIFY_ONLY) */
- #if defined(WOLFSSL_SP_MATH_ALL) || defined(WOLFSSL_HAVE_SP_DH) || \
- defined(HAVE_ECC) || !defined(NO_RSA)
- /* START SP_MUL implementations. */
- /* This code is generated.
- * To generate:
- * cd scripts/sp/sp_int
- * ./gen.sh
- * File sp_mul.c contains code.
- */
- #ifdef SQR_MUL_ASM
- /* Multiply a by b into r where a and b have same no. digits. r = a * b
- *
- * Optimised code for when number of digits in a and b are the same.
- *
- * @param [in] a SP integer to mulitply.
- * @param [in] b SP integer to mulitply by.
- * @param [out] r SP integer to hod reult.
- *
- * @return MP_OKAY otherwise.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mul_nxn(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- unsigned int i;
- int j;
- unsigned int k;
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- sp_int_digit* t = NULL;
- #elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
- !defined(WOLFSSL_SP_NO_DYN_STACK)
- sp_int_digit t[a->used];
- #else
- sp_int_digit t[SP_INT_DIGITS / 2];
- #endif
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- t = (sp_int_digit*)XMALLOC(sizeof(sp_int_digit) * a->used, NULL,
- DYNAMIC_TYPE_BIGINT);
- if (t == NULL) {
- err = MP_MEM;
- }
- #endif
- if (err == MP_OKAY) {
- sp_int_digit l;
- sp_int_digit h;
- sp_int_digit o;
- const sp_int_digit* dp;
- h = 0;
- l = 0;
- SP_ASM_MUL(h, l, a->dp[0], b->dp[0]);
- t[0] = h;
- h = 0;
- o = 0;
- for (k = 1; k <= a->used - 1; k++) {
- j = (int)k;
- dp = a->dp;
- for (; j >= 0; dp++, j--) {
- SP_ASM_MUL_ADD(l, h, o, dp[0], b->dp[j]);
- }
- t[k] = l;
- l = h;
- h = o;
- o = 0;
- }
- for (; k <= (a->used - 1) * 2; k++) {
- i = k - (b->used - 1);
- dp = &b->dp[b->used - 1];
- for (; i < a->used; i++, dp--) {
- SP_ASM_MUL_ADD(l, h, o, a->dp[i], dp[0]);
- }
- r->dp[k] = l;
- l = h;
- h = o;
- o = 0;
- }
- r->dp[k] = l;
- XMEMCPY(r->dp, t, a->used * sizeof(sp_int_digit));
- r->used = k + 1;
- sp_clamp(r);
- }
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- if (t != NULL) {
- XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
- }
- #endif
- return err;
- }
- /* Multiply a by b into r. r = a * b
- *
- * @param [in] a SP integer to mulitply.
- * @param [in] b SP integer to mulitply by.
- * @param [out] r SP integer to hod reult.
- *
- * @return MP_OKAY otherwise.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mul(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- unsigned int i;
- int j;
- unsigned int k;
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- sp_int_digit* t = NULL;
- #elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
- !defined(WOLFSSL_SP_NO_DYN_STACK)
- sp_int_digit t[a->used + b->used];
- #else
- sp_int_digit t[SP_INT_DIGITS];
- #endif
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- t = (sp_int_digit*)XMALLOC(sizeof(sp_int_digit) * (a->used + b->used), NULL,
- DYNAMIC_TYPE_BIGINT);
- if (t == NULL) {
- err = MP_MEM;
- }
- #endif
- if (err == MP_OKAY) {
- sp_int_digit l;
- sp_int_digit h;
- sp_int_digit o;
- h = 0;
- l = 0;
- SP_ASM_MUL(h, l, a->dp[0], b->dp[0]);
- t[0] = h;
- h = 0;
- o = 0;
- for (k = 1; k <= b->used - 1; k++) {
- i = 0;
- j = (int)k;
- for (; (i < a->used) && (j >= 0); i++, j--) {
- SP_ASM_MUL_ADD(l, h, o, a->dp[i], b->dp[j]);
- }
- t[k] = l;
- l = h;
- h = o;
- o = 0;
- }
- for (; k <= (a->used - 1) + (b->used - 1); k++) {
- j = (int)(b->used - 1);
- i = k - (unsigned int)j;
- for (; (i < a->used) && (j >= 0); i++, j--) {
- SP_ASM_MUL_ADD(l, h, o, a->dp[i], b->dp[j]);
- }
- t[k] = l;
- l = h;
- h = o;
- o = 0;
- }
- t[k] = l;
- r->used = k + 1;
- XMEMCPY(r->dp, t, r->used * sizeof(sp_int_digit));
- sp_clamp(r);
- }
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- if (t != NULL) {
- XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
- }
- #endif
- return err;
- }
- #else
- /* Multiply a by b into r. r = a * b
- *
- * @param [in] a SP integer to mulitply.
- * @param [in] b SP integer to mulitply by.
- * @param [out] r SP integer to hod reult.
- *
- * @return MP_OKAY otherwise.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mul(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- unsigned int i;
- int j;
- unsigned int k;
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- sp_int_digit* t = NULL;
- #elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
- !defined(WOLFSSL_SP_NO_DYN_STACK)
- sp_int_digit t[a->used + b->used];
- #else
- sp_int_digit t[SP_INT_DIGITS];
- #endif
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- t = (sp_int_digit*)XMALLOC(sizeof(sp_int_digit) * (a->used + b->used), NULL,
- DYNAMIC_TYPE_BIGINT);
- if (t == NULL) {
- err = MP_MEM;
- }
- #endif
- if (err == MP_OKAY) {
- sp_int_word w;
- sp_int_word l;
- sp_int_word h;
- #ifdef SP_WORD_OVERFLOW
- sp_int_word o;
- #endif
- w = (sp_int_word)a->dp[0] * b->dp[0];
- t[0] = (sp_int_digit)w;
- l = (sp_int_digit)(w >> SP_WORD_SIZE);
- h = 0;
- #ifdef SP_WORD_OVERFLOW
- o = 0;
- #endif
- for (k = 1; k <= (a->used - 1) + (b->used - 1); k++) {
- i = k - (b->used - 1);
- i &= (((unsigned int)i >> (sizeof(i) * 8 - 1)) - 1U);
- j = (int)(k - i);
- for (; (i < a->used) && (j >= 0); i++, j--) {
- w = (sp_int_word)a->dp[i] * b->dp[j];
- l += (sp_int_digit)w;
- h += (sp_int_digit)(w >> SP_WORD_SIZE);
- #ifdef SP_WORD_OVERFLOW
- h += (sp_int_digit)(l >> SP_WORD_SIZE);
- l &= SP_MASK;
- o += (sp_int_digit)(h >> SP_WORD_SIZE);
- h &= SP_MASK;
- #endif
- }
- t[k] = (sp_int_digit)l;
- l >>= SP_WORD_SIZE;
- l += (sp_int_digit)h;
- h >>= SP_WORD_SIZE;
- #ifdef SP_WORD_OVERFLOW
- h += o & SP_MASK;
- o >>= SP_WORD_SIZE;
- #endif
- }
- t[k] = (sp_int_digit)l;
- r->used = k + 1;
- XMEMCPY(r->dp, t, r->used * sizeof(sp_int_digit));
- sp_clamp(r);
- }
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- if (t != NULL) {
- XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
- }
- #endif
- return err;
- }
- #endif
- #ifndef WOLFSSL_SP_SMALL
- #if !defined(WOLFSSL_HAVE_SP_ECC) && defined(HAVE_ECC)
- #if (SP_WORD_SIZE == 64 && SP_INT_BITS >= 256)
- #ifndef SQR_MUL_ASM
- /* Multiply a by b and store in r: r = a * b
- *
- * Long-hand implementation.
- *
- * @param [in] a SP integer to multiply.
- * @param [in] b SP integer to multiply.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mul_4(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- sp_int_word* w = NULL;
- #else
- sp_int_word w[16];
- #endif
- const sp_int_digit* da = a->dp;
- const sp_int_digit* db = b->dp;
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- w = (sp_int_word*)XMALLOC(sizeof(sp_int_word) * 16, NULL,
- DYNAMIC_TYPE_BIGINT);
- if (w == NULL) {
- err = MP_MEM;
- }
- #endif
- if (err == MP_OKAY) {
- w[0] = (sp_int_word)da[0] * db[0];
- w[1] = (sp_int_word)da[0] * db[1];
- w[2] = (sp_int_word)da[1] * db[0];
- w[3] = (sp_int_word)da[0] * db[2];
- w[4] = (sp_int_word)da[1] * db[1];
- w[5] = (sp_int_word)da[2] * db[0];
- w[6] = (sp_int_word)da[0] * db[3];
- w[7] = (sp_int_word)da[1] * db[2];
- w[8] = (sp_int_word)da[2] * db[1];
- w[9] = (sp_int_word)da[3] * db[0];
- w[10] = (sp_int_word)da[1] * db[3];
- w[11] = (sp_int_word)da[2] * db[2];
- w[12] = (sp_int_word)da[3] * db[1];
- w[13] = (sp_int_word)da[2] * db[3];
- w[14] = (sp_int_word)da[3] * db[2];
- w[15] = (sp_int_word)da[3] * db[3];
- r->dp[0] = (sp_int_digit)w[0];
- w[0] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[1];
- w[0] += (sp_int_digit)w[2];
- r->dp[1] = (sp_int_digit)w[0];
- w[0] >>= SP_WORD_SIZE;
- w[1] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[1];
- w[2] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[2];
- w[0] += (sp_int_digit)w[3];
- w[0] += (sp_int_digit)w[4];
- w[0] += (sp_int_digit)w[5];
- r->dp[2] = (sp_int_digit)w[0];
- w[0] >>= SP_WORD_SIZE;
- w[3] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[3];
- w[4] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[4];
- w[5] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[5];
- w[0] += (sp_int_digit)w[6];
- w[0] += (sp_int_digit)w[7];
- w[0] += (sp_int_digit)w[8];
- w[0] += (sp_int_digit)w[9];
- r->dp[3] = (sp_int_digit)w[0];
- w[0] >>= SP_WORD_SIZE;
- w[6] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[6];
- w[7] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[7];
- w[8] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[8];
- w[9] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[9];
- w[0] += (sp_int_digit)w[10];
- w[0] += (sp_int_digit)w[11];
- w[0] += (sp_int_digit)w[12];
- r->dp[4] = (sp_int_digit)w[0];
- w[0] >>= SP_WORD_SIZE;
- w[10] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[10];
- w[11] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[11];
- w[12] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[12];
- w[0] += (sp_int_digit)w[13];
- w[0] += (sp_int_digit)w[14];
- r->dp[5] = (sp_int_digit)w[0];
- w[0] >>= SP_WORD_SIZE;
- w[13] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[13];
- w[14] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[14];
- w[0] += (sp_int_digit)w[15];
- r->dp[6] = (sp_int_digit)w[0];
- w[0] >>= SP_WORD_SIZE;
- w[15] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[15];
- r->dp[7] = (sp_int_digit)w[0];
- r->used = 8;
- sp_clamp(r);
- }
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- if (w != NULL) {
- XFREE(w, NULL, DYNAMIC_TYPE_BIGINT);
- }
- #endif
- return err;
- }
- #else /* SQR_MUL_ASM */
- /* Multiply a by b and store in r: r = a * b
- *
- * Comba implementation.
- *
- * @param [in] a SP integer to multiply.
- * @param [in] b SP integer to multiply.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mul_4(const sp_int* a, const sp_int* b, sp_int* r)
- {
- sp_int_digit l = 0;
- sp_int_digit h = 0;
- sp_int_digit o = 0;
- sp_int_digit t[4];
- SP_ASM_MUL(h, l, a->dp[0], b->dp[0]);
- t[0] = h;
- h = 0;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[0], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[0]);
- t[1] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[0], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[0]);
- t[2] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[0]);
- t[3] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[1]);
- r->dp[4] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[2]);
- r->dp[5] = l;
- l = h;
- h = o;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[3], b->dp[3]);
- r->dp[6] = l;
- r->dp[7] = h;
- XMEMCPY(r->dp, t, 4 * sizeof(sp_int_digit));
- r->used = 8;
- sp_clamp(r);
- return MP_OKAY;
- }
- #endif /* SQR_MUL_ASM */
- #endif /* SP_WORD_SIZE == 64 */
- #if (SP_WORD_SIZE == 64 && SP_INT_BITS >= 384)
- #ifdef SQR_MUL_ASM
- /* Multiply a by b and store in r: r = a * b
- *
- * Comba implementation.
- *
- * @param [in] a SP integer to multiply.
- * @param [in] b SP integer to multiply.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mul_6(const sp_int* a, const sp_int* b, sp_int* r)
- {
- sp_int_digit l = 0;
- sp_int_digit h = 0;
- sp_int_digit o = 0;
- sp_int_digit t[6];
- SP_ASM_MUL(h, l, a->dp[0], b->dp[0]);
- t[0] = h;
- h = 0;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[0], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[0]);
- t[1] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[0], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[0]);
- t[2] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[0]);
- t[3] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[0]);
- t[4] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[0]);
- t[5] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[1]);
- r->dp[6] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[2]);
- r->dp[7] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[3]);
- r->dp[8] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[4]);
- r->dp[9] = l;
- l = h;
- h = o;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[5], b->dp[5]);
- r->dp[10] = l;
- r->dp[11] = h;
- XMEMCPY(r->dp, t, 6 * sizeof(sp_int_digit));
- r->used = 12;
- sp_clamp(r);
- return MP_OKAY;
- }
- #endif /* SQR_MUL_ASM */
- #endif /* SP_WORD_SIZE == 64 */
- #if (SP_WORD_SIZE == 32 && SP_INT_BITS >= 256)
- #ifdef SQR_MUL_ASM
- /* Multiply a by b and store in r: r = a * b
- *
- * Comba implementation.
- *
- * @param [in] a SP integer to multiply.
- * @param [in] b SP integer to multiply.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mul_8(const sp_int* a, const sp_int* b, sp_int* r)
- {
- sp_int_digit l = 0;
- sp_int_digit h = 0;
- sp_int_digit o = 0;
- sp_int_digit t[8];
- SP_ASM_MUL(h, l, a->dp[0], b->dp[0]);
- t[0] = h;
- h = 0;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[0], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[0]);
- t[1] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[0], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[0]);
- t[2] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[0]);
- t[3] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[0]);
- t[4] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[0]);
- t[5] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[0]);
- t[6] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[0]);
- t[7] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[1]);
- r->dp[8] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[2]);
- r->dp[9] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[3]);
- r->dp[10] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[4]);
- r->dp[11] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[5]);
- r->dp[12] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[6]);
- r->dp[13] = l;
- l = h;
- h = o;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[7], b->dp[7]);
- r->dp[14] = l;
- r->dp[15] = h;
- XMEMCPY(r->dp, t, 8 * sizeof(sp_int_digit));
- r->used = 16;
- sp_clamp(r);
- return MP_OKAY;
- }
- #endif /* SQR_MUL_ASM */
- #endif /* SP_WORD_SIZE == 32 */
- #if (SP_WORD_SIZE == 32 && SP_INT_BITS >= 384)
- #ifdef SQR_MUL_ASM
- /* Multiply a by b and store in r: r = a * b
- *
- * Comba implementation.
- *
- * @param [in] a SP integer to multiply.
- * @param [in] b SP integer to multiply.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mul_12(const sp_int* a, const sp_int* b, sp_int* r)
- {
- sp_int_digit l = 0;
- sp_int_digit h = 0;
- sp_int_digit o = 0;
- sp_int_digit t[12];
- SP_ASM_MUL(h, l, a->dp[0], b->dp[0]);
- t[0] = h;
- h = 0;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[0], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[0]);
- t[1] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[0], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[0]);
- t[2] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[0]);
- t[3] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[0]);
- t[4] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[0]);
- t[5] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[0]);
- t[6] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[0]);
- t[7] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[0]);
- t[8] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[0]);
- t[9] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[0]);
- t[10] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[0]);
- t[11] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[1]);
- r->dp[12] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[2]);
- r->dp[13] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[3]);
- r->dp[14] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[4]);
- r->dp[15] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[5]);
- r->dp[16] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[6]);
- r->dp[17] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[7]);
- r->dp[18] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[8]);
- r->dp[19] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[9]);
- r->dp[20] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[10]);
- r->dp[21] = l;
- l = h;
- h = o;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[11], b->dp[11]);
- r->dp[22] = l;
- r->dp[23] = h;
- XMEMCPY(r->dp, t, 12 * sizeof(sp_int_digit));
- r->used = 24;
- sp_clamp(r);
- return MP_OKAY;
- }
- #endif /* SQR_MUL_ASM */
- #endif /* SP_WORD_SIZE == 32 */
- #endif /* !WOLFSSL_HAVE_SP_ECC && HAVE_ECC */
- #if defined(SQR_MUL_ASM) && (defined(WOLFSSL_SP_INT_LARGE_COMBA) || \
- (!defined(WOLFSSL_SP_MATH) && defined(WOLFCRYPT_HAVE_SAKKE) && \
- (SP_WORD_SIZE == 64)))
- #if SP_INT_DIGITS >= 32
- /* Multiply a by b and store in r: r = a * b
- *
- * Comba implementation.
- *
- * @param [in] a SP integer to multiply.
- * @param [in] b SP integer to multiply.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mul_16(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- sp_int_digit l = 0;
- sp_int_digit h = 0;
- sp_int_digit o = 0;
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- sp_int_digit* t = NULL;
- #else
- sp_int_digit t[16];
- #endif
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- t = (sp_int_digit*)XMALLOC(sizeof(sp_int_digit) * 16, NULL,
- DYNAMIC_TYPE_BIGINT);
- if (t == NULL) {
- err = MP_MEM;
- }
- #endif
- if (err == MP_OKAY) {
- SP_ASM_MUL(h, l, a->dp[0], b->dp[0]);
- t[0] = h;
- h = 0;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[0], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[0]);
- t[1] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[0], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[0]);
- t[2] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[0]);
- t[3] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[0]);
- t[4] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[0]);
- t[5] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[0]);
- t[6] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[0]);
- t[7] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[0]);
- t[8] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[0]);
- t[9] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[0]);
- t[10] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[0]);
- t[11] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[0]);
- t[12] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[0]);
- t[13] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[0]);
- t[14] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[0]);
- t[15] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[1]);
- r->dp[16] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[2]);
- r->dp[17] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[3]);
- r->dp[18] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[4]);
- r->dp[19] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[5]);
- r->dp[20] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[6]);
- r->dp[21] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[7]);
- r->dp[22] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[8]);
- r->dp[23] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[9]);
- r->dp[24] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[10]);
- r->dp[25] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[11]);
- r->dp[26] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[12]);
- r->dp[27] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[13]);
- r->dp[28] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[14]);
- r->dp[29] = l;
- l = h;
- h = o;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[15], b->dp[15]);
- r->dp[30] = l;
- r->dp[31] = h;
- XMEMCPY(r->dp, t, 16 * sizeof(sp_int_digit));
- r->used = 32;
- sp_clamp(r);
- }
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- if (t != NULL) {
- XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
- }
- #endif
- return err;
- }
- #endif /* SP_INT_DIGITS >= 32 */
- #endif /* SQR_MUL_ASM && (WOLFSSL_SP_INT_LARGE_COMBA || !WOLFSSL_SP_MATH &&
- * WOLFCRYPT_HAVE_SAKKE && SP_WORD_SIZE == 64 */
- #if defined(SQR_MUL_ASM) && defined(WOLFSSL_SP_INT_LARGE_COMBA)
- #if SP_INT_DIGITS >= 48
- /* Multiply a by b and store in r: r = a * b
- *
- * Comba implementation.
- *
- * @param [in] a SP integer to multiply.
- * @param [in] b SP integer to multiply.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mul_24(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- sp_int_digit l = 0;
- sp_int_digit h = 0;
- sp_int_digit o = 0;
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- sp_int_digit* t = NULL;
- #else
- sp_int_digit t[24];
- #endif
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- t = (sp_int_digit*)XMALLOC(sizeof(sp_int_digit) * 24, NULL,
- DYNAMIC_TYPE_BIGINT);
- if (t == NULL) {
- err = MP_MEM;
- }
- #endif
- if (err == MP_OKAY) {
- SP_ASM_MUL(h, l, a->dp[0], b->dp[0]);
- t[0] = h;
- h = 0;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[0], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[0]);
- t[1] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[0], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[0]);
- t[2] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[0]);
- t[3] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[0]);
- t[4] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[0]);
- t[5] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[0]);
- t[6] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[0]);
- t[7] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[0]);
- t[8] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[0]);
- t[9] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[0]);
- t[10] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[0]);
- t[11] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[0]);
- t[12] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[0]);
- t[13] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[0]);
- t[14] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[0]);
- t[15] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[0]);
- t[16] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[0]);
- t[17] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[0]);
- t[18] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[0]);
- t[19] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[0]);
- t[20] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[0]);
- t[21] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[0]);
- t[22] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[0], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[1]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[0]);
- t[23] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[1], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[2]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[1]);
- r->dp[24] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[2], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[3]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[2]);
- r->dp[25] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[3], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[4]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[3]);
- r->dp[26] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[4], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[5]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[4]);
- r->dp[27] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[5], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[6]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[5]);
- r->dp[28] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[6], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[7]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[6]);
- r->dp[29] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[7], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[8]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[7]);
- r->dp[30] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[8], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[9]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[8]);
- r->dp[31] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[9], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[10]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[9]);
- r->dp[32] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[10], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[11]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[10]);
- r->dp[33] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[11], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[12]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[11]);
- r->dp[34] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[12], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[13]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[12]);
- r->dp[35] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[13], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[14]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[13]);
- r->dp[36] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[14], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[15]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[14]);
- r->dp[37] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[15], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[16]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[15]);
- r->dp[38] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[16], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[17]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[16]);
- r->dp[39] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[17], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[18]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[17]);
- r->dp[40] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[18], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[19]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[18]);
- r->dp[41] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[19], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[20]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[19]);
- r->dp[42] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[20], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[21]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[20]);
- r->dp[43] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[21], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[22]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[21]);
- r->dp[44] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD(l, h, o, a->dp[22], b->dp[23]);
- SP_ASM_MUL_ADD(l, h, o, a->dp[23], b->dp[22]);
- r->dp[45] = l;
- l = h;
- h = o;
- SP_ASM_MUL_ADD_NO(l, h, a->dp[23], b->dp[23]);
- r->dp[46] = l;
- r->dp[47] = h;
- XMEMCPY(r->dp, t, 24 * sizeof(sp_int_digit));
- r->used = 48;
- sp_clamp(r);
- }
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- if (t != NULL) {
- XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
- }
- #endif
- return err;
- }
- #endif /* SP_INT_DIGITS >= 48 */
- #if SP_INT_DIGITS >= 64
- /* Multiply a by b and store in r: r = a * b
- *
- * Karatsuba implementation.
- *
- * @param [in] a SP integer to multiply.
- * @param [in] b SP integer to multiply.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mul_32(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- unsigned int i;
- sp_int_digit l;
- sp_int_digit h;
- sp_int* a1;
- sp_int* b1;
- sp_int* z0;
- sp_int* z1;
- sp_int* z2;
- sp_int_digit ca;
- sp_int_digit cb;
- DECL_SP_INT_ARRAY(t, 16, 2);
- DECL_SP_INT_ARRAY(z, 33, 2);
- ALLOC_SP_INT_ARRAY(t, 16, 2, err, NULL);
- ALLOC_SP_INT_ARRAY(z, 33, 2, err, NULL);
- if (err == MP_OKAY) {
- a1 = t[0];
- b1 = t[1];
- z1 = z[0];
- z2 = z[1];
- z0 = r;
- XMEMCPY(a1->dp, &a->dp[16], sizeof(sp_int_digit) * 16);
- a1->used = 16;
- XMEMCPY(b1->dp, &b->dp[16], sizeof(sp_int_digit) * 16);
- b1->used = 16;
- /* z2 = a1 * b1 */
- err = _sp_mul_16(a1, b1, z2);
- }
- if (err == MP_OKAY) {
- l = a1->dp[0];
- h = 0;
- SP_ASM_ADDC(l, h, a->dp[0]);
- a1->dp[0] = l;
- l = h;
- h = 0;
- for (i = 1; i < 16; i++) {
- SP_ASM_ADDC(l, h, a1->dp[i]);
- SP_ASM_ADDC(l, h, a->dp[i]);
- a1->dp[i] = l;
- l = h;
- h = 0;
- }
- ca = l;
- /* b01 = b0 + b1 */
- l = b1->dp[0];
- h = 0;
- SP_ASM_ADDC(l, h, b->dp[0]);
- b1->dp[0] = l;
- l = h;
- h = 0;
- for (i = 1; i < 16; i++) {
- SP_ASM_ADDC(l, h, b1->dp[i]);
- SP_ASM_ADDC(l, h, b->dp[i]);
- b1->dp[i] = l;
- l = h;
- h = 0;
- }
- cb = l;
- /* z0 = a0 * b0 */
- err = _sp_mul_16(a, b, z0);
- }
- if (err == MP_OKAY) {
- /* z1 = (a0 + a1) * (b0 + b1) */
- err = _sp_mul_16(a1, b1, z1);
- }
- if (err == MP_OKAY) {
- /* r = (z2 << 32) + (z1 - z0 - z2) << 16) + z0 */
- /* r = z0 */
- /* r += (z1 - z0 - z2) << 16 */
- z1->dp[32] = ca & cb;
- l = 0;
- if (ca) {
- h = 0;
- for (i = 0; i < 16; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i + 16]);
- SP_ASM_ADDC(l, h, b1->dp[i]);
- z1->dp[i + 16] = l;
- l = h;
- h = 0;
- }
- }
- z1->dp[32] += l;
- l = 0;
- if (cb) {
- h = 0;
- for (i = 0; i < 16; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i + 16]);
- SP_ASM_ADDC(l, h, a1->dp[i]);
- z1->dp[i + 16] = l;
- l = h;
- h = 0;
- }
- }
- z1->dp[32] += l;
- /* z1 = z1 - z0 - z1 */
- l = 0;
- h = 0;
- for (i = 0; i < 32; i++) {
- l += z1->dp[i];
- SP_ASM_SUBB(l, h, z0->dp[i]);
- SP_ASM_SUBB(l, h, z2->dp[i]);
- z1->dp[i] = l;
- l = h;
- h = 0;
- }
- z1->dp[i] += l;
- /* r += z1 << 16 */
- l = 0;
- h = 0;
- for (i = 0; i < 16; i++) {
- SP_ASM_ADDC(l, h, r->dp[i + 16]);
- SP_ASM_ADDC(l, h, z1->dp[i]);
- r->dp[i + 16] = l;
- l = h;
- h = 0;
- }
- for (; i < 33; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i]);
- r->dp[i + 16] = l;
- l = h;
- h = 0;
- }
- /* r += z2 << 32 */
- l = 0;
- h = 0;
- for (i = 0; i < 17; i++) {
- SP_ASM_ADDC(l, h, r->dp[i + 32]);
- SP_ASM_ADDC(l, h, z2->dp[i]);
- r->dp[i + 32] = l;
- l = h;
- h = 0;
- }
- for (; i < 32; i++) {
- SP_ASM_ADDC(l, h, z2->dp[i]);
- r->dp[i + 32] = l;
- l = h;
- h = 0;
- }
- r->used = 64;
- sp_clamp(r);
- }
- FREE_SP_INT_ARRAY(z, NULL);
- FREE_SP_INT_ARRAY(t, NULL);
- return err;
- }
- #endif /* SP_INT_DIGITS >= 64 */
- #if SP_INT_DIGITS >= 96
- /* Multiply a by b and store in r: r = a * b
- *
- * Karatsuba implementation.
- *
- * @param [in] a SP integer to multiply.
- * @param [in] b SP integer to multiply.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mul_48(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- unsigned int i;
- sp_int_digit l;
- sp_int_digit h;
- sp_int* a1;
- sp_int* b1;
- sp_int* z0;
- sp_int* z1;
- sp_int* z2;
- sp_int_digit ca;
- sp_int_digit cb;
- DECL_SP_INT_ARRAY(t, 24, 2);
- DECL_SP_INT_ARRAY(z, 49, 2);
- ALLOC_SP_INT_ARRAY(t, 24, 2, err, NULL);
- ALLOC_SP_INT_ARRAY(z, 49, 2, err, NULL);
- if (err == MP_OKAY) {
- a1 = t[0];
- b1 = t[1];
- z1 = z[0];
- z2 = z[1];
- z0 = r;
- XMEMCPY(a1->dp, &a->dp[24], sizeof(sp_int_digit) * 24);
- a1->used = 24;
- XMEMCPY(b1->dp, &b->dp[24], sizeof(sp_int_digit) * 24);
- b1->used = 24;
- /* z2 = a1 * b1 */
- err = _sp_mul_24(a1, b1, z2);
- }
- if (err == MP_OKAY) {
- l = a1->dp[0];
- h = 0;
- SP_ASM_ADDC(l, h, a->dp[0]);
- a1->dp[0] = l;
- l = h;
- h = 0;
- for (i = 1; i < 24; i++) {
- SP_ASM_ADDC(l, h, a1->dp[i]);
- SP_ASM_ADDC(l, h, a->dp[i]);
- a1->dp[i] = l;
- l = h;
- h = 0;
- }
- ca = l;
- /* b01 = b0 + b1 */
- l = b1->dp[0];
- h = 0;
- SP_ASM_ADDC(l, h, b->dp[0]);
- b1->dp[0] = l;
- l = h;
- h = 0;
- for (i = 1; i < 24; i++) {
- SP_ASM_ADDC(l, h, b1->dp[i]);
- SP_ASM_ADDC(l, h, b->dp[i]);
- b1->dp[i] = l;
- l = h;
- h = 0;
- }
- cb = l;
- /* z0 = a0 * b0 */
- err = _sp_mul_24(a, b, z0);
- }
- if (err == MP_OKAY) {
- /* z1 = (a0 + a1) * (b0 + b1) */
- err = _sp_mul_24(a1, b1, z1);
- }
- if (err == MP_OKAY) {
- /* r = (z2 << 48) + (z1 - z0 - z2) << 24) + z0 */
- /* r = z0 */
- /* r += (z1 - z0 - z2) << 24 */
- z1->dp[48] = ca & cb;
- l = 0;
- if (ca) {
- h = 0;
- for (i = 0; i < 24; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i + 24]);
- SP_ASM_ADDC(l, h, b1->dp[i]);
- z1->dp[i + 24] = l;
- l = h;
- h = 0;
- }
- }
- z1->dp[48] += l;
- l = 0;
- if (cb) {
- h = 0;
- for (i = 0; i < 24; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i + 24]);
- SP_ASM_ADDC(l, h, a1->dp[i]);
- z1->dp[i + 24] = l;
- l = h;
- h = 0;
- }
- }
- z1->dp[48] += l;
- /* z1 = z1 - z0 - z1 */
- l = 0;
- h = 0;
- for (i = 0; i < 48; i++) {
- l += z1->dp[i];
- SP_ASM_SUBB(l, h, z0->dp[i]);
- SP_ASM_SUBB(l, h, z2->dp[i]);
- z1->dp[i] = l;
- l = h;
- h = 0;
- }
- z1->dp[i] += l;
- /* r += z1 << 16 */
- l = 0;
- h = 0;
- for (i = 0; i < 24; i++) {
- SP_ASM_ADDC(l, h, r->dp[i + 24]);
- SP_ASM_ADDC(l, h, z1->dp[i]);
- r->dp[i + 24] = l;
- l = h;
- h = 0;
- }
- for (; i < 49; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i]);
- r->dp[i + 24] = l;
- l = h;
- h = 0;
- }
- /* r += z2 << 48 */
- l = 0;
- h = 0;
- for (i = 0; i < 25; i++) {
- SP_ASM_ADDC(l, h, r->dp[i + 48]);
- SP_ASM_ADDC(l, h, z2->dp[i]);
- r->dp[i + 48] = l;
- l = h;
- h = 0;
- }
- for (; i < 48; i++) {
- SP_ASM_ADDC(l, h, z2->dp[i]);
- r->dp[i + 48] = l;
- l = h;
- h = 0;
- }
- r->used = 96;
- sp_clamp(r);
- }
- FREE_SP_INT_ARRAY(z, NULL);
- FREE_SP_INT_ARRAY(t, NULL);
- return err;
- }
- #endif /* SP_INT_DIGITS >= 96 */
- #if SP_INT_DIGITS >= 128
- /* Multiply a by b and store in r: r = a * b
- *
- * Karatsuba implementation.
- *
- * @param [in] a SP integer to multiply.
- * @param [in] b SP integer to multiply.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mul_64(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- unsigned int i;
- sp_int_digit l;
- sp_int_digit h;
- sp_int* a1;
- sp_int* b1;
- sp_int* z0;
- sp_int* z1;
- sp_int* z2;
- sp_int_digit ca;
- sp_int_digit cb;
- DECL_SP_INT_ARRAY(t, 32, 2);
- DECL_SP_INT_ARRAY(z, 65, 2);
- ALLOC_SP_INT_ARRAY(t, 32, 2, err, NULL);
- ALLOC_SP_INT_ARRAY(z, 65, 2, err, NULL);
- if (err == MP_OKAY) {
- a1 = t[0];
- b1 = t[1];
- z1 = z[0];
- z2 = z[1];
- z0 = r;
- XMEMCPY(a1->dp, &a->dp[32], sizeof(sp_int_digit) * 32);
- a1->used = 32;
- XMEMCPY(b1->dp, &b->dp[32], sizeof(sp_int_digit) * 32);
- b1->used = 32;
- /* z2 = a1 * b1 */
- err = _sp_mul_32(a1, b1, z2);
- }
- if (err == MP_OKAY) {
- l = a1->dp[0];
- h = 0;
- SP_ASM_ADDC(l, h, a->dp[0]);
- a1->dp[0] = l;
- l = h;
- h = 0;
- for (i = 1; i < 32; i++) {
- SP_ASM_ADDC(l, h, a1->dp[i]);
- SP_ASM_ADDC(l, h, a->dp[i]);
- a1->dp[i] = l;
- l = h;
- h = 0;
- }
- ca = l;
- /* b01 = b0 + b1 */
- l = b1->dp[0];
- h = 0;
- SP_ASM_ADDC(l, h, b->dp[0]);
- b1->dp[0] = l;
- l = h;
- h = 0;
- for (i = 1; i < 32; i++) {
- SP_ASM_ADDC(l, h, b1->dp[i]);
- SP_ASM_ADDC(l, h, b->dp[i]);
- b1->dp[i] = l;
- l = h;
- h = 0;
- }
- cb = l;
- /* z0 = a0 * b0 */
- err = _sp_mul_32(a, b, z0);
- }
- if (err == MP_OKAY) {
- /* z1 = (a0 + a1) * (b0 + b1) */
- err = _sp_mul_32(a1, b1, z1);
- }
- if (err == MP_OKAY) {
- /* r = (z2 << 64) + (z1 - z0 - z2) << 32) + z0 */
- /* r = z0 */
- /* r += (z1 - z0 - z2) << 32 */
- z1->dp[64] = ca & cb;
- l = 0;
- if (ca) {
- h = 0;
- for (i = 0; i < 32; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i + 32]);
- SP_ASM_ADDC(l, h, b1->dp[i]);
- z1->dp[i + 32] = l;
- l = h;
- h = 0;
- }
- }
- z1->dp[64] += l;
- l = 0;
- if (cb) {
- h = 0;
- for (i = 0; i < 32; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i + 32]);
- SP_ASM_ADDC(l, h, a1->dp[i]);
- z1->dp[i + 32] = l;
- l = h;
- h = 0;
- }
- }
- z1->dp[64] += l;
- /* z1 = z1 - z0 - z1 */
- l = 0;
- h = 0;
- for (i = 0; i < 64; i++) {
- l += z1->dp[i];
- SP_ASM_SUBB(l, h, z0->dp[i]);
- SP_ASM_SUBB(l, h, z2->dp[i]);
- z1->dp[i] = l;
- l = h;
- h = 0;
- }
- z1->dp[i] += l;
- /* r += z1 << 16 */
- l = 0;
- h = 0;
- for (i = 0; i < 32; i++) {
- SP_ASM_ADDC(l, h, r->dp[i + 32]);
- SP_ASM_ADDC(l, h, z1->dp[i]);
- r->dp[i + 32] = l;
- l = h;
- h = 0;
- }
- for (; i < 65; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i]);
- r->dp[i + 32] = l;
- l = h;
- h = 0;
- }
- /* r += z2 << 64 */
- l = 0;
- h = 0;
- for (i = 0; i < 33; i++) {
- SP_ASM_ADDC(l, h, r->dp[i + 64]);
- SP_ASM_ADDC(l, h, z2->dp[i]);
- r->dp[i + 64] = l;
- l = h;
- h = 0;
- }
- for (; i < 64; i++) {
- SP_ASM_ADDC(l, h, z2->dp[i]);
- r->dp[i + 64] = l;
- l = h;
- h = 0;
- }
- r->used = 128;
- sp_clamp(r);
- }
- FREE_SP_INT_ARRAY(z, NULL);
- FREE_SP_INT_ARRAY(t, NULL);
- return err;
- }
- #endif /* SP_INT_DIGITS >= 128 */
- #if SP_INT_DIGITS >= 192
- /* Multiply a by b and store in r: r = a * b
- *
- * Karatsuba implementation.
- *
- * @param [in] a SP integer to multiply.
- * @param [in] b SP integer to multiply.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mul_96(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- unsigned int i;
- sp_int_digit l;
- sp_int_digit h;
- sp_int* a1;
- sp_int* b1;
- sp_int* z0;
- sp_int* z1;
- sp_int* z2;
- sp_int_digit ca;
- sp_int_digit cb;
- DECL_SP_INT_ARRAY(t, 48, 2);
- DECL_SP_INT_ARRAY(z, 97, 2);
- ALLOC_SP_INT_ARRAY(t, 48, 2, err, NULL);
- ALLOC_SP_INT_ARRAY(z, 97, 2, err, NULL);
- if (err == MP_OKAY) {
- a1 = t[0];
- b1 = t[1];
- z1 = z[0];
- z2 = z[1];
- z0 = r;
- XMEMCPY(a1->dp, &a->dp[48], sizeof(sp_int_digit) * 48);
- a1->used = 48;
- XMEMCPY(b1->dp, &b->dp[48], sizeof(sp_int_digit) * 48);
- b1->used = 48;
- /* z2 = a1 * b1 */
- err = _sp_mul_48(a1, b1, z2);
- }
- if (err == MP_OKAY) {
- l = a1->dp[0];
- h = 0;
- SP_ASM_ADDC(l, h, a->dp[0]);
- a1->dp[0] = l;
- l = h;
- h = 0;
- for (i = 1; i < 48; i++) {
- SP_ASM_ADDC(l, h, a1->dp[i]);
- SP_ASM_ADDC(l, h, a->dp[i]);
- a1->dp[i] = l;
- l = h;
- h = 0;
- }
- ca = l;
- /* b01 = b0 + b1 */
- l = b1->dp[0];
- h = 0;
- SP_ASM_ADDC(l, h, b->dp[0]);
- b1->dp[0] = l;
- l = h;
- h = 0;
- for (i = 1; i < 48; i++) {
- SP_ASM_ADDC(l, h, b1->dp[i]);
- SP_ASM_ADDC(l, h, b->dp[i]);
- b1->dp[i] = l;
- l = h;
- h = 0;
- }
- cb = l;
- /* z0 = a0 * b0 */
- err = _sp_mul_48(a, b, z0);
- }
- if (err == MP_OKAY) {
- /* z1 = (a0 + a1) * (b0 + b1) */
- err = _sp_mul_48(a1, b1, z1);
- }
- if (err == MP_OKAY) {
- /* r = (z2 << 96) + (z1 - z0 - z2) << 48) + z0 */
- /* r = z0 */
- /* r += (z1 - z0 - z2) << 48 */
- z1->dp[96] = ca & cb;
- l = 0;
- if (ca) {
- h = 0;
- for (i = 0; i < 48; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i + 48]);
- SP_ASM_ADDC(l, h, b1->dp[i]);
- z1->dp[i + 48] = l;
- l = h;
- h = 0;
- }
- }
- z1->dp[96] += l;
- l = 0;
- if (cb) {
- h = 0;
- for (i = 0; i < 48; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i + 48]);
- SP_ASM_ADDC(l, h, a1->dp[i]);
- z1->dp[i + 48] = l;
- l = h;
- h = 0;
- }
- }
- z1->dp[96] += l;
- /* z1 = z1 - z0 - z1 */
- l = 0;
- h = 0;
- for (i = 0; i < 96; i++) {
- l += z1->dp[i];
- SP_ASM_SUBB(l, h, z0->dp[i]);
- SP_ASM_SUBB(l, h, z2->dp[i]);
- z1->dp[i] = l;
- l = h;
- h = 0;
- }
- z1->dp[i] += l;
- /* r += z1 << 16 */
- l = 0;
- h = 0;
- for (i = 0; i < 48; i++) {
- SP_ASM_ADDC(l, h, r->dp[i + 48]);
- SP_ASM_ADDC(l, h, z1->dp[i]);
- r->dp[i + 48] = l;
- l = h;
- h = 0;
- }
- for (; i < 97; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i]);
- r->dp[i + 48] = l;
- l = h;
- h = 0;
- }
- /* r += z2 << 96 */
- l = 0;
- h = 0;
- for (i = 0; i < 49; i++) {
- SP_ASM_ADDC(l, h, r->dp[i + 96]);
- SP_ASM_ADDC(l, h, z2->dp[i]);
- r->dp[i + 96] = l;
- l = h;
- h = 0;
- }
- for (; i < 96; i++) {
- SP_ASM_ADDC(l, h, z2->dp[i]);
- r->dp[i + 96] = l;
- l = h;
- h = 0;
- }
- r->used = 192;
- sp_clamp(r);
- }
- FREE_SP_INT_ARRAY(z, NULL);
- FREE_SP_INT_ARRAY(t, NULL);
- return err;
- }
- #endif /* SP_INT_DIGITS >= 192 */
- #endif /* SQR_MUL_ASM && WOLFSSL_SP_INT_LARGE_COMBA */
- #endif /* !WOLFSSL_SP_SMALL */
- /* Multiply a by b and store in r: r = a * b
- *
- * @param [in] a SP integer to multiply.
- * @param [in] b SP integer to multiply.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a, b or is NULL; or the result will be too big for fixed
- * data length.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_mul(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- unsigned int sign = MP_ZPOS;
- #endif
- if ((a == NULL) || (b == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- /* Need extra digit during calculation. */
- if ((err == MP_OKAY) && (a->used + b->used > r->size)) {
- err = MP_VAL;
- }
- #if 0
- if (err == MP_OKAY) {
- sp_print(a, "a");
- sp_print(b, "b");
- }
- #endif
- if (err == MP_OKAY) {
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- sign = a->sign ^ b->sign;
- #endif
- if ((a->used == 0) || (b->used == 0)) {
- _sp_zero(r);
- }
- else
- #ifndef WOLFSSL_SP_SMALL
- #if !defined(WOLFSSL_HAVE_SP_ECC) && defined(HAVE_ECC)
- #if (SP_WORD_SIZE == 64 && SP_INT_BITS >= 256)
- if ((a->used == 4) && (b->used == 4)) {
- err = _sp_mul_4(a, b, r);
- }
- else
- #endif /* SP_WORD_SIZE == 64 */
- #if (SP_WORD_SIZE == 64 && SP_INT_BITS >= 384)
- #ifdef SQR_MUL_ASM
- if ((a->used == 6) && (b->used == 6)) {
- err = _sp_mul_6(a, b, r);
- }
- else
- #endif /* SQR_MUL_ASM */
- #endif /* SP_WORD_SIZE == 64 */
- #if (SP_WORD_SIZE == 32 && SP_INT_BITS >= 256)
- #ifdef SQR_MUL_ASM
- if ((a->used == 8) && (b->used == 8)) {
- err = _sp_mul_8(a, b, r);
- }
- else
- #endif /* SQR_MUL_ASM */
- #endif /* SP_WORD_SIZE == 32 */
- #if (SP_WORD_SIZE == 32 && SP_INT_BITS >= 384)
- #ifdef SQR_MUL_ASM
- if ((a->used == 12) && (b->used == 12)) {
- err = _sp_mul_12(a, b, r);
- }
- else
- #endif /* SQR_MUL_ASM */
- #endif /* SP_WORD_SIZE == 32 */
- #endif /* !WOLFSSL_HAVE_SP_ECC && HAVE_ECC */
- #if defined(SQR_MUL_ASM) && (defined(WOLFSSL_SP_INT_LARGE_COMBA) || \
- (!defined(WOLFSSL_SP_MATH) && defined(WOLFCRYPT_HAVE_SAKKE) && \
- (SP_WORD_SIZE == 64)))
- #if SP_INT_DIGITS >= 32
- if ((a->used == 16) && (b->used == 16)) {
- err = _sp_mul_16(a, b, r);
- }
- else
- #endif /* SP_INT_DIGITS >= 32 */
- #endif /* SQR_MUL_ASM && (WOLFSSL_SP_INT_LARGE_COMBA || !WOLFSSL_SP_MATH &&
- * WOLFCRYPT_HAVE_SAKKE && SP_WORD_SIZE == 64 */
- #if defined(SQR_MUL_ASM) && defined(WOLFSSL_SP_INT_LARGE_COMBA)
- #if SP_INT_DIGITS >= 48
- if ((a->used == 24) && (b->used == 24)) {
- err = _sp_mul_24(a, b, r);
- }
- else
- #endif /* SP_INT_DIGITS >= 48 */
- #if SP_INT_DIGITS >= 64
- if ((a->used == 32) && (b->used == 32)) {
- err = _sp_mul_32(a, b, r);
- }
- else
- #endif /* SP_INT_DIGITS >= 64 */
- #if SP_INT_DIGITS >= 96
- if ((a->used == 48) && (b->used == 48)) {
- err = _sp_mul_48(a, b, r);
- }
- else
- #endif /* SP_INT_DIGITS >= 96 */
- #if SP_INT_DIGITS >= 128
- if ((a->used == 64) && (b->used == 64)) {
- err = _sp_mul_64(a, b, r);
- }
- else
- #endif /* SP_INT_DIGITS >= 128 */
- #if SP_INT_DIGITS >= 192
- if ((a->used == 96) && (b->used == 96)) {
- err = _sp_mul_96(a, b, r);
- }
- else
- #endif /* SP_INT_DIGITS >= 192 */
- #endif /* SQR_MUL_ASM && WOLFSSL_SP_INT_LARGE_COMBA */
- #endif /* !WOLFSSL_SP_SMALL */
- #ifdef SQR_MUL_ASM
- if (a->used == b->used) {
- err = _sp_mul_nxn(a, b, r);
- }
- else
- #endif
- {
- err = _sp_mul(a, b, r);
- }
- }
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- if (err == MP_OKAY) {
- r->sign = (r->used == 0) ? MP_ZPOS : sign;
- }
- #endif
- #if 0
- if (err == MP_OKAY) {
- sp_print(r, "rmul");
- }
- #endif
- return err;
- }
- /* END SP_MUL implementations. */
- #endif
- #if defined(WOLFSSL_SP_MATH_ALL) || defined(WOLFSSL_HAVE_SP_DH) || \
- defined(WOLFCRYPT_HAVE_ECCSI) || \
- (!defined(NO_RSA) && defined(WOLFSSL_KEY_GEN)) || defined(OPENSSL_ALL)
- /* Multiply a by b mod m and store in r: r = (a * b) mod m
- *
- * @param [in] a SP integer to multiply.
- * @param [in] b SP integer to multiply.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mulmod_tmp(const sp_int* a, const sp_int* b, const sp_int* m,
- sp_int* r)
- {
- int err = MP_OKAY;
- /* Create temporary for multiplication result. */
- DECL_SP_INT(t, a->used + b->used);
- ALLOC_SP_INT(t, a->used + b->used, err, NULL);
- if (err == MP_OKAY) {
- err = sp_init_size(t, a->used + b->used);
- }
- /* Multiply and reduce. */
- if (err == MP_OKAY) {
- err = sp_mul(a, b, t);
- }
- if (err == MP_OKAY) {
- err = sp_mod(t, m, r);
- }
- /* Dispose of an allocated SP int. */
- FREE_SP_INT(t, NULL);
- return err;
- }
- /* Multiply a by b mod m and store in r: r = (a * b) mod m
- *
- * @param [in] a SP integer to multiply.
- * @param [in] b SP integer to multiply.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_mulmod(const sp_int* a, const sp_int* b, const sp_int* m,
- sp_int* r)
- {
- int err = MP_OKAY;
- /* Use r as intermediate result if not same as pointer m which is needed
- * after first intermediate result.
- */
- if (r != m) {
- /* Multiply and reduce. */
- err = sp_mul(a, b, r);
- if (err == MP_OKAY) {
- err = sp_mod(r, m, r);
- }
- }
- else {
- /* Do operation using temporary. */
- err = _sp_mulmod_tmp(a, b, m, r);
- }
- return err;
- }
- /* Multiply a by b mod m and store in r: r = (a * b) mod m
- *
- * @param [in] a SP integer to multiply.
- * @param [in] b SP integer to multiply.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a, b, m or r is NULL; m is 0; or a * b is too big for
- * fixed data length.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_mulmod(const sp_int* a, const sp_int* b, const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (b == NULL) || (m == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- /* Ensure result SP int is big enough for intermediates. */
- if ((err == MP_OKAY) && (r != m) && (a->used + b->used > r->size)) {
- err = MP_VAL;
- }
- #if 0
- if (err == 0) {
- sp_print(a, "a");
- sp_print(b, "b");
- sp_print(m, "m");
- }
- #endif
- if (err == MP_OKAY) {
- err = _sp_mulmod(a, b, m, r);
- }
- #if 0
- if (err == 0) {
- sp_print(r, "rmm");
- }
- #endif
- return err;
- }
- #endif
- #ifdef WOLFSSL_SP_INVMOD
- /* Calculates the multiplicative inverse in the field. r*a = x*m + 1
- * Right-shift Algorithm. NOT constant time.
- *
- * Algorithm:
- * 1. u = m, v = a, b = 0, c = 1
- * 2. While v != 1 and u != 0
- * 2.1. If u even
- * 2.1.1. u /= 2
- * 2.1.2. b = (b / 2) mod m
- * 2.2. Else if v even
- * 2.2.1. v /= 2
- * 2.2.2. c = (c / 2) mod m
- * 2.3. Else if u >= v
- * 2.3.1. u -= v
- * 2.3.2. b = (c - b) mod m
- * 2.4. Else (v > u)
- * 2.4.1. v -= u
- * 2.4.2. c = (b - c) mod m
- * 3. NO_INVERSE if u == 0
- *
- * @param [in] a SP integer to find inverse of.
- * @param [in] m SP integer this is the modulus.
- * @param [in] u SP integer to use in calculation.
- * @param [in] v SP integer to use in calculation.
- * @param [in] b SP integer to use in calculation
- * @param [out] c SP integer that is the inverse.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when no inverse.
- */
- static int _sp_invmod_bin(const sp_int* a, const sp_int* m, sp_int* u,
- sp_int* v, sp_int* b, sp_int* c)
- {
- int err = MP_OKAY;
- /* 1. u = m, v = a, b = 0, c = 1 */
- _sp_copy(m, u);
- if (a != v) {
- _sp_copy(a, v);
- }
- _sp_zero(b);
- _sp_set(c, 1);
- /* 2. While v != 1 and u != 0 */
- while (!sp_isone(v) && !sp_iszero(u)) {
- /* 2.1. If u even */
- if ((u->dp[0] & 1) == 0) {
- /* 2.1.1. u /= 2 */
- _sp_div_2(u, u);
- /* 2.1.2. b = (b / 2) mod m */
- if (sp_isodd(b)) {
- _sp_add_off(b, m, b, 0);
- }
- _sp_div_2(b, b);
- }
- /* 2.2. Else if v even */
- else if ((v->dp[0] & 1) == 0) {
- /* 2.2.1. v /= 2 */
- _sp_div_2(v, v);
- /* 2.1.2. c = (c / 2) mod m */
- if (sp_isodd(c)) {
- _sp_add_off(c, m, c, 0);
- }
- _sp_div_2(c, c);
- }
- /* 2.3. Else if u >= v */
- else if (_sp_cmp_abs(u, v) != MP_LT) {
- /* 2.3.1. u -= v */
- _sp_sub_off(u, v, u, 0);
- /* 2.3.2. b = (c - b) mod m */
- if (_sp_cmp_abs(b, c) == MP_LT) {
- _sp_add_off(b, m, b, 0);
- }
- _sp_sub_off(b, c, b, 0);
- }
- /* 2.4. Else (v > u) */
- else {
- /* 2.4.1. v -= u */
- _sp_sub_off(v, u, v, 0);
- /* 2.4.2. c = (b - c) mod m */
- if (_sp_cmp_abs(c, b) == MP_LT) {
- _sp_add_off(c, m, c, 0);
- }
- _sp_sub_off(c, b, c, 0);
- }
- }
- /* 3. NO_INVERSE if u == 0 */
- if (sp_iszero(u)) {
- err = MP_VAL;
- }
- return err;
- }
- #if !defined(WOLFSSL_SP_LOW_MEM) && !defined(WOLFSSL_SP_SMALL) && \
- (!defined(NO_RSA) || !defined(NO_DH))
- /* Calculates the multiplicative inverse in the field. r*a = x*m + 1
- * Extended Euclidean Algorithm. NOT constant time.
- *
- * Creates two new SP ints.
- *
- * Algorithm:
- * 1. x = m, y = a, b = 1, c = 0
- * 2. while x > 1
- * 2.1. d = x / y, r = x mod y
- * 2.2. c -= d * b
- * 2.3. x = y, y = r
- * 2.4. s = b, b = c, c = s
- * 3. If y != 0 then NO_INVERSE
- * 4. If c < 0 then c += m
- * 5. inv = c
- *
- * @param [in] a SP integer to find inverse of.
- * @param [in] m SP integer this is the modulus.
- * @param [in] u SP integer to use in calculation.
- * @param [in] v SP integer to use in calculation.
- * @param [in] b SP integer to use in calculation
- * @param [in] c SP integer to use in calculation
- * @param [out] inv SP integer that is the inverse.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when no inverse.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_invmod_div(const sp_int* a, const sp_int* m, sp_int* x,
- sp_int* y, sp_int* b, sp_int* c, sp_int* inv)
- {
- int err = MP_OKAY;
- sp_int* s;
- #ifndef WOLFSSL_SP_INT_NEGATIVE
- int bneg = 0;
- int cneg = 0;
- int neg;
- #endif
- DECL_SP_INT(d, m->used + 1);
- ALLOC_SP_INT(d, m->used + 1, err, NULL);
- if (err == MP_OKAY) {
- mp_init(d);
- /* 1. x = m, y = a, b = 1, c = 0 */
- if (a != y) {
- _sp_copy(a, y);
- }
- _sp_copy(m, x);
- _sp_set(b, 1);
- _sp_zero(c);
- }
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* 2. while x > 1 */
- while ((err == MP_OKAY) && (!sp_isone(x)) && (!sp_iszero(x))) {
- /* 2.1. d = x / y, r = x mod y */
- err = sp_div(x, y, d, x);
- if (err == MP_OKAY) {
- /* 2.2. c -= d * b */
- if (sp_isone(d)) {
- /* c -= 1 * b */
- err = sp_sub(c, b, c);
- }
- else {
- /* d *= b */
- err = sp_mul(d, b, d);
- /* c -= d */
- if (err == MP_OKAY) {
- err = sp_sub(c, d, c);
- }
- }
- /* 2.3. x = y, y = r */
- s = y; y = x; x = s;
- /* 2.4. s = b, b = c, c = s */
- s = b; b = c; c = s;
- }
- }
- /* 3. If y != 0 then NO_INVERSE */
- if ((err == MP_OKAY) && (!sp_iszero(y))) {
- err = MP_VAL;
- }
- /* 4. If c < 0 then c += m */
- if ((err == MP_OKAY) && sp_isneg(c)) {
- err = sp_add(c, m, c);
- }
- if (err == MP_OKAY) {
- /* 5. inv = c */
- err = sp_copy(c, inv);
- }
- #else
- /* 2. while x > 1 */
- while ((err == MP_OKAY) && (!sp_isone(x)) && (!sp_iszero(x))) {
- /* 2.1. d = x / y, r = x mod y */
- err = sp_div(x, y, d, x);
- if (err == MP_OKAY) {
- if (sp_isone(d)) {
- /* c -= 1 * b */
- if ((bneg ^ cneg) == 1) {
- /* c -= -b or -c -= b, therefore add. */
- _sp_add_off(c, b, c, 0);
- }
- else if (_sp_cmp_abs(c, b) == MP_LT) {
- /* |c| < |b| and same sign, reverse subtract and negate. */
- _sp_sub_off(b, c, c, 0);
- cneg = !cneg;
- }
- else {
- /* |c| >= |b| */
- _sp_sub_off(c, b, c, 0);
- }
- }
- else {
- /* d *= b */
- err = sp_mul(d, b, d);
- /* c -= d */
- if (err == MP_OKAY) {
- if ((bneg ^ cneg) == 1) {
- /* c -= -d or -c -= d, therefore add. */
- _sp_add_off(c, d, c, 0);
- }
- else if (_sp_cmp_abs(c, d) == MP_LT) {
- /* |c| < |d| and same sign, reverse subtract and negate.
- */
- _sp_sub_off(d, c, c, 0);
- cneg = !cneg;
- }
- else {
- _sp_sub_off(c, d, c, 0);
- }
- }
- }
- /* 2.3. x = y, y = r */
- s = y; y = x; x = s;
- /* 2.4. s = b, b = c, c = s */
- s = b; b = c; c = s;
- neg = bneg; bneg = cneg; cneg = neg;
- }
- }
- /* 3. If y != 0 then NO_INVERSE */
- if ((err == MP_OKAY) && (!sp_iszero(y))) {
- err = MP_VAL;
- }
- /* 4. If c < 0 then c += m */
- if ((err == MP_OKAY) && cneg) {
- /* c = m - |c| */
- _sp_sub_off(m, c, c, 0);
- }
- if (err == MP_OKAY) {
- /* 5. inv = c */
- err = sp_copy(c, inv);
- }
- #endif
- FREE_SP_INT(d, NULL);
- return err;
- }
- #endif
- /* Calculates the multiplicative inverse in the field.
- * Right-shift Algorithm or Extended Euclidean Algorithm. NOT constant time.
- *
- * r*a = x*m + 1
- *
- * @param [in] a SP integer to find inverse of.
- * @param [in] m SP integer this is the modulus.
- * @param [out] r SP integer to hold result. r cannot be m.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when m is even and a divides m evenly.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_invmod(const sp_int* a, const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- sp_int* u = NULL;
- sp_int* v = NULL;
- sp_int* b = NULL;
- DECL_SP_INT_ARRAY(t, m->used + 1, 3);
- DECL_SP_INT(c, 2 * m->used + 1);
- /* Allocate SP ints:
- * - x3 one word larger than modulus
- * - x1 one word longer than twice modulus used
- */
- ALLOC_SP_INT_ARRAY(t, m->used + 1, 3, err, NULL);
- ALLOC_SP_INT(c, 2 * m->used + 1, err, NULL);
- if (err == MP_OKAY) {
- u = t[0];
- v = t[1];
- b = t[2];
- /* c allocated separately and larger for even mod case. */
- }
- /* Initialize intermediate values with minimal sizes. */
- if (err == MP_OKAY) {
- err = sp_init_size(u, m->used + 1);
- }
- if (err == MP_OKAY) {
- err = sp_init_size(v, m->used + 1);
- }
- if (err == MP_OKAY) {
- err = sp_init_size(b, m->used + 1);
- }
- if (err == MP_OKAY) {
- err = sp_init_size(c, 2 * m->used + 1);
- }
- if (err == MP_OKAY) {
- const sp_int* mm = m;
- const sp_int* ma = a;
- int evenMod = 0;
- if (sp_iseven(m)) {
- /* a^-1 mod m = m + ((1 - m*(m^-1 % a)) / a) */
- mm = a;
- ma = v;
- _sp_copy(a, u);
- err = sp_mod(m, a, v);
- /* v == 0 when a divides m evenly - no inverse. */
- if ((err == MP_OKAY) && sp_iszero(v)) {
- err = MP_VAL;
- }
- evenMod = 1;
- }
- if (err == MP_OKAY) {
- /* Calculate inverse. */
- #if !defined(WOLFSSL_SP_LOW_MEM) && !defined(WOLFSSL_SP_SMALL) && \
- (!defined(NO_RSA) || !defined(NO_DH))
- if (sp_count_bits(mm) >= 1024) {
- err = _sp_invmod_div(ma, mm, u, v, b, c, c);
- }
- else
- #endif
- {
- err = _sp_invmod_bin(ma, mm, u, v, b, c);
- }
- }
- /* Fixup for even modulus. */
- if ((err == MP_OKAY) && evenMod) {
- /* Finish operation.
- * a^-1 mod m = m + ((1 - m*c) / a)
- * => a^-1 mod m = m - ((m*c - 1) / a)
- */
- err = sp_mul(c, m, c);
- if (err == MP_OKAY) {
- _sp_sub_d(c, 1, c);
- err = sp_div(c, a, c, NULL);
- }
- if (err == MP_OKAY) {
- err = sp_sub(m, c, r);
- }
- }
- else if (err == MP_OKAY) {
- _sp_copy(c, r);
- }
- }
- FREE_SP_INT(c, NULL);
- FREE_SP_INT_ARRAY(t, NULL);
- return err;
- }
- /* Calculates the multiplicative inverse in the field.
- * Right-shift Algorithm or Extended Euclidean Algorithm. NOT constant time.
- *
- * r*a = x*m + 1
- *
- * @param [in] a SP integer to find inverse of.
- * @param [in] m SP integer this is the modulus.
- * @param [out] r SP integer to hold result. r cannot be m.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a, m or r is NULL; a or m is zero; a and m are even or
- * m is negative.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_invmod(const sp_int* a, const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (m == NULL) || (r == NULL) || (r == m)) {
- err = MP_VAL;
- }
- if ((err == MP_OKAY) && (m->used * 2 > r->size)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Don't support negative modulus. */
- if ((err == MP_OKAY) && (m->sign == MP_NEG)) {
- err = MP_VAL;
- }
- #endif
- if (err == MP_OKAY) {
- /* Ensure number is less than modulus. */
- if (_sp_cmp_abs(a, m) != MP_LT) {
- err = sp_mod(a, m, r);
- a = r;
- }
- }
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- if ((err == MP_OKAY) && (a->sign == MP_NEG)) {
- /* Make 'a' positive */
- err = sp_add(m, a, r);
- a = r;
- }
- #endif
- /* 0 != n*m + 1 (+ve m), r*a mod 0 is always 0 (never 1) */
- if ((err == MP_OKAY) && (sp_iszero(a) || sp_iszero(m))) {
- err = MP_VAL;
- }
- /* r*2*x != n*2*y + 1 for integer x,y */
- if ((err == MP_OKAY) && sp_iseven(a) && sp_iseven(m)) {
- err = MP_VAL;
- }
- /* 1*1 = 0*m + 1 */
- if ((err == MP_OKAY) && sp_isone(a)) {
- _sp_set(r, 1);
- }
- else if (err == MP_OKAY) {
- err = _sp_invmod(a, m, r);
- }
- return err;
- }
- #endif /* WOLFSSL_SP_INVMOD */
- #ifdef WOLFSSL_SP_INVMOD_MONT_CT
- /* Number of entries to pre-compute.
- * Many pre-defined primes have multiple of 8 consecutive 1s.
- * P-256 modulus - 2 => 32x1, 31x0, 1x1, 96x0, 94x1, 1x0, 1x1.
- */
- #define CT_INV_MOD_PRE_CNT 8
- /* Calculates the multiplicative inverse in the field - constant time.
- *
- * Modulus (m) must be a prime and greater than 2.
- * For prime m, inv = a ^ (m-2) mod m as 1 = a ^ (m-1) mod m.
- *
- * Algorithm:
- * pre = pre-computed values, m = modulus, a = value to find inverse of,
- * e = exponent
- * Pre-calc:
- * 1. pre[0] = 2^0 * a mod m
- * 2. For i in 2..CT_INV_MOD_PRE_CNT
- * 2.1. pre[i-1] = ((pre[i-2] ^ 2) * a) mod m
- * Calc inverse:
- * 1. e = m - 2
- * 2. j = Count leading 1's up to CT_INV_MOD_PRE_CNT
- * 3. t = pre[j-1]
- * 4. s = 0
- * 5. j = 0
- * 6. For i index of next top bit..0
- * 6.1. bit = e[i]
- * 6.2. j += bit
- * 6.3. s += 1
- * 6.4. if j == CT_INV_MOD_PRE_CNT or (bit == 0 and j > 0)
- * 6.4.1. s -= 1 - bit
- * 6.4.2. For s downto 1
- * 6.4.2.1. t = (t ^ 2) mod m
- * 6.4.3. s = 1 - bit
- * 6.4.4. t = (t * pre[j-1]) mod m
- * 6.4.5. j = 0
- * 7. For s downto 1
- * 7.1. t = (t ^ 2) mod m
- * 8. If j > 0 then r = (t * pre[j-1]) mod m
- * 9. Else r = t
- *
- * @param [in] a SP integer, Montgomery form, to find inverse of.
- * @param [in] m SP integer this is the modulus.
- * @param [out] r SP integer to hold result.
- * @param [in] mp SP integer digit that is the bottom digit of inv(-m).
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_invmod_mont_ct(const sp_int* a, const sp_int* m, sp_int* r,
- sp_int_digit mp)
- {
- int err = MP_OKAY;
- int i;
- int j = 0;
- int s = 0;
- sp_int* t = NULL;
- sp_int* e = NULL;
- #ifndef WOLFSSL_SP_NO_MALLOC
- DECL_DYN_SP_INT_ARRAY(pre, m->used * 2 + 1, CT_INV_MOD_PRE_CNT + 2);
- #else
- DECL_SP_INT_ARRAY(pre, m->used * 2 + 1, CT_INV_MOD_PRE_CNT + 2);
- #endif
- #ifndef WOLFSSL_SP_NO_MALLOC
- ALLOC_DYN_SP_INT_ARRAY(pre, m->used * 2 + 1, CT_INV_MOD_PRE_CNT + 2, err,
- NULL);
- #else
- ALLOC_SP_INT_ARRAY(pre, m->used * 2 + 1, CT_INV_MOD_PRE_CNT + 2, err, NULL);
- #endif
- if (err == MP_OKAY) {
- t = pre[CT_INV_MOD_PRE_CNT + 0];
- e = pre[CT_INV_MOD_PRE_CNT + 1];
- /* Space for sqr and mul result. */
- _sp_init_size(t, m->used * 2 + 1);
- /* e = mod - 2 */
- _sp_init_size(e, m->used + 1);
- /* Create pre-computation results: ((2^(1..8))-1).a. */
- _sp_init_size(pre[0], m->used * 2 + 1);
- /* 1. pre[0] = 2^0 * a mod m
- * Start with 1.a = a.
- */
- _sp_copy(a, pre[0]);
- /* 2. For i in 2..CT_INV_MOD_PRE_CNT
- * For rest of entries in table.
- */
- for (i = 1; (err == MP_OKAY) && (i < CT_INV_MOD_PRE_CNT); i++) {
- /* 2.1 pre[i-1] = ((pre[i-1] ^ 2) * a) mod m */
- /* Previous value ..1 -> ..10 */
- _sp_init_size(pre[i], m->used * 2 + 1);
- err = sp_sqr(pre[i-1], pre[i]);
- if (err == MP_OKAY) {
- err = _sp_mont_red(pre[i], m, mp);
- }
- /* ..10 -> ..11 */
- if (err == MP_OKAY) {
- err = sp_mul(pre[i], a, pre[i]);
- }
- if (err == MP_OKAY) {
- err = _sp_mont_red(pre[i], m, mp);
- }
- }
- }
- if (err == MP_OKAY) {
- /* 1. e = m - 2 */
- _sp_sub_d(m, 2, e);
- /* 2. j = Count leading 1's up to CT_INV_MOD_PRE_CNT
- * One or more of the top bits is 1 so count.
- */
- for (i = sp_count_bits(e)-2, j = 1; i >= 0; i--, j++) {
- if ((!sp_is_bit_set(e, (unsigned int)i)) ||
- (j == CT_INV_MOD_PRE_CNT)) {
- break;
- }
- }
- /* 3. Set tmp to product of leading bits. */
- _sp_copy(pre[j-1], t);
- /* 4. s = 0 */
- s = 0;
- /* 5. j = 0 */
- j = 0;
- /* 6. For i index of next top bit..0
- * Do remaining bits in exponent.
- */
- for (; (err == MP_OKAY) && (i >= 0); i--) {
- /* 6.1. bit = e[i] */
- int bit = sp_is_bit_set(e, (unsigned int)i);
- /* 6.2. j += bit
- * Update count of consequitive 1 bits.
- */
- j += bit;
- /* 6.3. s += 1
- * Update count of squares required.
- */
- s++;
- /* 6.4. if j == CT_INV_MOD_PRE_CNT or (bit == 0 and j > 0)
- * Check if max 1 bits or 0 and have seen at least one 1 bit.
- */
- if ((j == CT_INV_MOD_PRE_CNT) || ((!bit) && (j > 0))) {
- /* 6.4.1. s -= 1 - bit */
- bit = 1 - bit;
- s -= bit;
- /* 6.4.2. For s downto 1
- * Do s squares.
- */
- for (; (err == MP_OKAY) && (s > 0); s--) {
- /* 6.4.2.1. t = (t ^ 2) mod m */
- err = sp_sqr(t, t);
- if (err == MP_OKAY) {
- err = _sp_mont_red(t, m, mp);
- }
- }
- /* 6.4.3. s = 1 - bit */
- s = bit;
- /* 6.4.4. t = (t * pre[j-1]) mod m */
- if (err == MP_OKAY) {
- err = sp_mul(t, pre[j-1], t);
- }
- if (err == MP_OKAY) {
- err = _sp_mont_red(t, m, mp);
- }
- /* 6.4.5. j = 0
- * Reset number of 1 bits seen.
- */
- j = 0;
- }
- }
- }
- if (err == MP_OKAY) {
- /* 7. For s downto 1
- * Do s squares - total remaining. */
- for (; (err == MP_OKAY) && (s > 0); s--) {
- /* 7.1. t = (t ^ 2) mod m */
- err = sp_sqr(t, t);
- if (err == MP_OKAY) {
- err = _sp_mont_red(t, m, mp);
- }
- }
- }
- if (err == MP_OKAY) {
- /* 8. If j > 0 then r = (t * pre[j-1]) mod m */
- if (j > 0) {
- err = sp_mul(t, pre[j-1], r);
- if (err == MP_OKAY) {
- err = _sp_mont_red(r, m, mp);
- }
- }
- /* 9. Else r = t */
- else {
- _sp_copy(t, r);
- }
- }
- #ifndef WOLFSSL_SP_NO_MALLOC
- FREE_DYN_SP_INT_ARRAY(pre, NULL);
- #else
- FREE_SP_INT_ARRAY(pre, NULL);
- #endif
- return err;
- }
- /* Calculates the multiplicative inverse in the field - constant time.
- *
- * Modulus (m) must be a prime and greater than 2.
- * For prime m, inv = a ^ (m-2) mod m as 1 = a ^ (m-1) mod m.
- *
- * @param [in] a SP integer, Montgomery form, to find inverse of.
- * @param [in] m SP integer this is the modulus.
- * @param [out] r SP integer to hold result.
- * @param [in] mp SP integer digit that is the bottom digit of inv(-m).
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a, m or r is NULL; a is 0 or m is less than 3.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_invmod_mont_ct(const sp_int* a, const sp_int* m, sp_int* r,
- sp_int_digit mp)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (m == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- /* Ensure m is not too big. */
- else if (m->used * 2 >= SP_INT_DIGITS) {
- err = MP_VAL;
- }
- /* check that r can hold the range of the modulus result */
- else if (m->used > r->size) {
- err = MP_VAL;
- }
- /* 0 != n*m + 1 (+ve m), r*a mod 0 is always 0 (never 1) */
- if ((err == MP_OKAY) && (sp_iszero(a) || sp_iszero(m) ||
- ((m->used == 1) && (m->dp[0] < 3)))) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Do operation. */
- err = _sp_invmod_mont_ct(a, m, r, mp);
- }
- return err;
- }
- #endif /* WOLFSSL_SP_INVMOD_MONT_CT */
- /**************************
- * Exponentiation functions
- **************************/
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || !defined(NO_DH) || \
- defined(OPENSSL_ALL)
- #ifndef WC_PROTECT_ENCRYPTED_MEM
- /* Internal. Exponentiates b to the power of e modulo m into r: r = b ^ e mod m
- * Process the exponent one bit at a time.
- * Is constant time and can be cache attack resistant.
- *
- * Algorithm:
- * b: base, e: exponent, m: modulus, r: result, bits: #bits to use
- * 1. s = 0
- * 2. t[0] = b mod m.
- * 3. t[1] = t[0]
- * 4. For i in (bits-1)...0
- * 4.1. t[s] = t[s] ^ 2
- * 4.2. y = e[i]
- * 4.3 j = y & s
- * 4.4 s = s | y
- * 4.5. t[j] = t[j] * b
- * 5. r = t[1]
- *
- * @param [in] b SP integer that is the base.
- * @param [in] e SP integer that is the exponent.
- * @param [in] bits Number of bits in exponent to use. May be greater than
- * count of bits in e.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_exptmod_ex(const sp_int* b, const sp_int* e, int bits,
- const sp_int* m, sp_int* r)
- {
- int i;
- int err = MP_OKAY;
- int done = 0;
- /* 1. s = 0 */
- int s = 0;
- #ifdef WC_NO_CACHE_RESISTANT
- DECL_SP_INT_ARRAY(t, 2 * m->used + 1, 2);
- #else
- DECL_SP_INT_ARRAY(t, 2 * m->used + 1, 3);
- #endif
- /* Allocate temporaries. */
- #ifdef WC_NO_CACHE_RESISTANT
- ALLOC_SP_INT_ARRAY(t, 2 * m->used + 1, 2, err, NULL);
- #else
- /* Working SP int needed when cache resistant. */
- ALLOC_SP_INT_ARRAY(t, 2 * m->used + 1, 3, err, NULL);
- #endif
- if (err == MP_OKAY) {
- /* Initialize temporaries. */
- _sp_init_size(t[0], 2 * m->used + 1);
- _sp_init_size(t[1], 2 * m->used + 1);
- #ifndef WC_NO_CACHE_RESISTANT
- _sp_init_size(t[2], 2 * m->used + 1);
- #endif
- /* 2. t[0] = b mod m
- * Ensure base is less than modulus - set fake working value to base.
- */
- if (_sp_cmp_abs(b, m) != MP_LT) {
- err = sp_mod(b, m, t[0]);
- /* Handle base == modulus. */
- if ((err == MP_OKAY) && sp_iszero(t[0])) {
- _sp_set(r, 0);
- done = 1;
- }
- }
- else {
- /* Copy base into working variable. */
- _sp_copy(b, t[0]);
- }
- }
- if ((!done) && (err == MP_OKAY)) {
- /* 3. t[1] = t[0]
- * Set real working value to base.
- */
- _sp_copy(t[0], t[1]);
- /* 4. For i in (bits-1)...0 */
- for (i = bits - 1; (err == MP_OKAY) && (i >= 0); i--) {
- #ifdef WC_NO_CACHE_RESISTANT
- /* 4.1. t[s] = t[s] ^ 2 */
- err = sp_sqrmod(t[s], m, t[s]);
- if (err == MP_OKAY) {
- /* 4.2. y = e[i] */
- int y = (e->dp[i >> SP_WORD_SHIFT] >> (i & SP_WORD_MASK)) & 1;
- /* 4.3. j = y & s */
- int j = y & s;
- /* 4.4 s = s | y */
- s |= y;
- /* 4.5. t[j] = t[j] * b */
- err = _sp_mulmod(t[j], b, m, t[j]);
- }
- #else
- /* 4.1. t[s] = t[s] ^ 2 */
- _sp_copy((sp_int*)(((size_t)t[0] & sp_off_on_addr[s^1]) +
- ((size_t)t[1] & sp_off_on_addr[s ])),
- t[2]);
- err = sp_sqrmod(t[2], m, t[2]);
- _sp_copy(t[2],
- (sp_int*)(((size_t)t[0] & sp_off_on_addr[s^1]) +
- ((size_t)t[1] & sp_off_on_addr[s ])));
- if (err == MP_OKAY) {
- /* 4.2. y = e[i] */
- int y = (int)((e->dp[i >> SP_WORD_SHIFT] >> (i & SP_WORD_MASK)) & 1);
- /* 4.3. j = y & s */
- int j = y & s;
- /* 4.4 s = s | y */
- s |= y;
- /* 4.5. t[j] = t[j] * b */
- _sp_copy((sp_int*)(((size_t)t[0] & sp_off_on_addr[j^1]) +
- ((size_t)t[1] & sp_off_on_addr[j ])),
- t[2]);
- err = _sp_mulmod(t[2], b, m, t[2]);
- _sp_copy(t[2],
- (sp_int*)(((size_t)t[0] & sp_off_on_addr[j^1]) +
- ((size_t)t[1] & sp_off_on_addr[j ])));
- }
- #endif
- }
- }
- if ((!done) && (err == MP_OKAY)) {
- /* 5. r = t[1] */
- _sp_copy(t[1], r);
- }
- FREE_SP_INT_ARRAY(t, NULL);
- return err;
- }
- #else
- /* Internal. Exponentiates b to the power of e modulo m into r: r = b ^ e mod m
- * Process the exponent one bit at a time with base in Montgomery form.
- * Is constant time and cache attack resistant.
- *
- * Based on work by Marc Joye, Sung-Ming Yen, "The Montgomery Powering Ladder",
- * Cryptographic Hardware and Embedded Systems, CHES 2002
- *
- * Algorithm:
- * b: base, e: exponent, m: modulus, r: result, bits: #bits to use
- * 1. t[1] = b mod m.
- * 2. t[0] = 1
- * 3. For i in (bits-1)...0
- * 3.1. y = e[i]
- * 3.2. t[2] = t[0] * t[1]
- * 3.3. t[3] = t[y] ^ 2
- * 3.4. t[y] = t[3], t[y^1] = t[2]
- * 4. r = t[0]
- *
- * @param [in] b SP integer that is the base.
- * @param [in] e SP integer that is the exponent.
- * @param [in] bits Number of bits in exponent to use. May be greater than
- * count of bits in e.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_exptmod_ex(const sp_int* b, const sp_int* e, int bits,
- const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- int done = 0;
- DECL_SP_INT_ARRAY(t, m->used * 2 + 1, 4);
- /* Allocate temporaries. */
- ALLOC_SP_INT_ARRAY(t, m->used * 2 + 1, 4, err, NULL);
- if (err == MP_OKAY) {
- /* Initialize temporaries. */
- _sp_init_size(t[0], m->used * 2 + 1);
- _sp_init_size(t[1], m->used * 2 + 1);
- _sp_init_size(t[2], m->used * 2 + 1);
- _sp_init_size(t[3], m->used * 2 + 1);
- /* 1. Ensure base is less than modulus. */
- if (_sp_cmp_abs(b, m) != MP_LT) {
- err = sp_mod(b, m, t[1]);
- /* Handle base == modulus. */
- if ((err == MP_OKAY) && sp_iszero(t[1])) {
- _sp_set(r, 0);
- done = 1;
- }
- }
- else {
- /* Copy base into working variable. */
- err = sp_copy(b, t[1]);
- }
- }
- if ((!done) && (err == MP_OKAY)) {
- int i;
- /* 2. t[0] = 1 */
- _sp_set(t[0], 1);
- /* 3. For i in (bits-1)...0 */
- for (i = bits - 1; (err == MP_OKAY) && (i >= 0); i--) {
- /* 3.1. y = e[i] */
- int y = (e->dp[i >> SP_WORD_SHIFT] >> (i & SP_WORD_MASK)) & 1;
- /* 3.2. t[2] = t[0] * t[1] */
- err = sp_mulmod(t[0], t[1], m, t[2]);
- /* 3.3. t[3] = t[y] ^ 2 */
- if (err == MP_OKAY) {
- _sp_copy((sp_int*)(((size_t)t[0] & sp_off_on_addr[y^1]) +
- ((size_t)t[1] & sp_off_on_addr[y ])),
- t[3]);
- err = sp_sqrmod(t[3], m, t[3]);
- }
- /* 3.4. t[y] = t[3], t[y^1] = t[2] */
- if (err == MP_OKAY) {
- _sp_copy_2_ct(t[2], t[3], t[0], t[1], y, m->used);
- }
- }
- }
- if ((!done) && (err == MP_OKAY)) {
- /* 4. r = t[0] */
- err = sp_copy(t[0], r);
- }
- FREE_SP_INT_ARRAY(t, NULL);
- return err;
- }
- #endif /* WC_PROTECT_ENCRYPTED_MEM */
- #endif
- #if (defined(WOLFSSL_SP_MATH_ALL) && ((!defined(WOLFSSL_RSA_VERIFY_ONLY) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || !defined(NO_DH))) || \
- defined(OPENSSL_ALL)
- #ifndef WC_NO_HARDEN
- #if !defined(WC_NO_CACHE_RESISTANT)
- #ifndef WC_PROTECT_ENCRYPTED_MEM
- /* Internal. Exponentiates b to the power of e modulo m into r: r = b ^ e mod m
- * Process the exponent one bit at a time with base in Montgomery form.
- * Is constant time and cache attack resistant.
- *
- * Algorithm:
- * b: base, e: exponent, m: modulus, r: result, bits: #bits to use
- * 1. t[0] = b mod m.
- * 2. s = 0
- * 3. t[0] = ToMont(t[0])
- * 4. t[1] = t[0]
- * 5. bm = t[0]
- * 6. For i in (bits-1)...0
- * 6.1. t[s] = t[s] ^ 2
- * 6.2. y = e[i]
- * 6.3 j = y & s
- * 6.4 s = s | y
- * 6.5. t[j] = t[j] * bm
- * 7. t[1] = FromMont(t[1])
- * 8. r = t[1]
- *
- * @param [in] b SP integer that is the base.
- * @param [in] e SP integer that is the exponent.
- * @param [in] bits Number of bits in exponent to use. May be greater than
- * count of bits in e.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_exptmod_mont_ex(const sp_int* b, const sp_int* e, int bits,
- const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- int done = 0;
- DECL_SP_INT_ARRAY(t, m->used * 2 + 1, 4);
- /* Allocate temporaries. */
- ALLOC_SP_INT_ARRAY(t, m->used * 2 + 1, 4, err, NULL);
- if (err == MP_OKAY) {
- /* Initialize temporaries. */
- _sp_init_size(t[0], m->used * 2 + 1);
- _sp_init_size(t[1], m->used * 2 + 1);
- _sp_init_size(t[2], m->used * 2 + 1);
- _sp_init_size(t[3], m->used * 2 + 1);
- /* 1. Ensure base is less than modulus. */
- if (_sp_cmp_abs(b, m) != MP_LT) {
- err = sp_mod(b, m, t[0]);
- /* Handle base == modulus. */
- if ((err == MP_OKAY) && sp_iszero(t[0])) {
- _sp_set(r, 0);
- done = 1;
- }
- }
- else {
- /* Copy base into working variable. */
- _sp_copy(b, t[0]);
- }
- }
- if ((!done) && (err == MP_OKAY)) {
- int i;
- /* 2. s = 0 */
- int s = 0;
- sp_int_digit mp;
- /* Calculate Montgomery multiplier for reduction. */
- _sp_mont_setup(m, &mp);
- /* 3. t[0] = ToMont(t[0])
- * Convert base to Montgomery form - as fake working value.
- */
- err = sp_mont_norm(t[1], m);
- if (err == MP_OKAY) {
- err = sp_mul(t[0], t[1], t[0]);
- }
- if (err == MP_OKAY) {
- /* t[0] = t[0] mod m, temporary size has to be bigger than t[0]. */
- err = _sp_div(t[0], m, NULL, t[0], t[0]->used + 1);
- }
- if (err == MP_OKAY) {
- /* 4. t[1] = t[0]
- * Set real working value to base.
- */
- _sp_copy(t[0], t[1]);
- /* 5. bm = t[0]. */
- _sp_copy(t[0], t[2]);
- }
- /* 6. For i in (bits-1)...0 */
- for (i = bits - 1; (err == MP_OKAY) && (i >= 0); i--) {
- /* 6.1. t[s] = t[s] ^ 2 */
- _sp_copy((sp_int*)(((size_t)t[0] & sp_off_on_addr[s^1]) +
- ((size_t)t[1] & sp_off_on_addr[s ])),
- t[3]);
- err = sp_sqr(t[3], t[3]);
- if (err == MP_OKAY) {
- err = _sp_mont_red(t[3], m, mp);
- }
- _sp_copy(t[3],
- (sp_int*)(((size_t)t[0] & sp_off_on_addr[s^1]) +
- ((size_t)t[1] & sp_off_on_addr[s ])));
- if (err == MP_OKAY) {
- /* 6.2. y = e[i] */
- int y = (int)((e->dp[i >> SP_WORD_SHIFT] >> (i & SP_WORD_MASK)) & 1);
- /* 6.3 j = y & s */
- int j = y & s;
- /* 6.4 s = s | y */
- s |= y;
- /* 6.5. t[j] = t[j] * bm */
- _sp_copy((sp_int*)(((size_t)t[0] & sp_off_on_addr[j^1]) +
- ((size_t)t[1] & sp_off_on_addr[j ])),
- t[3]);
- err = sp_mul(t[3], t[2], t[3]);
- if (err == MP_OKAY) {
- err = _sp_mont_red(t[3], m, mp);
- }
- _sp_copy(t[3],
- (sp_int*)(((size_t)t[0] & sp_off_on_addr[j^1]) +
- ((size_t)t[1] & sp_off_on_addr[j ])));
- }
- }
- if (err == MP_OKAY) {
- /* 7. t[1] = FromMont(t[1]) */
- err = _sp_mont_red(t[1], m, mp);
- /* Reduction implementation returns number to range: 0..m-1. */
- }
- }
- if ((!done) && (err == MP_OKAY)) {
- /* 8. r = t[1] */
- _sp_copy(t[1], r);
- }
- FREE_SP_INT_ARRAY(t, NULL);
- return err;
- }
- #else
- /* Internal. Exponentiates b to the power of e modulo m into r: r = b ^ e mod m
- * Process the exponent one bit at a time with base in Montgomery form.
- * Is constant time and cache attack resistant.
- *
- * Based on work by Marc Joye, Sung-Ming Yen, "The Montgomery Powering Ladder",
- * Cryptographic Hardware and Embedded Systems, CHES 2002
- *
- * Algorithm:
- * b: base, e: exponent, m: modulus, r: result, bits: #bits to use
- * 1. t[1] = b mod m.
- * 2. t[0] = ToMont(1)
- * 3. t[1] = ToMont(t[1])
- * 4. For i in (bits-1)...0
- * 4.1. y = e[i]
- * 4.2. t[2] = t[0] * t[1]
- * 4.3. t[3] = t[y] ^ 2
- * 4.4. t[y] = t[3], t[y^1] = t[2]
- * 5. t[0] = FromMont(t[0])
- * 6. r = t[0]
- *
- * @param [in] b SP integer that is the base.
- * @param [in] e SP integer that is the exponent.
- * @param [in] bits Number of bits in exponent to use. May be greater than
- * count of bits in e.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_exptmod_mont_ex(const sp_int* b, const sp_int* e, int bits,
- const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- int done = 0;
- DECL_SP_INT_ARRAY(t, m->used * 2 + 1, 4);
- /* Allocate temporaries. */
- ALLOC_SP_INT_ARRAY(t, m->used * 2 + 1, 4, err, NULL);
- if (err == MP_OKAY) {
- /* Initialize temporaries. */
- _sp_init_size(t[0], m->used * 2 + 1);
- _sp_init_size(t[1], m->used * 2 + 1);
- _sp_init_size(t[2], m->used * 2 + 1);
- _sp_init_size(t[3], m->used * 2 + 1);
- /* 1. Ensure base is less than modulus. */
- if (_sp_cmp_abs(b, m) != MP_LT) {
- err = sp_mod(b, m, t[1]);
- /* Handle base == modulus. */
- if ((err == MP_OKAY) && sp_iszero(t[1])) {
- _sp_set(r, 0);
- done = 1;
- }
- }
- else {
- /* Copy base into working variable. */
- err = sp_copy(b, t[1]);
- }
- }
- if ((!done) && (err == MP_OKAY)) {
- int i;
- sp_int_digit mp;
- /* Calculate Montgomery multiplier for reduction. */
- _sp_mont_setup(m, &mp);
- /* 2. t[0] = ToMont(1)
- * Calculate 1 in Montgomery form.
- */
- err = sp_mont_norm(t[0], m);
- if (err == MP_OKAY) {
- /* 3. t[1] = ToMont(t[1])
- * Convert base to Montgomery form.
- */
- err = sp_mulmod(t[1], t[0], m, t[1]);
- }
- /* 4. For i in (bits-1)...0 */
- for (i = bits - 1; (err == MP_OKAY) && (i >= 0); i--) {
- /* 4.1. y = e[i] */
- int y = (e->dp[i >> SP_WORD_SHIFT] >> (i & SP_WORD_MASK)) & 1;
- /* 4.2. t[2] = t[0] * t[1] */
- err = sp_mul(t[0], t[1], t[2]);
- if (err == MP_OKAY) {
- err = _sp_mont_red(t[2], m, mp);
- }
- /* 4.3. t[3] = t[y] ^ 2 */
- if (err == MP_OKAY) {
- _sp_copy((sp_int*)(((size_t)t[0] & sp_off_on_addr[y^1]) +
- ((size_t)t[1] & sp_off_on_addr[y ])),
- t[3]);
- err = sp_sqr(t[3], t[3]);
- }
- if (err == MP_OKAY) {
- err = _sp_mont_red(t[3], m, mp);
- }
- /* 4.4. t[y] = t[3], t[y^1] = t[2] */
- if (err == MP_OKAY) {
- _sp_copy_2_ct(t[2], t[3], t[0], t[1], y, m->used);
- }
- }
- if (err == MP_OKAY) {
- /* 5. t[0] = FromMont(t[0]) */
- err = _sp_mont_red(t[0], m, mp);
- /* Reduction implementation returns number to range: 0..m-1. */
- }
- }
- if ((!done) && (err == MP_OKAY)) {
- /* 6. r = t[0] */
- err = sp_copy(t[0], r);
- }
- FREE_SP_INT_ARRAY(t, NULL);
- return err;
- }
- #endif /* WC_PROTECT_ENCRYPTED_MEM */
- #else
- #ifdef SP_ALLOC
- #define SP_ALLOC_PREDEFINED
- #endif
- /* Always allocate large array of sp_ints unless defined WOLFSSL_SP_NO_MALLOC */
- #define SP_ALLOC
- /* Internal. Exponentiates b to the power of e modulo m into r: r = b ^ e mod m
- * Creates a window of precalculated exponents with base in Montgomery form.
- * Is constant time but NOT cache attack resistant.
- *
- * Algorithm:
- * b: base, e: exponent, m: modulus, r: result, bits: #bits to use
- * w: window size based on bits.
- * 1. t[1] = b mod m.
- * 2. t[0] = MontNorm(m) = ToMont(1)
- * 3. t[1] = ToMont(t[1])
- * 4. For i in 2..(2 ^ w) - 1
- * 4.1 if i[0] == 0 then t[i] = t[i/2] ^ 2
- * 4.2 if i[0] == 1 then t[i] = t[i-1] * t[1]
- * 5. cb = w * (bits / w)
- * 5. tr = t[e / (2 ^ cb)]
- * 6. For i in cb..w
- * 6.1. y = e[(i-1)..(i-w)]
- * 6.2. tr = tr ^ (2 * w)
- * 6.3. tr = tr * t[y]
- * 7. tr = FromMont(tr)
- * 8. r = tr
- *
- * @param [in] b SP integer that is the base.
- * @param [in] e SP integer that is the exponent.
- * @param [in] bits Number of bits in exponent to use. May be greater than
- * count of bits in e.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_exptmod_mont_ex(const sp_int* b, const sp_int* e, int bits,
- const sp_int* m, sp_int* r)
- {
- int i;
- int c;
- int y;
- int winBits;
- int preCnt;
- int err = MP_OKAY;
- int done = 0;
- sp_int_digit mask;
- sp_int* tr = NULL;
- DECL_SP_INT_ARRAY(t, m->used * 2 + 1, (1 << 6) + 1);
- /* Window bits based on number of pre-calculations versus number of loop
- * calculcations.
- * Exponents for RSA and DH will result in 6-bit windows.
- */
- if (bits > 450) {
- winBits = 6;
- }
- else if (bits <= 21) {
- winBits = 1;
- }
- else if (bits <= 36) {
- winBits = 3;
- }
- else if (bits <= 140) {
- winBits = 4;
- }
- else {
- winBits = 5;
- }
- /* An entry for each possible 0..2^winBits-1 value. */
- preCnt = 1 << winBits;
- /* Mask for calculating index into pre-computed table. */
- mask = preCnt - 1;
- /* Allocate sp_ints for:
- * - pre-computation table
- * - temporary result
- */
- ALLOC_SP_INT_ARRAY(t, m->used * 2 + 1, preCnt + 1, err, NULL);
- if (err == MP_OKAY) {
- /* Set variable to use allocate memory. */
- tr = t[preCnt];
- /* Initialize all allocated. */
- for (i = 0; i < preCnt; i++) {
- _sp_init_size(t[i], m->used * 2 + 1);
- }
- _sp_init_size(tr, m->used * 2 + 1);
- /* 1. t[1] = b mod m. */
- if (_sp_cmp_abs(b, m) != MP_LT) {
- err = sp_mod(b, m, t[1]);
- /* Handle base == modulus. */
- if ((err == MP_OKAY) && sp_iszero(t[1])) {
- _sp_set(r, 0);
- done = 1;
- }
- }
- else {
- /* Copy base into entry of table to contain b^1. */
- _sp_copy(b, t[1]);
- }
- }
- if ((!done) && (err == MP_OKAY)) {
- sp_int_digit mp;
- sp_int_digit n;
- /* Calculate Montgomery multiplier for reduction. */
- _sp_mont_setup(m, &mp);
- /* 2. t[0] = MontNorm(m) = ToMont(1) */
- err = sp_mont_norm(t[0], m);
- if (err == MP_OKAY) {
- /* 3. t[1] = ToMont(t[1]) */
- err = sp_mul(t[1], t[0], t[1]);
- }
- if (err == MP_OKAY) {
- /* t[1] = t[1] mod m, temporary size has to be bigger than t[1]. */
- err = _sp_div(t[1], m, NULL, t[1], t[1]->used + 1);
- }
- /* 4. For i in 2..(2 ^ w) - 1 */
- for (i = 2; (i < preCnt) && (err == MP_OKAY); i++) {
- /* 4.1 if i[0] == 0 then t[i] = t[i/2] ^ 2 */
- if ((i & 1) == 0) {
- err = sp_sqr(t[i/2], t[i]);
- }
- /* 4.2 if i[0] == 1 then t[i] = t[i-1] * t[1] */
- else {
- err = sp_mul(t[i-1], t[1], t[i]);
- }
- /* Montgomery reduce square or multiplication result. */
- if (err == MP_OKAY) {
- err = _sp_mont_red(t[i], m, mp);
- }
- }
- if (err == MP_OKAY) {
- /* 5. cb = w * (bits / w) */
- i = (bits - 1) >> SP_WORD_SHIFT;
- n = e->dp[i--];
- /* Find top bit index in last word. */
- c = bits & (SP_WORD_SIZE - 1);
- if (c == 0) {
- c = SP_WORD_SIZE;
- }
- /* Use as many bits from top to make remaining a multiple of window
- * size.
- */
- if ((bits % winBits) != 0) {
- c -= bits % winBits;
- }
- else {
- c -= winBits;
- }
- /* 5. tr = t[e / (2 ^ cb)] */
- y = (int)(n >> c);
- n <<= SP_WORD_SIZE - c;
- /* 5. Copy table value for first window. */
- _sp_copy(t[y], tr);
- /* 6. For i in cb..w */
- for (; (i >= 0) || (c >= winBits); ) {
- int j;
- /* 6.1. y = e[(i-1)..(i-w)] */
- if (c == 0) {
- /* Bits up to end of digit */
- n = e->dp[i--];
- y = (int)(n >> (SP_WORD_SIZE - winBits));
- n <<= winBits;
- c = SP_WORD_SIZE - winBits;
- }
- else if (c < winBits) {
- /* Bits to end of digit and part of next */
- y = (int)(n >> (SP_WORD_SIZE - winBits));
- n = e->dp[i--];
- c = winBits - c;
- y |= (int)(n >> (SP_WORD_SIZE - c));
- n <<= c;
- c = SP_WORD_SIZE - c;
- }
- else {
- /* Bits from middle of digit */
- y = (int)((n >> (SP_WORD_SIZE - winBits)) & mask);
- n <<= winBits;
- c -= winBits;
- }
- /* 6.2. tr = tr ^ (2 * w) */
- for (j = 0; (j < winBits) && (err == MP_OKAY); j++) {
- err = sp_sqr(tr, tr);
- if (err == MP_OKAY) {
- err = _sp_mont_red(tr, m, mp);
- }
- }
- /* 6.3. tr = tr * t[y] */
- if (err == MP_OKAY) {
- err = sp_mul(tr, t[y], tr);
- }
- if (err == MP_OKAY) {
- err = _sp_mont_red(tr, m, mp);
- }
- }
- }
- if (err == MP_OKAY) {
- /* 7. tr = FromMont(tr) */
- err = _sp_mont_red(tr, m, mp);
- /* Reduction implementation returns number to range: 0..m-1. */
- }
- }
- if ((!done) && (err == MP_OKAY)) {
- /* 8. r = tr */
- _sp_copy(tr, r);
- }
- FREE_SP_INT_ARRAY(t, NULL);
- return err;
- }
- #ifndef SP_ALLOC_PREDEFINED
- #undef SP_ALLOC
- #undef SP_ALLOC_PREDEFINED
- #endif
- #endif /* !WC_NO_CACHE_RESISTANT */
- #endif /* !WC_NO_HARDEN */
- /* w = Log2(SP_WORD_SIZE) - 1 */
- #if SP_WORD_SIZE == 8
- #define EXP2_WINSIZE 2
- #elif SP_WORD_SIZE == 16
- #define EXP2_WINSIZE 3
- #elif SP_WORD_SIZE == 32
- #define EXP2_WINSIZE 4
- #elif SP_WORD_SIZE == 64
- #define EXP2_WINSIZE 5
- #else
- #error "sp_exptmod_base_2: Unexpected SP_WORD_SIZE"
- #endif
- /* Mask is all bits in window set. */
- #define EXP2_MASK ((1 << EXP2_WINSIZE) - 1)
- /* Internal. Exponentiates 2 to the power of e modulo m into r: r = 2 ^ e mod m
- * Is constant time and cache attack resistant.
- *
- * Calculates value to make mod operations constant time expect when
- * WC_NO_HARDERN defined or modulus fits in one word.
- *
- * Algorithm:
- * b: base, e: exponent, m: modulus, r: result, bits: #bits to use
- * w: window size based on #bits in word.
- * 1. if Words(m) > 1 then tr = MontNorm(m) = ToMont(1)
- * else tr = 1
- * 2. if Words(m) > 1 and HARDEN then a = m * (2 ^ (2^w))
- * else a = 0
- * 3. cb = w * (bits / w)
- * 4. y = e / (2 ^ cb)
- * 5. tr = (tr * (2 ^ y) + a) mod m
- * 6. For i in cb..w
- * 6.1. y = e[(i-1)..(i-w)]
- * 6.2. tr = tr ^ (2 * w)
- * 6.3. tr = ((tr * (2 ^ y) + a) mod m
- * 7. if Words(m) > 1 then tr = FromMont(tr)
- * 8. r = tr
- *
- * @param [in] e SP integer that is the exponent.
- * @param [in] digits Number of digits in base to use. May be greater than
- * count of bits in b.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_exptmod_base_2(const sp_int* e, int digits, const sp_int* m,
- sp_int* r)
- {
- int i = 0;
- int c = 0;
- int y;
- int err = MP_OKAY;
- sp_int_digit mp = 0;
- sp_int_digit n = 0;
- #ifndef WC_NO_HARDEN
- sp_int* a = NULL;
- sp_int* tr = NULL;
- DECL_SP_INT_ARRAY(d, m->used * 2 + 1, 2);
- #else
- DECL_SP_INT(tr, m->used * 2 + 1);
- #endif
- int useMont = (m->used > 1);
- #if 0
- sp_print_int(2, "a");
- sp_print(e, "b");
- sp_print(m, "m");
- #endif
- #ifndef WC_NO_HARDEN
- /* Allocate sp_ints for:
- * - constant time add value for mod operation
- * - temporary result
- */
- ALLOC_SP_INT_ARRAY(d, m->used * 2 + 1, 2, err, NULL);
- #else
- /* Allocate sp_int for temporary result. */
- ALLOC_SP_INT(tr, m->used * 2 + 1, err, NULL);
- #endif
- if (err == MP_OKAY) {
- #ifndef WC_NO_HARDEN
- a = d[0];
- tr = d[1];
- _sp_init_size(a, m->used * 2 + 1);
- #endif
- _sp_init_size(tr, m->used * 2 + 1);
- }
- if ((err == MP_OKAY) && useMont) {
- /* Calculate Montgomery multiplier for reduction. */
- _sp_mont_setup(m, &mp);
- }
- if (err == MP_OKAY) {
- /* 1. if Words(m) > 1 then tr = MontNorm(m) = ToMont(1)
- * else tr = 1
- */
- if (useMont) {
- /* Calculate Montgomery normalizer for modulus - 1 in Montgomery
- * form.
- */
- err = sp_mont_norm(tr, m);
- }
- else {
- /* For single word modulus don't use Montgomery form. */
- err = sp_set(tr, 1);
- }
- }
- /* 2. if Words(m) > 1 and HARDEN then a = m * (2 ^ (2^w))
- * else a = 0
- */
- #ifndef WC_NO_HARDEN
- if ((err == MP_OKAY) && useMont) {
- err = sp_mul_2d(m, 1 << EXP2_WINSIZE, a);
- }
- #endif
- if (err == MP_OKAY) {
- /* 3. cb = w * (bits / w) */
- i = digits - 1;
- n = e->dp[i--];
- c = SP_WORD_SIZE;
- #if EXP2_WINSIZE != 1
- c -= (digits * SP_WORD_SIZE) % EXP2_WINSIZE;
- if (c != SP_WORD_SIZE) {
- /* 4. y = e / (2 ^ cb) */
- y = (int)(n >> c);
- n <<= SP_WORD_SIZE - c;
- }
- else
- #endif
- {
- /* 4. y = e / (2 ^ cb) */
- y = (int)((n >> (SP_WORD_SIZE - EXP2_WINSIZE)) & EXP2_MASK);
- n <<= EXP2_WINSIZE;
- c -= EXP2_WINSIZE;
- }
- /* 5. tr = (tr * (2 ^ y) + a) mod m */
- err = sp_mul_2d(tr, y, tr);
- }
- #ifndef WC_NO_HARDEN
- if ((err == MP_OKAY) && useMont) {
- /* Add value to make mod operation constant time. */
- err = sp_add(tr, a, tr);
- }
- #endif
- if (err == MP_OKAY) {
- err = sp_mod(tr, m, tr);
- }
- /* 6. For i in cb..w */
- for (; (err == MP_OKAY) && ((i >= 0) || (c >= EXP2_WINSIZE)); ) {
- int j;
- /* 6.1. y = e[(i-1)..(i-w)] */
- if (c == 0) {
- /* Bits from next digit. */
- n = e->dp[i--];
- y = (int)(n >> (SP_WORD_SIZE - EXP2_WINSIZE));
- n <<= EXP2_WINSIZE;
- c = SP_WORD_SIZE - EXP2_WINSIZE;
- }
- #if (EXP2_WINSIZE != 1) && (EXP2_WINSIZE != 2) && (EXP2_WINSIZE != 4)
- else if (c < EXP2_WINSIZE) {
- /* Bits to end of digit and part of next */
- y = (int)(n >> (SP_WORD_SIZE - EXP2_WINSIZE));
- n = e->dp[i--];
- c = EXP2_WINSIZE - c;
- y |= (int)(n >> (SP_WORD_SIZE - c));
- n <<= c;
- c = SP_WORD_SIZE - c;
- }
- #endif
- else {
- /* Bits from middle of digit */
- y = (int)((n >> (SP_WORD_SIZE - EXP2_WINSIZE)) & EXP2_MASK);
- n <<= EXP2_WINSIZE;
- c -= EXP2_WINSIZE;
- }
- /* 6.2. tr = tr ^ (2 * w) */
- for (j = 0; (j < EXP2_WINSIZE) && (err == MP_OKAY); j++) {
- err = sp_sqr(tr, tr);
- if (err == MP_OKAY) {
- if (useMont) {
- err = _sp_mont_red(tr, m, mp);
- }
- else {
- err = sp_mod(tr, m, tr);
- }
- }
- }
- /* 6.3. tr = ((tr * (2 ^ y) + a) mod m */
- if (err == MP_OKAY) {
- err = sp_mul_2d(tr, y, tr);
- }
- #ifndef WC_NO_HARDEN
- if ((err == MP_OKAY) && useMont) {
- /* Add value to make mod operation constant time. */
- err = sp_add(tr, a, tr);
- }
- #endif
- if (err == MP_OKAY) {
- /* Reduce current result by modulus. */
- err = sp_mod(tr, m, tr);
- }
- }
- /* 7. if Words(m) > 1 then tr = FromMont(tr) */
- if ((err == MP_OKAY) && useMont) {
- err = _sp_mont_red(tr, m, mp);
- /* Reduction implementation returns number to range: 0..m-1. */
- }
- if (err == MP_OKAY) {
- /* 8. r = tr */
- _sp_copy(tr, r);
- }
- #if 0
- sp_print(r, "rme");
- #endif
- #ifndef WC_NO_HARDEN
- FREE_SP_INT_ARRAY(d, NULL);
- #else
- FREE_SP_INT(tr, m->used * 2 + 1);
- #endif
- return err;
- }
- #endif
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- !defined(NO_DH) || (!defined(NO_RSA) && defined(WOLFSSL_KEY_GEN)) || \
- defined(OPENSSL_ALL)
- /* Exponentiates b to the power of e modulo m into r: r = b ^ e mod m
- *
- * Error returned when parameters r == e or r == m and base >= modulus.
- *
- * @param [in] b SP integer that is the base.
- * @param [in] e SP integer that is the exponent.
- * @param [in] digits Number of digits in exponent to use. May be greater
- * than count of digits in e.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when b, e, m or r is NULL, digits is negative, or m <= 0 or
- * e is negative.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_exptmod_ex(const sp_int* b, const sp_int* e, int digits, const sp_int* m,
- sp_int* r)
- {
- int err = MP_OKAY;
- int done = 0;
- int mBits = sp_count_bits(m);
- int bBits = sp_count_bits(b);
- int eBits = sp_count_bits(e);
- if ((b == NULL) || (e == NULL) || (m == NULL) || (r == NULL) ||
- (digits < 0)) {
- err = MP_VAL;
- }
- /* Ensure m is not too big. */
- else if (m->used * 2 >= SP_INT_DIGITS) {
- err = MP_VAL;
- }
- #if 0
- if (err == MP_OKAY) {
- sp_print(b, "a");
- sp_print(e, "b");
- sp_print(m, "m");
- }
- #endif
- /* Check for invalid modulus. */
- if ((err == MP_OKAY) && sp_iszero(m)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Check for unsupported negative values of exponent and modulus. */
- if ((err == MP_OKAY) && ((e->sign == MP_NEG) || (m->sign == MP_NEG))) {
- err = MP_VAL;
- }
- #endif
- /* Check for degenerate cases. */
- if ((err == MP_OKAY) && sp_isone(m)) {
- _sp_set(r, 0);
- done = 1;
- }
- if ((!done) && (err == MP_OKAY) && sp_iszero(e)) {
- _sp_set(r, 1);
- done = 1;
- }
- /* Ensure base is less than modulus. */
- if ((!done) && (err == MP_OKAY) && (_sp_cmp_abs(b, m) != MP_LT)) {
- if ((r == e) || (r == m)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- err = sp_mod(b, m, r);
- }
- if (err == MP_OKAY) {
- b = r;
- }
- }
- /* Check for degenerate case of base. */
- if ((!done) && (err == MP_OKAY) && sp_iszero(b)) {
- _sp_set(r, 0);
- done = 1;
- }
- /* Ensure SP integers have space for intermediate values. */
- if ((!done) && (err == MP_OKAY) && (m->used * 2 >= r->size)) {
- err = MP_VAL;
- }
- if ((!done) && (err == MP_OKAY)) {
- /* Use code optimized for specific sizes if possible */
- #if (defined(WOLFSSL_SP_MATH) || defined(WOLFSSL_SP_MATH_ALL)) && \
- (defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH))
- #ifndef WOLFSSL_SP_NO_2048
- if ((mBits == 1024) && sp_isodd(m) && (bBits <= 1024) &&
- (eBits <= 1024)) {
- err = sp_ModExp_1024((sp_int*)b, (sp_int*)e, (sp_int*)m, r);
- done = 1;
- }
- else if ((mBits == 2048) && sp_isodd(m) && (bBits <= 2048) &&
- (eBits <= 2048)) {
- err = sp_ModExp_2048((sp_int*)b, (sp_int*)e, (sp_int*)m, r);
- done = 1;
- }
- else
- #endif
- #ifndef WOLFSSL_SP_NO_3072
- if ((mBits == 1536) && sp_isodd(m) && (bBits <= 1536) &&
- (eBits <= 1536)) {
- err = sp_ModExp_1536((sp_int*)b, (sp_int*)e, (sp_int*)m, r);
- done = 1;
- }
- else if ((mBits == 3072) && sp_isodd(m) && (bBits <= 3072) &&
- (eBits <= 3072)) {
- err = sp_ModExp_3072((sp_int*)b, (sp_int*)e, (sp_int*)m, r);
- done = 1;
- }
- else
- #endif
- #ifdef WOLFSSL_SP_4096
- if ((mBits == 4096) && sp_isodd(m) && (bBits <= 4096) &&
- (eBits <= 4096)) {
- err = sp_ModExp_4096((sp_int*)b, (sp_int*)e, (sp_int*)m, r);
- done = 1;
- }
- else
- #endif
- #endif
- {
- /* SP does not support size. */
- }
- }
- #if defined(WOLFSSL_SP_MATH_ALL) || !defined(NO_DH) || defined(OPENSSL_ALL)
- #if (defined(WOLFSSL_RSA_VERIFY_ONLY) || defined(WOLFSSL_RSA_PUBLIC_ONLY)) && \
- defined(NO_DH)
- if ((!done) && (err == MP_OKAY)) {
- /* Use non-constant time version - fastest. */
- err = sp_exptmod_nct(b, e, m, r);
- }
- #else
- #if defined(WOLFSSL_SP_MATH_ALL) || defined(OPENSSL_ALL)
- if ((!done) && (err == MP_OKAY) && (b->used == 1) && (b->dp[0] == 2) &&
- mp_isodd(m)) {
- /* Use the generic base 2 implementation. */
- err = _sp_exptmod_base_2(e, digits, m, r);
- }
- else if ((!done) && (err == MP_OKAY) && ((m->used > 1) && mp_isodd(m))) {
- #ifndef WC_NO_HARDEN
- /* Use constant time version hardened against timing attacks and
- * cache attacks when WC_NO_CACHE_RESISTANT not defined. */
- err = _sp_exptmod_mont_ex(b, e, digits * SP_WORD_SIZE, m, r);
- #else
- /* Use non-constant time version - fastest. */
- err = sp_exptmod_nct(b, e, m, r);
- #endif
- }
- else
- #endif /* WOLFSSL_SP_MATH_ALL || OPENSSL_ALL */
- if ((!done) && (err == MP_OKAY)) {
- /* Otherwise use the generic implementation hardened against
- * timing and cache attacks. */
- err = _sp_exptmod_ex(b, e, digits * SP_WORD_SIZE, m, r);
- }
- #endif /* WOLFSSL_RSA_VERIFY_ONLY || WOLFSSL_RSA_PUBLIC_ONLY */
- #else
- if ((!done) && (err == MP_OKAY)) {
- err = MP_VAL;
- }
- #endif /* WOLFSSL_SP_MATH_ALL || WOLFSSL_HAVE_SP_DH */
- (void)mBits;
- (void)bBits;
- (void)eBits;
- (void)digits;
- #if 0
- if (err == MP_OKAY) {
- sp_print(r, "rme");
- }
- #endif
- return err;
- }
- #endif
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- !defined(NO_DH) || (!defined(NO_RSA) && defined(WOLFSSL_KEY_GEN)) || \
- defined(OPENSSL_ALL)
- /* Exponentiates b to the power of e modulo m into r: r = b ^ e mod m
- *
- * @param [in] b SP integer that is the base.
- * @param [in] e SP integer that is the exponent.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when b, e, m or r is NULL; or m <= 0 or e is negative.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_exptmod(const sp_int* b, const sp_int* e, const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((b == NULL) || (e == NULL) || (m == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- SAVE_VECTOR_REGISTERS(err = _svr_ret;);
- if (err == MP_OKAY) {
- err = sp_exptmod_ex(b, e, (int)e->used, m, r);
- }
- RESTORE_VECTOR_REGISTERS();
- return err;
- }
- #endif
- #if defined(WOLFSSL_SP_MATH_ALL) || defined(WOLFSSL_HAVE_SP_DH)
- #if defined(WOLFSSL_SP_FAST_NCT_EXPTMOD) || !defined(WOLFSSL_SP_SMALL)
- /* Internal. Exponentiates b to the power of e modulo m into r: r = b ^ e mod m
- * Creates a window of precalculated exponents with base in Montgomery form.
- * Sliding window and is NOT constant time.
- *
- * n-bit window is: (b^(2^(n-1))*b^0)...(b^(2^(n-1))*b^(2^(n-1)-1))
- * e.g. when n=6, b^32..b^63
- * Algorithm:
- * 1. Ensure base is less than modulus.
- * 2. Convert base to Montgomery form
- * 3. Set result to table entry for top window bits, or
- * if less than windows bits in exponent, 1 in Montgomery form.
- * 4. While at least window bits left:
- * 4.1. Count number of and skip leading 0 bits unless less then window bits
- * left.
- * 4.2. Montgomery square result for each leading 0 and window bits if bits
- * left.
- * 4.3. Break if less than window bits left.
- * 4.4. Get top window bits from expononent and drop.
- * 4.5. Montgomery multiply result by table entry.
- * 5. While bits left:
- * 5.1. Montogmery square result
- * 5.2. If exponent bit set
- * 5.2.1. Montgomery multiply result by Montgomery form of base.
- * 6. Convert result back from Montgomery form.
- *
- * @param [in] b SP integer that is the base.
- * @param [in] e SP integer that is the exponent.
- * @param [in] bits Number of bits in exponent to use. May be greater than
- * count of bits in e.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_exptmod_nct(const sp_int* b, const sp_int* e, const sp_int* m,
- sp_int* r)
- {
- int i = 0;
- int bits;
- int winBits;
- int preCnt;
- int err = MP_OKAY;
- int done = 0;
- sp_int* tr = NULL;
- sp_int* bm = NULL;
- /* Maximum winBits is 6 and preCnt is (1 << (winBits - 1)). */
- #ifndef WOLFSSL_SP_NO_MALLOC
- DECL_DYN_SP_INT_ARRAY(t, m->used * 2 + 1, (1 << 5) + 2);
- #else
- DECL_SP_INT_ARRAY(t, m->used * 2 + 1, (1 << 5) + 2);
- #endif
- bits = sp_count_bits(e);
- /* Window bits based on number of pre-calculations versus number of loop
- * calculcations.
- * Exponents for RSA and DH will result in 6-bit windows.
- * Note: for 4096-bit values, 7-bit window is slightly better.
- */
- if (bits > 450) {
- winBits = 6;
- }
- else if (bits <= 21) {
- winBits = 1;
- }
- else if (bits <= 36) {
- winBits = 3;
- }
- else if (bits <= 140) {
- winBits = 4;
- }
- else {
- winBits = 5;
- }
- /* Top bit of exponent fixed as 1 for pre-calculated window. */
- preCnt = 1 << (winBits - 1);
- /* Allocate sp_ints for:
- * - pre-computation table
- * - temporary result
- * - Montgomery form of base
- */
- #ifndef WOLFSSL_SP_NO_MALLOC
- ALLOC_DYN_SP_INT_ARRAY(t, m->used * 2 + 1, (size_t)preCnt + 2, err, NULL);
- #else
- ALLOC_SP_INT_ARRAY(t, m->used * 2 + 1, (size_t)preCnt + 2, err, NULL);
- #endif
- if (err == MP_OKAY) {
- /* Set variables to use allocate memory. */
- tr = t[preCnt + 0];
- bm = t[preCnt + 1];
- /* Iniitialize all allocated */
- for (i = 0; i < preCnt; i++) {
- _sp_init_size(t[i], m->used * 2 + 1);
- }
- _sp_init_size(tr, m->used * 2 + 1);
- _sp_init_size(bm, m->used * 2 + 1);
- /* 1. Ensure base is less than modulus. */
- if (_sp_cmp_abs(b, m) != MP_LT) {
- err = sp_mod(b, m, bm);
- /* Handle base == modulus. */
- if ((err == MP_OKAY) && sp_iszero(bm)) {
- _sp_set(r, 0);
- done = 1;
- }
- }
- else {
- /* Copy base into Montogmery base variable. */
- _sp_copy(b, bm);
- }
- }
- if ((!done) && (err == MP_OKAY)) {
- int y = 0;
- int c = 0;
- sp_int_digit mp;
- /* Calculate Montgomery multiplier for reduction. */
- _sp_mont_setup(m, &mp);
- /* Calculate Montgomery normalizer for modulus. */
- err = sp_mont_norm(t[0], m);
- if (err == MP_OKAY) {
- /* 2. Convert base to Montgomery form. */
- err = sp_mul(bm, t[0], bm);
- }
- if (err == MP_OKAY) {
- /* bm = bm mod m, temporary size has to be bigger than bm->used. */
- err = _sp_div(bm, m, NULL, bm, bm->used + 1);
- }
- if (err == MP_OKAY) {
- /* Copy Montgomery form of base into first element of table. */
- _sp_copy(bm, t[0]);
- }
- /* Calculate b^(2^(winBits-1)) */
- for (i = 1; (i < winBits) && (err == MP_OKAY); i++) {
- err = sp_sqr(t[0], t[0]);
- if (err == MP_OKAY) {
- err = _sp_mont_red(t[0], m, mp);
- }
- }
- /* For each table entry after first. */
- for (i = 1; (i < preCnt) && (err == MP_OKAY); i++) {
- /* Multiply previous entry by the base in Mont form into table. */
- err = sp_mul(t[i-1], bm, t[i]);
- if (err == MP_OKAY) {
- err = _sp_mont_red(t[i], m, mp);
- }
- }
- /* 3. Set result to table entry for top window bits, or
- * if less than windows bits in exponent, 1 in Montgomery form.
- */
- if (err == MP_OKAY) {
- sp_int_digit n;
- /* Mask for calculating index into pre-computed table. */
- sp_int_digit mask = (sp_int_digit)preCnt - 1;
- /* Find the top bit. */
- i = (bits - 1) >> SP_WORD_SHIFT;
- n = e->dp[i--];
- c = bits % SP_WORD_SIZE;
- if (c == 0) {
- c = SP_WORD_SIZE;
- }
- /* Put top bit at highest offset in digit. */
- n <<= SP_WORD_SIZE - c;
- if (bits >= winBits) {
- /* Top bit set. Copy from window. */
- if (c < winBits) {
- /* Bits to end of digit and part of next */
- y = (int)((n >> (SP_WORD_SIZE - winBits)) & mask);
- n = e->dp[i--];
- c = winBits - c;
- y |= (int)(n >> (SP_WORD_SIZE - c));
- n <<= c;
- c = SP_WORD_SIZE - c;
- }
- else {
- /* Bits from middle of digit */
- y = (int)((n >> (SP_WORD_SIZE - winBits)) & mask);
- n <<= winBits;
- c -= winBits;
- }
- _sp_copy(t[y], tr);
- }
- else {
- /* 1 in Montgomery form. */
- err = sp_mont_norm(tr, m);
- }
- /* 4. While at least window bits left. */
- while ((err == MP_OKAY) && ((i >= 0) || (c >= winBits))) {
- /* Number of squares to before due to top bits being 0. */
- int sqrs = 0;
- /* 4.1. Count number of and skip leading 0 bits unless less
- * than window bits.
- */
- do {
- /* Make sure n has bits from the right digit. */
- if (c == 0) {
- n = e->dp[i--];
- c = SP_WORD_SIZE;
- }
- /* Mask off the next bit. */
- if ((n & ((sp_int_digit)1 << (SP_WORD_SIZE - 1))) != 0) {
- break;
- }
- /* Another square needed. */
- sqrs++;
- /* Skip bit. */
- n <<= 1;
- c--;
- }
- while ((err == MP_OKAY) && ((i >= 0) || (c >= winBits)));
- if ((err == MP_OKAY) && ((i >= 0) || (c >= winBits))) {
- /* Add squares needed before using table entry. */
- sqrs += winBits;
- }
- /* 4.2. Montgomery square result for each leading 0 and window
- * bits if bits left.
- */
- for (; (err == MP_OKAY) && (sqrs > 0); sqrs--) {
- err = sp_sqr(tr, tr);
- if (err == MP_OKAY) {
- err = _sp_mont_red(tr, m, mp);
- }
- }
- /* 4.3. Break if less than window bits left. */
- if ((err == MP_OKAY) && (i < 0) && (c < winBits)) {
- break;
- }
- /* 4.4. Get top window bits from expononent and drop. */
- if (err == MP_OKAY) {
- if (c == 0) {
- /* Bits from next digit. */
- n = e->dp[i--];
- y = (int)(n >> (SP_WORD_SIZE - winBits));
- n <<= winBits;
- c = SP_WORD_SIZE - winBits;
- }
- else if (c < winBits) {
- /* Bits to end of digit and part of next. */
- y = (int)(n >> (SP_WORD_SIZE - winBits));
- n = e->dp[i--];
- c = winBits - c;
- y |= (int)(n >> (SP_WORD_SIZE - c));
- n <<= c;
- c = SP_WORD_SIZE - c;
- }
- else {
- /* Bits from middle of digit. */
- y = (int)(n >> (SP_WORD_SIZE - winBits));
- n <<= winBits;
- c -= winBits;
- }
- y &= (int)mask;
- }
- /* 4.5. Montgomery multiply result by table entry. */
- if (err == MP_OKAY) {
- err = sp_mul(tr, t[y], tr);
- }
- if (err == MP_OKAY) {
- err = _sp_mont_red(tr, m, mp);
- }
- }
- /* Finished multiplying in table entries. */
- if ((err == MP_OKAY) && (c > 0)) {
- /* Handle remaining bits.
- * Window values have top bit set and can't be used. */
- n = e->dp[0];
- /* 5. While bits left: */
- for (--c; (err == MP_OKAY) && (c >= 0); c--) {
- /* 5.1. Montogmery square result */
- err = sp_sqr(tr, tr);
- if (err == MP_OKAY) {
- err = _sp_mont_red(tr, m, mp);
- }
- /* 5.2. If exponent bit set */
- if ((err == MP_OKAY) && ((n >> c) & 1)) {
- /* 5.2.1. Montgomery multiply result by Montgomery form
- * of base.
- */
- err = sp_mul(tr, bm, tr);
- if (err == MP_OKAY) {
- err = _sp_mont_red(tr, m, mp);
- }
- }
- }
- }
- }
- if (err == MP_OKAY) {
- /* 6. Convert result back from Montgomery form. */
- err = _sp_mont_red(tr, m, mp);
- /* Reduction implementation returns number to range: 0..m-1. */
- }
- }
- if ((!done) && (err == MP_OKAY)) {
- /* Copy temporary result into parameter. */
- _sp_copy(tr, r);
- }
- #ifndef WOLFSSL_SP_NO_MALLOC
- FREE_DYN_SP_INT_ARRAY(t, NULL);
- #else
- FREE_SP_INT_ARRAY(t, NULL);
- #endif
- return err;
- }
- #else
- /* Exponentiates b to the power of e modulo m into r: r = b ^ e mod m
- * Non-constant time implementation.
- *
- * Algorithm:
- * 1. Convert base to Montgomery form
- * 2. Set result to base (assumes exponent is not zero)
- * 3. For each bit in exponent starting at second highest
- * 3.1. Montogmery square result
- * 3.2. If exponent bit set
- * 3.2.1. Montgomery multiply result by Montgomery form of base.
- * 4. Convert result back from Montgomery form.
- *
- * @param [in] b SP integer that is the base.
- * @param [in] e SP integer that is the exponent.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when b, e, m or r is NULL; or m <= 0 or e is negative.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_exptmod_nct(const sp_int* b, const sp_int* e, const sp_int* m,
- sp_int* r)
- {
- int i;
- int err = MP_OKAY;
- int done = 0;
- int y = 0;
- int bits = sp_count_bits(e);
- sp_int_digit mp;
- DECL_SP_INT_ARRAY(t, m->used * 2 + 1, 2);
- /* Allocate memory for:
- * - Montgomery form of base
- * - Temporary result (in case r is same var as another parameter). */
- ALLOC_SP_INT_ARRAY(t, m->used * 2 + 1, 2, err, NULL);
- if (err == MP_OKAY) {
- _sp_init_size(t[0], m->used * 2 + 1);
- _sp_init_size(t[1], m->used * 2 + 1);
- /* Ensure base is less than modulus and copy into temp. */
- if (_sp_cmp_abs(b, m) != MP_LT) {
- err = sp_mod(b, m, t[0]);
- /* Handle base == modulus. */
- if ((err == MP_OKAY) && sp_iszero(t[0])) {
- _sp_set(r, 0);
- done = 1;
- }
- }
- else {
- /* Copy base into temp. */
- _sp_copy(b, t[0]);
- }
- }
- if ((!done) && (err == MP_OKAY)) {
- /* Calculate Montgomery multiplier for reduction. */
- _sp_mont_setup(m, &mp);
- /* Calculate Montgomery normalizer for modulus. */
- err = sp_mont_norm(t[1], m);
- if (err == MP_OKAY) {
- /* 1. Convert base to Montgomery form. */
- err = sp_mul(t[0], t[1], t[0]);
- }
- if (err == MP_OKAY) {
- /* t[0] = t[0] mod m, temporary size has to be bigger than t[0]. */
- err = _sp_div(t[0], m, NULL, t[0], t[0]->used + 1);
- }
- if (err == MP_OKAY) {
- /* 2. Result starts as Montgomery form of base (assuming e > 0). */
- _sp_copy(t[0], t[1]);
- }
- /* 3. For each bit in exponent starting at second highest. */
- for (i = bits - 2; (err == MP_OKAY) && (i >= 0); i--) {
- /* 3.1. Montgomery square result. */
- err = sp_sqr(t[0], t[0]);
- if (err == MP_OKAY) {
- err = _sp_mont_red(t[0], m, mp);
- }
- if (err == MP_OKAY) {
- /* Get bit and index i. */
- y = (e->dp[i >> SP_WORD_SHIFT] >> (i & SP_WORD_MASK)) & 1;
- /* 3.2. If exponent bit set */
- if (y != 0) {
- /* 3.2.1. Montgomery multiply result by Mont of base. */
- err = sp_mul(t[0], t[1], t[0]);
- if (err == MP_OKAY) {
- err = _sp_mont_red(t[0], m, mp);
- }
- }
- }
- }
- if (err == MP_OKAY) {
- /* 4. Convert from Montgomery form. */
- err = _sp_mont_red(t[0], m, mp);
- /* Reduction implementation returns number of range 0..m-1. */
- }
- }
- if ((!done) && (err == MP_OKAY)) {
- /* Copy temporary result into parameter. */
- _sp_copy(t[0], r);
- }
- FREE_SP_INT_ARRAY(t, NULL);
- return err;
- }
- #endif /* WOLFSSL_SP_FAST_NCT_EXPTMOD || !WOLFSSL_SP_SMALL */
- /* Exponentiates b to the power of e modulo m into r: r = b ^ e mod m
- * Non-constant time implementation.
- *
- * @param [in] b SP integer that is the base.
- * @param [in] e SP integer that is the exponent.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when b, e, m or r is NULL; or m <= 0 or e is negative.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_exptmod_nct(const sp_int* b, const sp_int* e, const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((b == NULL) || (e == NULL) || (m == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- #if 0
- if (err == MP_OKAY) {
- sp_print(b, "a");
- sp_print(e, "b");
- sp_print(m, "m");
- }
- #endif
- if (err != MP_OKAY) {
- }
- /* Handle special cases. */
- else if (sp_iszero(m)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- else if ((e->sign == MP_NEG) || (m->sign == MP_NEG)) {
- err = MP_VAL;
- }
- #endif
- /* x mod 1 is always 0. */
- else if (sp_isone(m)) {
- _sp_set(r, 0);
- }
- /* b^0 mod m = 1 mod m = 1. */
- else if (sp_iszero(e)) {
- _sp_set(r, 1);
- }
- /* 0^x mod m = 0 mod m = 0. */
- else if (sp_iszero(b)) {
- _sp_set(r, 0);
- }
- /* Ensure SP integers have space for intermediate values. */
- else if (m->used * 2 >= r->size) {
- err = MP_VAL;
- }
- #if !defined(WOLFSSL_RSA_VERIFY_ONLY) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)
- else if (mp_iseven(m)) {
- err = _sp_exptmod_ex(b, e, (int)(e->used * SP_WORD_SIZE), m, r);
- }
- #endif
- else {
- err = _sp_exptmod_nct(b, e, m, r);
- }
- #if 0
- if (err == MP_OKAY) {
- sp_print(r, "rme");
- }
- #endif
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL || WOLFSSL_HAVE_SP_DH */
- /***************
- * 2^e functions
- ***************/
- #if defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)
- /* Divide by 2^e: r = a >> e and rem = bits shifted out
- *
- * @param [in] a SP integer to divide.
- * @param [in] e Exponent bits (dividing by 2^e).
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer to hold result.
- * @param [out] rem SP integer to hold remainder.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a is NULL or e is negative.
- */
- int sp_div_2d(const sp_int* a, int e, sp_int* r, sp_int* rem)
- {
- int err = MP_OKAY;
- if ((a == NULL) || (e < 0)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Number of bits remaining after shift. */
- int remBits = sp_count_bits(a) - e;
- if (remBits <= 0) {
- /* Shifting down by more bits than in number. */
- _sp_zero(r);
- if (rem != NULL) {
- err = sp_copy(a, rem);
- }
- }
- else {
- if (rem != NULL) {
- /* Copy a in to remainder. */
- err = sp_copy(a, rem);
- }
- if (err == MP_OKAY) {
- /* Shift a down by into result. */
- err = sp_rshb(a, e, r);
- }
- if ((err == MP_OKAY) && (rem != NULL)) {
- /* Set used and mask off top digit of remainder. */
- rem->used = ((unsigned int)e + SP_WORD_SIZE - 1) >>
- SP_WORD_SHIFT;
- e &= SP_WORD_MASK;
- if (e > 0) {
- rem->dp[rem->used - 1] &= ((sp_int_digit)1 << e) - 1;
- }
- /* Remove leading zeros from remainder. */
- sp_clamp(rem);
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- rem->sign = MP_ZPOS;
- #endif
- }
- }
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL && !WOLFSSL_RSA_VERIFY_ONLY */
- #if defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)
- /* The bottom e bits: r = a & ((1 << e) - 1)
- *
- * @param [in] a SP integer to reduce.
- * @param [in] e Modulus bits (modulus equals 2^e).
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or r is NULL, e is negative or e is too large for
- * result.
- */
- int sp_mod_2d(const sp_int* a, int e, sp_int* r)
- {
- int err = MP_OKAY;
- unsigned int digits = ((unsigned int)e + SP_WORD_SIZE - 1) >> SP_WORD_SHIFT;
- if ((a == NULL) || (r == NULL) || (e < 0)) {
- err = MP_VAL;
- }
- if ((err == MP_OKAY) && (digits > r->size)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Copy a into r if not same pointer. */
- if (a != r) {
- XMEMCPY(r->dp, a->dp, digits * SP_WORD_SIZEOF);
- r->used = a->used;
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- r->sign = a->sign;
- #endif
- }
- /* Modify result if a is bigger or same digit size. */
- #ifndef WOLFSSL_SP_INT_NEGATIVE
- if (digits <= a->used)
- #else
- /* Need to make negative positive and mask. */
- if ((a->sign == MP_NEG) || (digits <= a->used))
- #endif
- {
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- if (a->sign == MP_NEG) {
- unsigned int i;
- sp_int_digit carry = 0;
- /* Negate value. */
- for (i = 0; i < r->used; i++) {
- sp_int_digit next = r->dp[i] > 0;
- r->dp[i] = (sp_int_digit)0 - r->dp[i] - carry;
- carry |= next;
- }
- for (; i < digits; i++) {
- r->dp[i] = (sp_int_digit)0 - carry;
- }
- r->sign = MP_ZPOS;
- }
- #endif
- /* Set used and mask off top digit of result. */
- r->used = digits;
- e &= SP_WORD_MASK;
- if (e > 0) {
- r->dp[r->used - 1] &= ((sp_int_digit)1 << e) - 1;
- }
- sp_clamp(r);
- }
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL && !WOLFSSL_RSA_VERIFY_ONLY */
- #if (defined(WOLFSSL_SP_MATH_ALL) && (!defined(WOLFSSL_RSA_VERIFY_ONLY) || \
- !defined(NO_DH))) || defined(OPENSSL_ALL)
- /* Multiply by 2^e: r = a << e
- *
- * @param [in] a SP integer to multiply.
- * @param [in] e Multiplier bits (multiplier equals 2^e).
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or r is NULL, e is negative, or result is too big for
- * result size.
- */
- int sp_mul_2d(const sp_int* a, int e, sp_int* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (r == NULL) || (e < 0)) {
- err = MP_VAL;
- }
- /* Ensure result has enough allocated digits for result. */
- if ((err == MP_OKAY) &&
- ((unsigned int)(sp_count_bits(a) + e) > r->size * SP_WORD_SIZE)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Copy a into r as left shift function works on the number. */
- if (a != r) {
- err = sp_copy(a, r);
- }
- }
- if (err == MP_OKAY) {
- #if 0
- sp_print(a, "a");
- sp_print_int(e, "n");
- #endif
- err = sp_lshb(r, e);
- #if 0
- sp_print(r, "rsl");
- #endif
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL && !WOLFSSL_RSA_VERIFY_ONLY */
- #if defined(WOLFSSL_SP_MATH_ALL) || defined(WOLFSSL_HAVE_SP_DH) || \
- defined(HAVE_ECC) || (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY))
- /* START SP_SQR implementations */
- /* This code is generated.
- * To generate:
- * cd scripts/sp/sp_int
- * ./gen.sh
- * File sp_sqr.c contains code.
- */
- #if !defined(WOLFSSL_SP_MATH) || !defined(WOLFSSL_SP_SMALL)
- #ifdef SQR_MUL_ASM
- /* Square a and store in r. r = a * a
- *
- * @param [in] a SP integer to square.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_sqr(const sp_int* a, sp_int* r)
- {
- int err = MP_OKAY;
- unsigned int i;
- int j;
- unsigned int k;
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- sp_int_digit* t = NULL;
- #elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
- !defined(WOLFSSL_SP_NO_DYN_STACK)
- sp_int_digit t[((a->used + 1) / 2) * 2 + 1];
- #else
- sp_int_digit t[(SP_INT_DIGITS + 1) / 2];
- #endif
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- t = (sp_int_digit*)XMALLOC(
- sizeof(sp_int_digit) * (((a->used + 1) / 2) * 2 + 1), NULL,
- DYNAMIC_TYPE_BIGINT);
- if (t == NULL) {
- err = MP_MEM;
- }
- #endif
- if ((err == MP_OKAY) && (a->used <= 1)) {
- sp_int_digit l;
- sp_int_digit h;
- h = 0;
- l = 0;
- SP_ASM_SQR(h, l, a->dp[0]);
- r->dp[0] = h;
- r->dp[1] = l;
- }
- else if (err == MP_OKAY) {
- sp_int_digit l;
- sp_int_digit h;
- sp_int_digit o;
- sp_int_digit* p = t;
- h = 0;
- l = 0;
- SP_ASM_SQR(h, l, a->dp[0]);
- t[0] = h;
- h = 0;
- o = 0;
- for (k = 1; k < (a->used + 1) / 2; k++) {
- i = k;
- j = (int)(k - 1);
- for (; (j >= 0); i++, j--) {
- SP_ASM_MUL_ADD2(l, h, o, a->dp[i], a->dp[j]);
- }
- t[k * 2 - 1] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_SQR_ADD(l, h, o, a->dp[k]);
- i = k + 1;
- j = (int)(k - 1);
- for (; (j >= 0); i++, j--) {
- SP_ASM_MUL_ADD2(l, h, o, a->dp[i], a->dp[j]);
- }
- t[k * 2] = l;
- l = h;
- h = o;
- o = 0;
- }
- for (; k < a->used; k++) {
- i = k;
- j = (int)(k - 1);
- for (; (i < a->used); i++, j--) {
- SP_ASM_MUL_ADD2(l, h, o, a->dp[i], a->dp[j]);
- }
- p[k * 2 - 1] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_SQR_ADD(l, h, o, a->dp[k]);
- i = k + 1;
- j = (int)(k - 1);
- for (; (i < a->used); i++, j--) {
- SP_ASM_MUL_ADD2(l, h, o, a->dp[i], a->dp[j]);
- }
- p[k * 2] = l;
- l = h;
- h = o;
- o = 0;
- p = r->dp;
- }
- r->dp[k * 2 - 1] = l;
- XMEMCPY(r->dp, t, (((a->used + 1) / 2) * 2 + 1) * sizeof(sp_int_digit));
- }
- if (err == MP_OKAY) {
- r->used = a->used * 2;
- sp_clamp(r);
- }
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- if (t != NULL) {
- XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
- }
- #endif
- return err;
- }
- #else /* !SQR_MUL_ASM */
- /* Square a and store in r. r = a * a
- *
- * @param [in] a SP integer to square.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_sqr(const sp_int* a, sp_int* r)
- {
- int err = MP_OKAY;
- unsigned int i;
- int j;
- unsigned int k;
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- sp_int_digit* t = NULL;
- #elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
- !defined(WOLFSSL_SP_NO_DYN_STACK)
- sp_int_digit t[a->used * 2];
- #else
- sp_int_digit t[SP_INT_DIGITS];
- #endif
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- t = (sp_int_digit*)XMALLOC(sizeof(sp_int_digit) * (a->used * 2), NULL,
- DYNAMIC_TYPE_BIGINT);
- if (t == NULL) {
- err = MP_MEM;
- }
- #endif
- if (err == MP_OKAY) {
- sp_int_word w;
- sp_int_word l;
- sp_int_word h;
- #ifdef SP_WORD_OVERFLOW
- sp_int_word o;
- #endif
- w = (sp_int_word)a->dp[0] * a->dp[0];
- t[0] = (sp_int_digit)w;
- l = (sp_int_digit)(w >> SP_WORD_SIZE);
- h = 0;
- #ifdef SP_WORD_OVERFLOW
- o = 0;
- #endif
- for (k = 1; k <= (a->used - 1) * 2; k++) {
- i = k / 2;
- j = (int)(k - i);
- if (i == (unsigned int)j) {
- w = (sp_int_word)a->dp[i] * a->dp[j];
- l += (sp_int_digit)w;
- h += (sp_int_digit)(w >> SP_WORD_SIZE);
- #ifdef SP_WORD_OVERFLOW
- h += (sp_int_digit)(l >> SP_WORD_SIZE);
- l &= SP_MASK;
- o += (sp_int_digit)(h >> SP_WORD_SIZE);
- h &= SP_MASK;
- #endif
- }
- for (++i, --j; (i < a->used) && (j >= 0); i++, j--) {
- w = (sp_int_word)a->dp[i] * a->dp[j];
- l += (sp_int_digit)w;
- h += (sp_int_digit)(w >> SP_WORD_SIZE);
- #ifdef SP_WORD_OVERFLOW
- h += (sp_int_digit)(l >> SP_WORD_SIZE);
- l &= SP_MASK;
- o += (sp_int_digit)(h >> SP_WORD_SIZE);
- h &= SP_MASK;
- #endif
- l += (sp_int_digit)w;
- h += (sp_int_digit)(w >> SP_WORD_SIZE);
- #ifdef SP_WORD_OVERFLOW
- h += (sp_int_digit)(l >> SP_WORD_SIZE);
- l &= SP_MASK;
- o += (sp_int_digit)(h >> SP_WORD_SIZE);
- h &= SP_MASK;
- #endif
- }
- t[k] = (sp_int_digit)l;
- l >>= SP_WORD_SIZE;
- l += (sp_int_digit)h;
- h >>= SP_WORD_SIZE;
- #ifdef SP_WORD_OVERFLOW
- h += o & SP_MASK;
- o >>= SP_WORD_SIZE;
- #endif
- }
- t[k] = (sp_int_digit)l;
- r->used = k + 1;
- XMEMCPY(r->dp, t, r->used * sizeof(sp_int_digit));
- sp_clamp(r);
- }
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- if (t != NULL) {
- XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
- }
- #endif
- return err;
- }
- #endif /* SQR_MUL_ASM */
- #endif /* !WOLFSSL_SP_MATH || !WOLFSSL_SP_SMALL */
- #ifndef WOLFSSL_SP_SMALL
- #if !defined(WOLFSSL_HAVE_SP_ECC) && defined(HAVE_ECC)
- #if (SP_WORD_SIZE == 64 && SP_INT_BITS >= 256)
- #ifndef SQR_MUL_ASM
- /* Square a and store in r. r = a * a
- *
- * Long-hand implementation.
- *
- * @param [in] a SP integer to square.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_sqr_4(const sp_int* a, sp_int* r)
- {
- int err = MP_OKAY;
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- sp_int_word* w = NULL;
- #else
- sp_int_word w[10];
- #endif
- const sp_int_digit* da = a->dp;
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- w = (sp_int_word*)XMALLOC(sizeof(sp_int_word) * 10, NULL,
- DYNAMIC_TYPE_BIGINT);
- if (w == NULL) {
- err = MP_MEM;
- }
- #endif
- if (err == MP_OKAY) {
- w[0] = (sp_int_word)da[0] * da[0];
- w[1] = (sp_int_word)da[0] * da[1];
- w[2] = (sp_int_word)da[0] * da[2];
- w[3] = (sp_int_word)da[1] * da[1];
- w[4] = (sp_int_word)da[0] * da[3];
- w[5] = (sp_int_word)da[1] * da[2];
- w[6] = (sp_int_word)da[1] * da[3];
- w[7] = (sp_int_word)da[2] * da[2];
- w[8] = (sp_int_word)da[2] * da[3];
- w[9] = (sp_int_word)da[3] * da[3];
- r->dp[0] = (sp_int_digit)w[0];
- w[0] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[1];
- w[0] += (sp_int_digit)w[1];
- r->dp[1] = (sp_int_digit)w[0];
- w[0] >>= SP_WORD_SIZE;
- w[1] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[1];
- w[0] += (sp_int_digit)w[1];
- w[0] += (sp_int_digit)w[2];
- w[0] += (sp_int_digit)w[2];
- w[0] += (sp_int_digit)w[3];
- r->dp[2] = (sp_int_digit)w[0];
- w[0] >>= SP_WORD_SIZE;
- w[2] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[2];
- w[0] += (sp_int_digit)w[2];
- w[3] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[3];
- w[0] += (sp_int_digit)w[4];
- w[0] += (sp_int_digit)w[4];
- w[0] += (sp_int_digit)w[5];
- w[0] += (sp_int_digit)w[5];
- r->dp[3] = (sp_int_digit)w[0];
- w[0] >>= SP_WORD_SIZE;
- w[4] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[4];
- w[0] += (sp_int_digit)w[4];
- w[5] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[5];
- w[0] += (sp_int_digit)w[5];
- w[0] += (sp_int_digit)w[6];
- w[0] += (sp_int_digit)w[6];
- w[0] += (sp_int_digit)w[7];
- r->dp[4] = (sp_int_digit)w[0];
- w[0] >>= SP_WORD_SIZE;
- w[6] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[6];
- w[0] += (sp_int_digit)w[6];
- w[7] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[7];
- w[0] += (sp_int_digit)w[8];
- w[0] += (sp_int_digit)w[8];
- r->dp[5] = (sp_int_digit)w[0];
- w[0] >>= SP_WORD_SIZE;
- w[8] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[8];
- w[0] += (sp_int_digit)w[8];
- w[0] += (sp_int_digit)w[9];
- r->dp[6] = (sp_int_digit)w[0];
- w[0] >>= SP_WORD_SIZE;
- w[9] >>= SP_WORD_SIZE;
- w[0] += (sp_int_digit)w[9];
- r->dp[7] = (sp_int_digit)w[0];
- r->used = 8;
- sp_clamp(r);
- }
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- if (w != NULL) {
- XFREE(w, NULL, DYNAMIC_TYPE_BIGINT);
- }
- #endif
- return err;
- }
- #else /* SQR_MUL_ASM */
- /* Square a and store in r. r = a * a
- *
- * Comba implementation.
- *
- * @param [in] a SP integer to square.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_sqr_4(const sp_int* a, sp_int* r)
- {
- sp_int_digit l = 0;
- sp_int_digit h = 0;
- sp_int_digit o = 0;
- sp_int_digit t[4];
- SP_ASM_SQR(h, l, a->dp[0]);
- t[0] = h;
- h = 0;
- SP_ASM_MUL_ADD2_NO(l, h, o, a->dp[0], a->dp[1]);
- t[1] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2_NO(l, h, o, a->dp[0], a->dp[2]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[1]);
- t[2] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[0], a->dp[3]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[1], a->dp[2]);
- t[3] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[1], a->dp[3]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[2]);
- r->dp[4] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[2], a->dp[3]);
- r->dp[5] = l;
- l = h;
- h = o;
- SP_ASM_SQR_ADD_NO(l, h, a->dp[3]);
- r->dp[6] = l;
- r->dp[7] = h;
- XMEMCPY(r->dp, t, 4 * sizeof(sp_int_digit));
- r->used = 8;
- sp_clamp(r);
- return MP_OKAY;
- }
- #endif /* SQR_MUL_ASM */
- #endif /* SP_WORD_SIZE == 64 */
- #if (SP_WORD_SIZE == 64 && SP_INT_BITS >= 384)
- #ifdef SQR_MUL_ASM
- /* Square a and store in r. r = a * a
- *
- * Comba implementation.
- *
- * @param [in] a SP integer to square.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_sqr_6(const sp_int* a, sp_int* r)
- {
- sp_int_digit l = 0;
- sp_int_digit h = 0;
- sp_int_digit o = 0;
- sp_int_digit tl = 0;
- sp_int_digit th = 0;
- sp_int_digit to;
- sp_int_digit t[6];
- #if defined(WOLFSSL_SP_ARM_THUMB) && SP_WORD_SIZE == 32
- to = 0;
- #endif
- SP_ASM_SQR(h, l, a->dp[0]);
- t[0] = h;
- h = 0;
- SP_ASM_MUL_ADD2_NO(l, h, o, a->dp[0], a->dp[1]);
- t[1] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2_NO(l, h, o, a->dp[0], a->dp[2]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[1]);
- t[2] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[0], a->dp[3]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[1], a->dp[2]);
- t[3] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[0], a->dp[4]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[1], a->dp[3]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[2]);
- t[4] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[5]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[4]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[3]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[5] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[1], a->dp[5]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[2], a->dp[4]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[3]);
- r->dp[6] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[2], a->dp[5]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[3], a->dp[4]);
- r->dp[7] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[3], a->dp[5]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[4]);
- r->dp[8] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[4], a->dp[5]);
- r->dp[9] = l;
- l = h;
- h = o;
- SP_ASM_SQR_ADD_NO(l, h, a->dp[5]);
- r->dp[10] = l;
- r->dp[11] = h;
- XMEMCPY(r->dp, t, 6 * sizeof(sp_int_digit));
- r->used = 12;
- sp_clamp(r);
- return MP_OKAY;
- }
- #endif /* SQR_MUL_ASM */
- #endif /* SP_WORD_SIZE == 64 */
- #if (SP_WORD_SIZE == 32 && SP_INT_BITS >= 256)
- #ifdef SQR_MUL_ASM
- /* Square a and store in r. r = a * a
- *
- * Comba implementation.
- *
- * @param [in] a SP integer to square.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_sqr_8(const sp_int* a, sp_int* r)
- {
- sp_int_digit l = 0;
- sp_int_digit h = 0;
- sp_int_digit o = 0;
- sp_int_digit tl = 0;
- sp_int_digit th = 0;
- sp_int_digit to;
- sp_int_digit t[8];
- #if defined(WOLFSSL_SP_ARM_THUMB) && SP_WORD_SIZE == 32
- to = 0;
- #endif
- SP_ASM_SQR(h, l, a->dp[0]);
- t[0] = h;
- h = 0;
- SP_ASM_MUL_ADD2_NO(l, h, o, a->dp[0], a->dp[1]);
- t[1] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2_NO(l, h, o, a->dp[0], a->dp[2]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[1]);
- t[2] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[0], a->dp[3]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[1], a->dp[2]);
- t[3] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[0], a->dp[4]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[1], a->dp[3]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[2]);
- t[4] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[5]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[4]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[3]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[5] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[6]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[5]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[4]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[3]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[6] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[6]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[5]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[4]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[7] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[1], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[6]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[5]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[4]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[8] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[2], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[6]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[5]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[9] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[3], a->dp[7]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[4], a->dp[6]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[5]);
- r->dp[10] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[4], a->dp[7]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[5], a->dp[6]);
- r->dp[11] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[5], a->dp[7]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[6]);
- r->dp[12] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[6], a->dp[7]);
- r->dp[13] = l;
- l = h;
- h = o;
- SP_ASM_SQR_ADD_NO(l, h, a->dp[7]);
- r->dp[14] = l;
- r->dp[15] = h;
- XMEMCPY(r->dp, t, 8 * sizeof(sp_int_digit));
- r->used = 16;
- sp_clamp(r);
- return MP_OKAY;
- }
- #endif /* SQR_MUL_ASM */
- #endif /* SP_WORD_SIZE == 32 */
- #if (SP_WORD_SIZE == 32 && SP_INT_BITS >= 384)
- #ifdef SQR_MUL_ASM
- /* Square a and store in r. r = a * a
- *
- * Comba implementation.
- *
- * @param [in] a SP integer to square.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_sqr_12(const sp_int* a, sp_int* r)
- {
- sp_int_digit l = 0;
- sp_int_digit h = 0;
- sp_int_digit o = 0;
- sp_int_digit tl = 0;
- sp_int_digit th = 0;
- sp_int_digit to;
- sp_int_digit t[12];
- #if defined(WOLFSSL_SP_ARM_THUMB) && SP_WORD_SIZE == 32
- to = 0;
- #endif
- SP_ASM_SQR(h, l, a->dp[0]);
- t[0] = h;
- h = 0;
- SP_ASM_MUL_ADD2_NO(l, h, o, a->dp[0], a->dp[1]);
- t[1] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2_NO(l, h, o, a->dp[0], a->dp[2]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[1]);
- t[2] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[0], a->dp[3]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[1], a->dp[2]);
- t[3] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[0], a->dp[4]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[1], a->dp[3]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[2]);
- t[4] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[5]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[4]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[3]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[5] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[6]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[5]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[4]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[3]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[6] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[6]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[5]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[4]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[7] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[6]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[5]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[4]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[8] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[6]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[5]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[9] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[6]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[5]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[10] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[6]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[11] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[1], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[7]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[6]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[12] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[2], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[7]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[13] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[3], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[8]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[7]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[14] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[4], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[8]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[15] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[5], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[9]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[8]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[16] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[6], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[9]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[17] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[7], a->dp[11]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[8], a->dp[10]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[9]);
- r->dp[18] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[8], a->dp[11]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[9], a->dp[10]);
- r->dp[19] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[9], a->dp[11]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[10]);
- r->dp[20] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[10], a->dp[11]);
- r->dp[21] = l;
- l = h;
- h = o;
- SP_ASM_SQR_ADD_NO(l, h, a->dp[11]);
- r->dp[22] = l;
- r->dp[23] = h;
- XMEMCPY(r->dp, t, 12 * sizeof(sp_int_digit));
- r->used = 24;
- sp_clamp(r);
- return MP_OKAY;
- }
- #endif /* SQR_MUL_ASM */
- #endif /* SP_WORD_SIZE == 32 */
- #endif /* !WOLFSSL_HAVE_SP_ECC && HAVE_ECC */
- #if defined(SQR_MUL_ASM) && (defined(WOLFSSL_SP_INT_LARGE_COMBA) || \
- (!defined(WOLFSSL_SP_MATH) && defined(WOLFCRYPT_HAVE_SAKKE) && \
- (SP_WORD_SIZE == 64)))
- #if SP_INT_DIGITS >= 32
- /* Square a and store in r. r = a * a
- *
- * Comba implementation.
- *
- * @param [in] a SP integer to square.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_sqr_16(const sp_int* a, sp_int* r)
- {
- int err = MP_OKAY;
- sp_int_digit l = 0;
- sp_int_digit h = 0;
- sp_int_digit o = 0;
- sp_int_digit tl = 0;
- sp_int_digit th = 0;
- sp_int_digit to;
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- sp_int_digit* t = NULL;
- #else
- sp_int_digit t[16];
- #endif
- #if defined(WOLFSSL_SP_ARM_THUMB) && SP_WORD_SIZE == 32
- to = 0;
- #endif
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- t = (sp_int_digit*)XMALLOC(sizeof(sp_int_digit) * 16, NULL,
- DYNAMIC_TYPE_BIGINT);
- if (t == NULL) {
- err = MP_MEM;
- }
- #endif
- if (err == MP_OKAY) {
- SP_ASM_SQR(h, l, a->dp[0]);
- t[0] = h;
- h = 0;
- SP_ASM_MUL_ADD2_NO(l, h, o, a->dp[0], a->dp[1]);
- t[1] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2_NO(l, h, o, a->dp[0], a->dp[2]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[1]);
- t[2] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[0], a->dp[3]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[1], a->dp[2]);
- t[3] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[0], a->dp[4]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[1], a->dp[3]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[2]);
- t[4] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[5]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[4]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[3]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[5] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[6]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[5]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[4]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[3]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[6] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[6]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[5]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[4]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[7] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[6]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[5]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[4]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[8] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[6]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[5]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[9] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[6]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[5]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[10] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[6]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[11] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[7]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[6]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[12] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[7]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[13] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[8]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[7]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[14] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[8]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[15] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[1], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[9]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[8]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[16] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[2], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[9]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[17] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[3], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[10]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[9]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[18] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[4], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[10]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[19] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[5], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[11]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[10]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[20] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[6], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[10], a->dp[11]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[21] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[7], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[10], a->dp[12]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[11]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[22] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[8], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[10], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[11], a->dp[12]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[23] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[9], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[10], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[11], a->dp[13]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[12]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[24] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[10], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[11], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[12], a->dp[13]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[25] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[11], a->dp[15]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[12], a->dp[14]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[13]);
- r->dp[26] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[12], a->dp[15]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[13], a->dp[14]);
- r->dp[27] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[13], a->dp[15]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[14]);
- r->dp[28] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[14], a->dp[15]);
- r->dp[29] = l;
- l = h;
- h = o;
- SP_ASM_SQR_ADD_NO(l, h, a->dp[15]);
- r->dp[30] = l;
- r->dp[31] = h;
- XMEMCPY(r->dp, t, 16 * sizeof(sp_int_digit));
- r->used = 32;
- sp_clamp(r);
- }
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- if (t != NULL) {
- XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
- }
- #endif
- return err;
- }
- #endif /* SP_INT_DIGITS >= 32 */
- #endif /* SQR_MUL_ASM && (WOLFSSL_SP_INT_LARGE_COMBA || !WOLFSSL_SP_MATH &&
- * WOLFCRYPT_HAVE_SAKKE && SP_WORD_SIZE == 64 */
- #if defined(SQR_MUL_ASM) && defined(WOLFSSL_SP_INT_LARGE_COMBA)
- #if SP_INT_DIGITS >= 48
- /* Square a and store in r. r = a * a
- *
- * Comba implementation.
- *
- * @param [in] a SP integer to square.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_sqr_24(const sp_int* a, sp_int* r)
- {
- int err = MP_OKAY;
- sp_int_digit l = 0;
- sp_int_digit h = 0;
- sp_int_digit o = 0;
- sp_int_digit tl = 0;
- sp_int_digit th = 0;
- sp_int_digit to;
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- sp_int_digit* t = NULL;
- #else
- sp_int_digit t[24];
- #endif
- #if defined(WOLFSSL_SP_ARM_THUMB) && SP_WORD_SIZE == 32
- to = 0;
- #endif
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- t = (sp_int_digit*)XMALLOC(sizeof(sp_int_digit) * 24, NULL,
- DYNAMIC_TYPE_BIGINT);
- if (t == NULL) {
- err = MP_MEM;
- }
- #endif
- if (err == MP_OKAY) {
- SP_ASM_SQR(h, l, a->dp[0]);
- t[0] = h;
- h = 0;
- SP_ASM_MUL_ADD2_NO(l, h, o, a->dp[0], a->dp[1]);
- t[1] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2_NO(l, h, o, a->dp[0], a->dp[2]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[1]);
- t[2] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[0], a->dp[3]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[1], a->dp[2]);
- t[3] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[0], a->dp[4]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[1], a->dp[3]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[2]);
- t[4] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[5]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[4]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[3]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[5] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[6]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[5]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[4]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[3]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[6] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[6]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[5]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[4]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[7] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[6]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[5]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[4]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[8] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[6]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[5]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[9] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[6]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[5]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[10] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[7]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[6]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[11] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[7]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[6]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[12] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[8]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[7]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[13] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[8]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[7]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[14] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[9]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[8]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[15] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[16]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[9]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[8]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[16] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[17]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[16]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[10]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[9]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[17] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[18]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[17]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[16]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[10]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[9]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[18] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[18]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[17]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[16]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[11]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[10]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[19] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[18]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[17]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[16]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[11]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[10]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[20] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[18]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[17]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[16]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[12]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[10], a->dp[11]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[21] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[18]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[17]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[16]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[10], a->dp[12]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[11]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[22] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[0], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[1], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[18]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[17]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[16]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[10], a->dp[13]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[11], a->dp[12]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- t[23] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[1], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[2], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[18]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[17]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[16]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[10], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[11], a->dp[13]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[12]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[24] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[2], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[3], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[18]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[17]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[16]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[10], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[11], a->dp[14]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[12], a->dp[13]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[25] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[3], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[4], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[18]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[17]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[10], a->dp[16]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[11], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[12], a->dp[14]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[13]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[26] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[4], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[5], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[18]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[10], a->dp[17]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[11], a->dp[16]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[12], a->dp[15]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[13], a->dp[14]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[27] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[5], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[6], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[10], a->dp[18]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[11], a->dp[17]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[12], a->dp[16]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[13], a->dp[15]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[14]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[28] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[6], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[7], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[10], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[11], a->dp[18]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[12], a->dp[17]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[13], a->dp[16]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[14], a->dp[15]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[29] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[7], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[8], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[10], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[11], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[12], a->dp[18]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[13], a->dp[17]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[14], a->dp[16]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[15]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[30] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[8], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[9], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[10], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[11], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[12], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[13], a->dp[18]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[14], a->dp[17]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[15], a->dp[16]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[31] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[9], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[10], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[11], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[12], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[13], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[14], a->dp[18]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[15], a->dp[17]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[16]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[32] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[10], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[11], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[12], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[13], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[14], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[15], a->dp[18]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[16], a->dp[17]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[33] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[11], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[12], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[13], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[14], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[15], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[16], a->dp[18]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[17]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[34] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[12], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[13], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[14], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[15], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[16], a->dp[19]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[17], a->dp[18]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[35] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[13], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[14], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[15], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[16], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[17], a->dp[19]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[18]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[36] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[14], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[15], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[16], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[17], a->dp[20]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[18], a->dp[19]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[37] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[15], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[16], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[17], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[18], a->dp[20]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[19]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[38] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[16], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[17], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[18], a->dp[21]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[19], a->dp[20]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[39] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[17], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[18], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[19], a->dp[21]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[20]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[40] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_SET(tl, th, to, a->dp[18], a->dp[23]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[19], a->dp[22]);
- SP_ASM_MUL_ADD(tl, th, to, a->dp[20], a->dp[21]);
- SP_ASM_ADD_DBL_3(l, h, o, tl, th, to);
- r->dp[41] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[19], a->dp[23]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[20], a->dp[22]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[21]);
- r->dp[42] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[20], a->dp[23]);
- SP_ASM_MUL_ADD2(l, h, o, a->dp[21], a->dp[22]);
- r->dp[43] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[21], a->dp[23]);
- SP_ASM_SQR_ADD(l, h, o, a->dp[22]);
- r->dp[44] = l;
- l = h;
- h = o;
- o = 0;
- SP_ASM_MUL_ADD2(l, h, o, a->dp[22], a->dp[23]);
- r->dp[45] = l;
- l = h;
- h = o;
- SP_ASM_SQR_ADD_NO(l, h, a->dp[23]);
- r->dp[46] = l;
- r->dp[47] = h;
- XMEMCPY(r->dp, t, 24 * sizeof(sp_int_digit));
- r->used = 48;
- sp_clamp(r);
- }
- #if defined(WOLFSSL_SMALL_STACK) && !defined(WOLFSSL_SP_NO_MALLOC)
- if (t != NULL) {
- XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
- }
- #endif
- return err;
- }
- #endif /* SP_INT_DIGITS >= 48 */
- #if SP_INT_DIGITS >= 64
- /* Square a and store in r. r = a * a
- *
- * Karatsuba implementation.
- *
- * @param [in] a SP integer to square.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_sqr_32(const sp_int* a, sp_int* r)
- {
- int err = MP_OKAY;
- unsigned int i;
- sp_int_digit l;
- sp_int_digit h;
- sp_int* z0;
- sp_int* z1;
- sp_int* z2;
- sp_int_digit ca;
- DECL_SP_INT(a1, 16);
- DECL_SP_INT_ARRAY(z, 33, 2);
- ALLOC_SP_INT(a1, 16, err, NULL);
- ALLOC_SP_INT_ARRAY(z, 33, 2, err, NULL);
- if (err == MP_OKAY) {
- z1 = z[0];
- z2 = z[1];
- z0 = r;
- XMEMCPY(a1->dp, &a->dp[16], sizeof(sp_int_digit) * 16);
- a1->used = 16;
- /* z2 = a1 ^ 2 */
- err = _sp_sqr_16(a1, z2);
- }
- if (err == MP_OKAY) {
- l = 0;
- h = 0;
- for (i = 0; i < 16; i++) {
- SP_ASM_ADDC(l, h, a1->dp[i]);
- SP_ASM_ADDC(l, h, a->dp[i]);
- a1->dp[i] = l;
- l = h;
- h = 0;
- }
- ca = l;
- /* z0 = a0 ^ 2 */
- err = _sp_sqr_16(a, z0);
- }
- if (err == MP_OKAY) {
- /* z1 = (a0 + a1) ^ 2 */
- err = _sp_sqr_16(a1, z1);
- }
- if (err == MP_OKAY) {
- /* r = (z2 << 32) + (z1 - z0 - z2) << 16) + z0 */
- /* r = z0 */
- /* r += (z1 - z0 - z2) << 16 */
- z1->dp[32] = ca;
- l = 0;
- if (ca) {
- l = z1->dp[0 + 16];
- h = 0;
- SP_ASM_ADDC(l, h, a1->dp[0]);
- SP_ASM_ADDC(l, h, a1->dp[0]);
- z1->dp[0 + 16] = l;
- l = h;
- h = 0;
- for (i = 1; i < 16; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i + 16]);
- SP_ASM_ADDC(l, h, a1->dp[i]);
- SP_ASM_ADDC(l, h, a1->dp[i]);
- z1->dp[i + 16] = l;
- l = h;
- h = 0;
- }
- }
- z1->dp[32] += l;
- /* z1 = z1 - z0 - z1 */
- l = z1->dp[0];
- h = 0;
- SP_ASM_SUBB(l, h, z0->dp[0]);
- SP_ASM_SUBB(l, h, z2->dp[0]);
- z1->dp[0] = l;
- l = h;
- h = 0;
- for (i = 1; i < 32; i++) {
- l += z1->dp[i];
- SP_ASM_SUBB(l, h, z0->dp[i]);
- SP_ASM_SUBB(l, h, z2->dp[i]);
- z1->dp[i] = l;
- l = h;
- h = 0;
- }
- z1->dp[i] += l;
- /* r += z1 << 16 */
- l = 0;
- h = 0;
- for (i = 0; i < 16; i++) {
- SP_ASM_ADDC(l, h, r->dp[i + 16]);
- SP_ASM_ADDC(l, h, z1->dp[i]);
- r->dp[i + 16] = l;
- l = h;
- h = 0;
- }
- for (; i < 33; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i]);
- r->dp[i + 16] = l;
- l = h;
- h = 0;
- }
- /* r += z2 << 32 */
- l = 0;
- h = 0;
- for (i = 0; i < 17; i++) {
- SP_ASM_ADDC(l, h, r->dp[i + 32]);
- SP_ASM_ADDC(l, h, z2->dp[i]);
- r->dp[i + 32] = l;
- l = h;
- h = 0;
- }
- for (; i < 32; i++) {
- SP_ASM_ADDC(l, h, z2->dp[i]);
- r->dp[i + 32] = l;
- l = h;
- h = 0;
- }
- r->used = 64;
- sp_clamp(r);
- }
- FREE_SP_INT_ARRAY(z, NULL);
- FREE_SP_INT(a1, NULL);
- return err;
- }
- #endif /* SP_INT_DIGITS >= 64 */
- #if SP_INT_DIGITS >= 96
- /* Square a and store in r. r = a * a
- *
- * Karatsuba implementation.
- *
- * @param [in] a SP integer to square.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_sqr_48(const sp_int* a, sp_int* r)
- {
- int err = MP_OKAY;
- unsigned int i;
- sp_int_digit l;
- sp_int_digit h;
- sp_int* z0;
- sp_int* z1;
- sp_int* z2;
- sp_int_digit ca;
- DECL_SP_INT(a1, 24);
- DECL_SP_INT_ARRAY(z, 49, 2);
- ALLOC_SP_INT(a1, 24, err, NULL);
- ALLOC_SP_INT_ARRAY(z, 49, 2, err, NULL);
- if (err == MP_OKAY) {
- z1 = z[0];
- z2 = z[1];
- z0 = r;
- XMEMCPY(a1->dp, &a->dp[24], sizeof(sp_int_digit) * 24);
- a1->used = 24;
- /* z2 = a1 ^ 2 */
- err = _sp_sqr_24(a1, z2);
- }
- if (err == MP_OKAY) {
- l = 0;
- h = 0;
- for (i = 0; i < 24; i++) {
- SP_ASM_ADDC(l, h, a1->dp[i]);
- SP_ASM_ADDC(l, h, a->dp[i]);
- a1->dp[i] = l;
- l = h;
- h = 0;
- }
- ca = l;
- /* z0 = a0 ^ 2 */
- err = _sp_sqr_24(a, z0);
- }
- if (err == MP_OKAY) {
- /* z1 = (a0 + a1) ^ 2 */
- err = _sp_sqr_24(a1, z1);
- }
- if (err == MP_OKAY) {
- /* r = (z2 << 48) + (z1 - z0 - z2) << 24) + z0 */
- /* r = z0 */
- /* r += (z1 - z0 - z2) << 24 */
- z1->dp[48] = ca;
- l = 0;
- if (ca) {
- l = z1->dp[0 + 24];
- h = 0;
- SP_ASM_ADDC(l, h, a1->dp[0]);
- SP_ASM_ADDC(l, h, a1->dp[0]);
- z1->dp[0 + 24] = l;
- l = h;
- h = 0;
- for (i = 1; i < 24; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i + 24]);
- SP_ASM_ADDC(l, h, a1->dp[i]);
- SP_ASM_ADDC(l, h, a1->dp[i]);
- z1->dp[i + 24] = l;
- l = h;
- h = 0;
- }
- }
- z1->dp[48] += l;
- /* z1 = z1 - z0 - z1 */
- l = z1->dp[0];
- h = 0;
- SP_ASM_SUBB(l, h, z0->dp[0]);
- SP_ASM_SUBB(l, h, z2->dp[0]);
- z1->dp[0] = l;
- l = h;
- h = 0;
- for (i = 1; i < 48; i++) {
- l += z1->dp[i];
- SP_ASM_SUBB(l, h, z0->dp[i]);
- SP_ASM_SUBB(l, h, z2->dp[i]);
- z1->dp[i] = l;
- l = h;
- h = 0;
- }
- z1->dp[i] += l;
- /* r += z1 << 16 */
- l = 0;
- h = 0;
- for (i = 0; i < 24; i++) {
- SP_ASM_ADDC(l, h, r->dp[i + 24]);
- SP_ASM_ADDC(l, h, z1->dp[i]);
- r->dp[i + 24] = l;
- l = h;
- h = 0;
- }
- for (; i < 49; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i]);
- r->dp[i + 24] = l;
- l = h;
- h = 0;
- }
- /* r += z2 << 48 */
- l = 0;
- h = 0;
- for (i = 0; i < 25; i++) {
- SP_ASM_ADDC(l, h, r->dp[i + 48]);
- SP_ASM_ADDC(l, h, z2->dp[i]);
- r->dp[i + 48] = l;
- l = h;
- h = 0;
- }
- for (; i < 48; i++) {
- SP_ASM_ADDC(l, h, z2->dp[i]);
- r->dp[i + 48] = l;
- l = h;
- h = 0;
- }
- r->used = 96;
- sp_clamp(r);
- }
- FREE_SP_INT_ARRAY(z, NULL);
- FREE_SP_INT(a1, NULL);
- return err;
- }
- #endif /* SP_INT_DIGITS >= 96 */
- #if SP_INT_DIGITS >= 128
- /* Square a and store in r. r = a * a
- *
- * Karatsuba implementation.
- *
- * @param [in] a SP integer to square.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_sqr_64(const sp_int* a, sp_int* r)
- {
- int err = MP_OKAY;
- unsigned int i;
- sp_int_digit l;
- sp_int_digit h;
- sp_int* z0;
- sp_int* z1;
- sp_int* z2;
- sp_int_digit ca;
- DECL_SP_INT(a1, 32);
- DECL_SP_INT_ARRAY(z, 65, 2);
- ALLOC_SP_INT(a1, 32, err, NULL);
- ALLOC_SP_INT_ARRAY(z, 65, 2, err, NULL);
- if (err == MP_OKAY) {
- z1 = z[0];
- z2 = z[1];
- z0 = r;
- XMEMCPY(a1->dp, &a->dp[32], sizeof(sp_int_digit) * 32);
- a1->used = 32;
- /* z2 = a1 ^ 2 */
- err = _sp_sqr_32(a1, z2);
- }
- if (err == MP_OKAY) {
- l = 0;
- h = 0;
- for (i = 0; i < 32; i++) {
- SP_ASM_ADDC(l, h, a1->dp[i]);
- SP_ASM_ADDC(l, h, a->dp[i]);
- a1->dp[i] = l;
- l = h;
- h = 0;
- }
- ca = l;
- /* z0 = a0 ^ 2 */
- err = _sp_sqr_32(a, z0);
- }
- if (err == MP_OKAY) {
- /* z1 = (a0 + a1) ^ 2 */
- err = _sp_sqr_32(a1, z1);
- }
- if (err == MP_OKAY) {
- /* r = (z2 << 64) + (z1 - z0 - z2) << 32) + z0 */
- /* r = z0 */
- /* r += (z1 - z0 - z2) << 32 */
- z1->dp[64] = ca;
- l = 0;
- if (ca) {
- l = z1->dp[0 + 32];
- h = 0;
- SP_ASM_ADDC(l, h, a1->dp[0]);
- SP_ASM_ADDC(l, h, a1->dp[0]);
- z1->dp[0 + 32] = l;
- l = h;
- h = 0;
- for (i = 1; i < 32; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i + 32]);
- SP_ASM_ADDC(l, h, a1->dp[i]);
- SP_ASM_ADDC(l, h, a1->dp[i]);
- z1->dp[i + 32] = l;
- l = h;
- h = 0;
- }
- }
- z1->dp[64] += l;
- /* z1 = z1 - z0 - z1 */
- l = z1->dp[0];
- h = 0;
- SP_ASM_SUBB(l, h, z0->dp[0]);
- SP_ASM_SUBB(l, h, z2->dp[0]);
- z1->dp[0] = l;
- l = h;
- h = 0;
- for (i = 1; i < 64; i++) {
- l += z1->dp[i];
- SP_ASM_SUBB(l, h, z0->dp[i]);
- SP_ASM_SUBB(l, h, z2->dp[i]);
- z1->dp[i] = l;
- l = h;
- h = 0;
- }
- z1->dp[i] += l;
- /* r += z1 << 16 */
- l = 0;
- h = 0;
- for (i = 0; i < 32; i++) {
- SP_ASM_ADDC(l, h, r->dp[i + 32]);
- SP_ASM_ADDC(l, h, z1->dp[i]);
- r->dp[i + 32] = l;
- l = h;
- h = 0;
- }
- for (; i < 65; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i]);
- r->dp[i + 32] = l;
- l = h;
- h = 0;
- }
- /* r += z2 << 64 */
- l = 0;
- h = 0;
- for (i = 0; i < 33; i++) {
- SP_ASM_ADDC(l, h, r->dp[i + 64]);
- SP_ASM_ADDC(l, h, z2->dp[i]);
- r->dp[i + 64] = l;
- l = h;
- h = 0;
- }
- for (; i < 64; i++) {
- SP_ASM_ADDC(l, h, z2->dp[i]);
- r->dp[i + 64] = l;
- l = h;
- h = 0;
- }
- r->used = 128;
- sp_clamp(r);
- }
- FREE_SP_INT_ARRAY(z, NULL);
- FREE_SP_INT(a1, NULL);
- return err;
- }
- #endif /* SP_INT_DIGITS >= 128 */
- #if SP_INT_DIGITS >= 192
- /* Square a and store in r. r = a * a
- *
- * Karatsuba implementation.
- *
- * @param [in] a SP integer to square.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_sqr_96(const sp_int* a, sp_int* r)
- {
- int err = MP_OKAY;
- unsigned int i;
- sp_int_digit l;
- sp_int_digit h;
- sp_int* z0;
- sp_int* z1;
- sp_int* z2;
- sp_int_digit ca;
- DECL_SP_INT(a1, 48);
- DECL_SP_INT_ARRAY(z, 97, 2);
- ALLOC_SP_INT(a1, 48, err, NULL);
- ALLOC_SP_INT_ARRAY(z, 97, 2, err, NULL);
- if (err == MP_OKAY) {
- z1 = z[0];
- z2 = z[1];
- z0 = r;
- XMEMCPY(a1->dp, &a->dp[48], sizeof(sp_int_digit) * 48);
- a1->used = 48;
- /* z2 = a1 ^ 2 */
- err = _sp_sqr_48(a1, z2);
- }
- if (err == MP_OKAY) {
- l = 0;
- h = 0;
- for (i = 0; i < 48; i++) {
- SP_ASM_ADDC(l, h, a1->dp[i]);
- SP_ASM_ADDC(l, h, a->dp[i]);
- a1->dp[i] = l;
- l = h;
- h = 0;
- }
- ca = l;
- /* z0 = a0 ^ 2 */
- err = _sp_sqr_48(a, z0);
- }
- if (err == MP_OKAY) {
- /* z1 = (a0 + a1) ^ 2 */
- err = _sp_sqr_48(a1, z1);
- }
- if (err == MP_OKAY) {
- /* r = (z2 << 96) + (z1 - z0 - z2) << 48) + z0 */
- /* r = z0 */
- /* r += (z1 - z0 - z2) << 48 */
- z1->dp[96] = ca;
- l = 0;
- if (ca) {
- l = z1->dp[0 + 48];
- h = 0;
- SP_ASM_ADDC(l, h, a1->dp[0]);
- SP_ASM_ADDC(l, h, a1->dp[0]);
- z1->dp[0 + 48] = l;
- l = h;
- h = 0;
- for (i = 1; i < 48; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i + 48]);
- SP_ASM_ADDC(l, h, a1->dp[i]);
- SP_ASM_ADDC(l, h, a1->dp[i]);
- z1->dp[i + 48] = l;
- l = h;
- h = 0;
- }
- }
- z1->dp[96] += l;
- /* z1 = z1 - z0 - z1 */
- l = z1->dp[0];
- h = 0;
- SP_ASM_SUBB(l, h, z0->dp[0]);
- SP_ASM_SUBB(l, h, z2->dp[0]);
- z1->dp[0] = l;
- l = h;
- h = 0;
- for (i = 1; i < 96; i++) {
- l += z1->dp[i];
- SP_ASM_SUBB(l, h, z0->dp[i]);
- SP_ASM_SUBB(l, h, z2->dp[i]);
- z1->dp[i] = l;
- l = h;
- h = 0;
- }
- z1->dp[i] += l;
- /* r += z1 << 16 */
- l = 0;
- h = 0;
- for (i = 0; i < 48; i++) {
- SP_ASM_ADDC(l, h, r->dp[i + 48]);
- SP_ASM_ADDC(l, h, z1->dp[i]);
- r->dp[i + 48] = l;
- l = h;
- h = 0;
- }
- for (; i < 97; i++) {
- SP_ASM_ADDC(l, h, z1->dp[i]);
- r->dp[i + 48] = l;
- l = h;
- h = 0;
- }
- /* r += z2 << 96 */
- l = 0;
- h = 0;
- for (i = 0; i < 49; i++) {
- SP_ASM_ADDC(l, h, r->dp[i + 96]);
- SP_ASM_ADDC(l, h, z2->dp[i]);
- r->dp[i + 96] = l;
- l = h;
- h = 0;
- }
- for (; i < 96; i++) {
- SP_ASM_ADDC(l, h, z2->dp[i]);
- r->dp[i + 96] = l;
- l = h;
- h = 0;
- }
- r->used = 192;
- sp_clamp(r);
- }
- FREE_SP_INT_ARRAY(z, NULL);
- FREE_SP_INT(a1, NULL);
- return err;
- }
- #endif /* SP_INT_DIGITS >= 192 */
- #endif /* SQR_MUL_ASM && WOLFSSL_SP_INT_LARGE_COMBA */
- #endif /* !WOLFSSL_SP_SMALL */
- /* Square a and store in r. r = a * a
- *
- * @param [in] a SP integer to square.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or r is NULL, or the result will be too big for fixed
- * data length.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_sqr(const sp_int* a, sp_int* r)
- {
- #if defined(WOLFSSL_SP_MATH) && defined(WOLFSSL_SP_SMALL)
- return sp_mul(a, a, r);
- #else
- int err = MP_OKAY;
- if ((a == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- /* Need extra digit during calculation. */
- if ((err == MP_OKAY) && (a->used * 2 > r->size)) {
- err = MP_VAL;
- }
- #if 0
- if (err == MP_OKAY) {
- sp_print(a, "a");
- }
- #endif
- if (err == MP_OKAY) {
- if (a->used == 0) {
- _sp_zero(r);
- }
- else
- #ifndef WOLFSSL_SP_SMALL
- #if !defined(WOLFSSL_HAVE_SP_ECC) && defined(HAVE_ECC)
- #if (SP_WORD_SIZE == 64 && SP_INT_BITS >= 256)
- if (a->used == 4) {
- err = _sp_sqr_4(a, r);
- }
- else
- #endif /* SP_WORD_SIZE == 64 */
- #if (SP_WORD_SIZE == 64 && SP_INT_BITS >= 384)
- #ifdef SQR_MUL_ASM
- if (a->used == 6) {
- err = _sp_sqr_6(a, r);
- }
- else
- #endif /* SQR_MUL_ASM */
- #endif /* SP_WORD_SIZE == 64 */
- #if (SP_WORD_SIZE == 32 && SP_INT_BITS >= 256)
- #ifdef SQR_MUL_ASM
- if (a->used == 8) {
- err = _sp_sqr_8(a, r);
- }
- else
- #endif /* SQR_MUL_ASM */
- #endif /* SP_WORD_SIZE == 32 */
- #if (SP_WORD_SIZE == 32 && SP_INT_BITS >= 384)
- #ifdef SQR_MUL_ASM
- if (a->used == 12) {
- err = _sp_sqr_12(a, r);
- }
- else
- #endif /* SQR_MUL_ASM */
- #endif /* SP_WORD_SIZE == 32 */
- #endif /* !WOLFSSL_HAVE_SP_ECC && HAVE_ECC */
- #if defined(SQR_MUL_ASM) && (defined(WOLFSSL_SP_INT_LARGE_COMBA) || \
- (!defined(WOLFSSL_SP_MATH) && defined(WOLFCRYPT_HAVE_SAKKE) && \
- (SP_WORD_SIZE == 64)))
- #if SP_INT_DIGITS >= 32
- if (a->used == 16) {
- err = _sp_sqr_16(a, r);
- }
- else
- #endif /* SP_INT_DIGITS >= 32 */
- #endif /* SQR_MUL_ASM && (WOLFSSL_SP_INT_LARGE_COMBA || !WOLFSSL_SP_MATH &&
- * WOLFCRYPT_HAVE_SAKKE && SP_WORD_SIZE == 64 */
- #if defined(SQR_MUL_ASM) && defined(WOLFSSL_SP_INT_LARGE_COMBA)
- #if SP_INT_DIGITS >= 48
- if (a->used == 24) {
- err = _sp_sqr_24(a, r);
- }
- else
- #endif /* SP_INT_DIGITS >= 48 */
- #if SP_INT_DIGITS >= 64
- if (a->used == 32) {
- err = _sp_sqr_32(a, r);
- }
- else
- #endif /* SP_INT_DIGITS >= 64 */
- #if SP_INT_DIGITS >= 96
- if (a->used == 48) {
- err = _sp_sqr_48(a, r);
- }
- else
- #endif /* SP_INT_DIGITS >= 96 */
- #if SP_INT_DIGITS >= 128
- if (a->used == 64) {
- err = _sp_sqr_64(a, r);
- }
- else
- #endif /* SP_INT_DIGITS >= 128 */
- #if SP_INT_DIGITS >= 192
- if (a->used == 96) {
- err = _sp_sqr_96(a, r);
- }
- else
- #endif /* SP_INT_DIGITS >= 192 */
- #endif /* SQR_MUL_ASM && WOLFSSL_SP_INT_LARGE_COMBA */
- #endif /* !WOLFSSL_SP_SMALL */
- {
- err = _sp_sqr(a, r);
- }
- }
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- if (err == MP_OKAY) {
- r->sign = MP_ZPOS;
- }
- #endif
- #if 0
- if (err == MP_OKAY) {
- sp_print(r, "rsqr");
- }
- #endif
- return err;
- #endif /* WOLFSSL_SP_MATH && WOLFSSL_SP_SMALL */
- }
- /* END SP_SQR implementations */
- #endif /* WOLFSSL_SP_MATH_ALL || WOLFSSL_HAVE_SP_DH || HAVE_ECC ||
- * (!NO_RSA && !WOLFSSL_RSA_VERIFY_ONLY) */
- #if defined(WOLFSSL_SP_MATH_ALL) || \
- (!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY) && \
- !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || !defined(NO_DH) || defined(HAVE_ECC)
- /* Square a mod m and store in r: r = (a * a) mod m
- *
- * @param [in] a SP integer to square.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_sqrmod(const sp_int* a, const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- /* Create temporary for multiplication result. */
- DECL_SP_INT(t, a->used * 2);
- ALLOC_SP_INT(t, a->used * 2, err, NULL);
- if (err == MP_OKAY) {
- err = sp_init_size(t, a->used * 2);
- }
- /* Square and reduce. */
- if (err == MP_OKAY) {
- err = sp_sqr(a, t);
- }
- if (err == MP_OKAY) {
- err = sp_mod(t, m, r);
- }
- /* Dispose of an allocated SP int. */
- FREE_SP_INT(t, NULL);
- return err;
- }
- /* Square a mod m and store in r: r = (a * a) mod m
- *
- * @param [in] a SP integer to square.
- * @param [in] m SP integer that is the modulus.
- * @param [out] r SP integer result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a, m or r is NULL; or m is 0; or a squared is too big
- * for fixed data length.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_sqrmod(const sp_int* a, const sp_int* m, sp_int* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (m == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- /* Ensure r has space for intermediate result. */
- if ((err == MP_OKAY) && (r != m) && (a->used * 2 > r->size)) {
- err = MP_VAL;
- }
- /* Ensure a is not too big. */
- if ((err == MP_OKAY) && (r == m) && (a->used * 2 > SP_INT_DIGITS)) {
- err = MP_VAL;
- }
- /* Use r as intermediate result if not same as pointer m which is needed
- * after first intermediate result.
- */
- if ((err == MP_OKAY) && (r != m)) {
- /* Square and reduce. */
- err = sp_sqr(a, r);
- if (err == MP_OKAY) {
- err = sp_mod(r, m, r);
- }
- }
- else if (err == MP_OKAY) {
- /* Do operation with temporary. */
- err = _sp_sqrmod(a, m, r);
- }
- return err;
- }
- #endif /* !WOLFSSL_RSA_VERIFY_ONLY */
- /**********************
- * Montgomery functions
- **********************/
- #if defined(WOLFSSL_SP_MATH_ALL) || defined(WOLFSSL_HAVE_SP_DH) || \
- defined(WOLFCRYPT_HAVE_ECCSI) || defined(WOLFCRYPT_HAVE_SAKKE) || \
- defined(OPENSSL_ALL)
- /* Reduce a number in Montgomery form.
- *
- * Assumes a and m are not NULL and m is not 0.
- *
- * DigitMask(a,i) := mask out the 'i'th digit in place.
- *
- * Algorithm:
- * 1. mask = (1 << (NumBits(m) % WORD_SIZE)) - 1
- * 2. For i = 0..NumDigits(m)-1
- * 2.1. mu = (mp * DigitMask(a, i)) & WORD_MASK
- * 2.2. If i == NumDigits(m)-1 and mask != 0 then mu & = mask
- * 2.3. a += mu * DigitMask(m, 0)
- * 2.4. For j = 1 up to NumDigits(m)-2
- * 2.4.1 a += mu * DigitMask(m, j)
- * 2.5 a += mu * DigitMask(m, NumDigits(m)-1))
- * 3. a >>= NumBits(m)
- * 4. a = a % m
- *
- * @param [in,out] a SP integer to Montgomery reduce.
- * @param [in] m SP integer that is the modulus.
- * @param [in] mp SP integer digit that is the bottom digit of inv(-m).
- *
- * @return MP_OKAY on success.
- */
- static int _sp_mont_red(sp_int* a, const sp_int* m, sp_int_digit mp)
- {
- #if !defined(SQR_MUL_ASM)
- unsigned int i;
- int bits;
- sp_int_word w;
- sp_int_digit mu;
- #if 0
- sp_print(a, "a");
- sp_print(m, "m");
- #endif
- /* Count bits in modulus. */
- bits = sp_count_bits(m);
- /* Adding numbers into m->used * 2 digits - zero out unused digits. */
- for (i = a->used; i < m->used * 2; i++) {
- a->dp[i] = 0;
- }
- /* Special case when modulus is 1 digit or less. */
- if (m->used <= 1) {
- /* mu = (mp * DigitMask(a, i)) & WORD_MASK */
- mu = mp * a->dp[0];
- /* a += mu * m */
- w = a->dp[0];
- w += (sp_int_word)mu * m->dp[0];
- a->dp[0] = (sp_int_digit)w;
- w >>= SP_WORD_SIZE;
- w += a->dp[1];
- a->dp[1] = (sp_int_digit)w;
- w >>= SP_WORD_SIZE;
- a->dp[2] = (sp_int_digit)w;
- a->used = 3;
- /* mp is SP_WORD_SIZE */
- bits = SP_WORD_SIZE;
- }
- else {
- /* 1. mask = (1 << (NumBits(m) % WORD_SIZE)) - 1
- * Mask when last digit of modulus doesn't have highest bit set.
- */
- sp_int_digit mask = (sp_int_digit)
- (((sp_int_digit)1 << (bits & (SP_WORD_SIZE - 1))) - 1);
- /* Overflow. */
- sp_int_word o = 0;
- /* 2. For i = 0..NumDigits(m)-1 */
- for (i = 0; i < m->used; i++) {
- unsigned int j;
- /* 2.1. mu = (mp * DigitMask(a, i)) & WORD_MASK */
- mu = mp * a->dp[i];
- /* 2.2. If i == NumDigits(m)-1 and mask != 0 then mu & = mask */
- if ((i == m->used - 1) && (mask != 0)) {
- mu &= mask;
- }
- /* 2.3. a += mu * DigitMask(m, 0) */
- w = a->dp[i];
- w += (sp_int_word)mu * m->dp[0];
- a->dp[i] = (sp_int_digit)w;
- w >>= SP_WORD_SIZE;
- /* 2.4. For j = 1 up to NumDigits(m)-2 */
- for (j = 1; j < m->used - 1; j++) {
- /* 2.4.1 a += mu * DigitMask(m, j) */
- w += a->dp[i + j];
- w += (sp_int_word)mu * m->dp[j];
- a->dp[i + j] = (sp_int_digit)w;
- w >>= SP_WORD_SIZE;
- }
- /* Handle overflow. */
- w += o;
- w += a->dp[i + j];
- o = (sp_int_digit)(w >> SP_WORD_SIZE);
- /* 2.5 a += mu * DigitMask(m, NumDigits(m)-1)) */
- w = ((sp_int_word)mu * m->dp[j]) + (sp_int_digit)w;
- a->dp[i + j] = (sp_int_digit)w;
- w >>= SP_WORD_SIZE;
- o += w;
- }
- /* Handle overflow. */
- o += a->dp[m->used * 2 - 1];
- a->dp[m->used * 2 - 1] = (sp_int_digit)o;
- o >>= SP_WORD_SIZE;
- a->dp[m->used * 2] = (sp_int_digit)o;
- a->used = m->used * 2 + 1;
- }
- /* Remove leading zeros. */
- sp_clamp(a);
- /* 3. a >>= NumBits(m) */
- (void)sp_rshb(a, bits, a);
- /* 4. a = a mod m */
- if (_sp_cmp_abs(a, m) != MP_LT) {
- _sp_sub_off(a, m, a, 0);
- }
- #if 0
- sp_print(a, "rr");
- #endif
- return MP_OKAY;
- #else /* !SQR_MUL_ASM */
- unsigned int i;
- unsigned int j;
- int bits;
- sp_int_digit mu;
- sp_int_digit o;
- sp_int_digit mask;
- #if 0
- sp_print(a, "a");
- sp_print(m, "m");
- #endif
- bits = sp_count_bits(m);
- mask = ((sp_int_digit)1 << (bits & (SP_WORD_SIZE - 1))) - 1;
- for (i = a->used; i < m->used * 2; i++) {
- a->dp[i] = 0;
- }
- if (m->used <= 1) {
- sp_int_digit l;
- sp_int_digit h;
- /* mu = (mp * DigitMask(a, i)) & WORD_MASK */
- mu = mp * a->dp[0];
- /* a += mu * m */
- l = a->dp[0];
- h = 0;
- SP_ASM_MUL_ADD_NO(l, h, mu, m->dp[0]);
- a->dp[0] = l;
- l = h;
- h = 0;
- SP_ASM_ADDC(l, h, a->dp[1]);
- a->dp[1] = l;
- a->dp[2] = h;
- a->used = m->used * 2 + 1;
- /* mp is SP_WORD_SIZE */
- bits = SP_WORD_SIZE;
- }
- #if !defined(WOLFSSL_SP_MATH) && defined(HAVE_ECC)
- #if SP_WORD_SIZE == 64
- #if SP_INT_DIGITS >= 8
- else if ((m->used == 4) && (mask == 0)) {
- sp_int_digit l;
- sp_int_digit h;
- sp_int_digit o2;
- l = 0;
- h = 0;
- o = 0;
- o2 = 0;
- /* For i = 0..NumDigits(m)-1 */
- for (i = 0; i < 4; i++) {
- /* mu = (mp * DigitMask(a, i)) & WORD_MASK */
- mu = mp * a->dp[0];
- l = a->dp[0];
- /* a = (a + mu * m) >> WORD_SIZE */
- SP_ASM_MUL_ADD_NO(l, h, mu, m->dp[0]);
- l = h;
- h = 0;
- SP_ASM_ADDC(l, h, a->dp[1]);
- SP_ASM_MUL_ADD_NO(l, h, mu, m->dp[1]);
- a->dp[0] = l;
- l = h;
- h = 0;
- SP_ASM_ADDC(l, h, a->dp[2]);
- SP_ASM_MUL_ADD_NO(l, h, mu, m->dp[2]);
- a->dp[1] = l;
- l = h;
- h = o2;
- o2 = 0;
- SP_ASM_ADDC_REG(l, h, o);
- SP_ASM_ADDC(l, h, a->dp[i + 3]);
- SP_ASM_MUL_ADD(l, h, o2, mu, m->dp[3]);
- a->dp[2] = l;
- o = h;
- l = h;
- h = 0;
- }
- /* Handle overflow. */
- h = o2;
- SP_ASM_ADDC(l, h, a->dp[7]);
- a->dp[3] = l;
- a->dp[4] = h;
- a->used = 5;
- /* Remove leading zeros. */
- sp_clamp(a);
- /* a = a mod m */
- if (_sp_cmp_abs(a, m) != MP_LT) {
- _sp_sub_off(a, m, a, 0);
- }
- return MP_OKAY;
- }
- #endif /* SP_INT_DIGITS >= 8 */
- #if SP_INT_DIGITS >= 12
- else if ((m->used == 6) && (mask == 0)) {
- sp_int_digit l;
- sp_int_digit h;
- sp_int_digit o2;
- l = 0;
- h = 0;
- o = 0;
- o2 = 0;
- /* For i = 0..NumDigits(m)-1 */
- for (i = 0; i < 6; i++) {
- /* mu = (mp * DigitMask(a, i)) & WORD_MASK */
- mu = mp * a->dp[0];
- l = a->dp[0];
- /* a = (a + mu * m) >> WORD_SIZE */
- SP_ASM_MUL_ADD_NO(l, h, mu, m->dp[0]);
- l = h;
- h = 0;
- SP_ASM_ADDC(l, h, a->dp[1]);
- SP_ASM_MUL_ADD_NO(l, h, mu, m->dp[1]);
- a->dp[0] = l;
- l = h;
- h = 0;
- SP_ASM_ADDC(l, h, a->dp[2]);
- SP_ASM_MUL_ADD_NO(l, h, mu, m->dp[2]);
- a->dp[1] = l;
- l = h;
- h = 0;
- SP_ASM_ADDC(l, h, a->dp[3]);
- SP_ASM_MUL_ADD_NO(l, h, mu, m->dp[3]);
- a->dp[2] = l;
- l = h;
- h = 0;
- SP_ASM_ADDC(l, h, a->dp[4]);
- SP_ASM_MUL_ADD_NO(l, h, mu, m->dp[4]);
- a->dp[3] = l;
- l = h;
- h = o2;
- o2 = 0;
- SP_ASM_ADDC_REG(l, h, o);
- SP_ASM_ADDC(l, h, a->dp[i + 5]);
- SP_ASM_MUL_ADD(l, h, o2, mu, m->dp[5]);
- a->dp[4] = l;
- o = h;
- l = h;
- h = 0;
- }
- /* Handle overflow. */
- h = o2;
- SP_ASM_ADDC(l, h, a->dp[11]);
- a->dp[5] = l;
- a->dp[6] = h;
- a->used = 7;
- /* Remove leading zeros. */
- sp_clamp(a);
- /* a = a mod m */
- if (_sp_cmp_abs(a, m) != MP_LT) {
- _sp_sub_off(a, m, a, 0);
- }
- return MP_OKAY;
- }
- #endif /* SP_INT_DIGITS >= 12 */
- #elif SP_WORD_SIZE == 32
- else if ((m->used <= 12) && (mask == 0)) {
- sp_int_digit l;
- sp_int_digit h;
- sp_int_digit o2;
- sp_int_digit* ad;
- const sp_int_digit* md;
- o = 0;
- o2 = 0;
- ad = a->dp;
- /* For i = 0..NumDigits(m)-1 */
- for (i = 0; i < m->used; i++) {
- md = m->dp;
- /* mu = (mp * DigitMask(a, i)) & WORD_MASK */
- mu = mp * ad[0];
- /* a = (a + mu * m, 0) >> WORD_SIZE */
- l = ad[0];
- h = 0;
- SP_ASM_MUL_ADD_NO(l, h, mu, *(md++));
- l = h;
- for (j = 1; j + 1 < m->used - 1; j += 2) {
- h = 0;
- SP_ASM_ADDC(l, h, ad[j]);
- SP_ASM_MUL_ADD_NO(l, h, mu, *(md++));
- ad[j - 1] = l;
- l = 0;
- SP_ASM_ADDC(h, l, ad[j + 1]);
- SP_ASM_MUL_ADD_NO(h, l, mu, *(md++));
- ad[j] = h;
- }
- for (; j < m->used - 1; j++) {
- h = 0;
- SP_ASM_ADDC(l, h, ad[j]);
- SP_ASM_MUL_ADD_NO(l, h, mu, *(md++));
- ad[j - 1] = l;
- l = h;
- }
- h = o2;
- o2 = 0;
- SP_ASM_ADDC_REG(l, h, o);
- SP_ASM_ADDC(l, h, ad[i + j]);
- SP_ASM_MUL_ADD(l, h, o2, mu, *md);
- ad[j - 1] = l;
- o = h;
- }
- /* Handle overflow. */
- l = o;
- h = o2;
- SP_ASM_ADDC(l, h, a->dp[m->used * 2 - 1]);
- a->dp[m->used - 1] = l;
- a->dp[m->used] = h;
- a->used = m->used + 1;
- /* Remove leading zeros. */
- sp_clamp(a);
- /* a = a mod m */
- if (_sp_cmp_abs(a, m) != MP_LT) {
- _sp_sub_off(a, m, a, 0);
- }
- return MP_OKAY;
- }
- #endif /* SP_WORD_SIZE == 64 | 32 */
- #endif /* !WOLFSSL_SP_MATH && HAVE_ECC */
- else {
- sp_int_digit l;
- sp_int_digit h;
- sp_int_digit o2;
- sp_int_digit* ad;
- const sp_int_digit* md;
- o = 0;
- o2 = 0;
- ad = a->dp;
- /* 2. For i = 0..NumDigits(m)-1 */
- for (i = 0; i < m->used; i++, ad++) {
- md = m->dp;
- /* 2.1. mu = (mp * DigitMask(a, i)) & WORD_MASK */
- mu = mp * ad[0];
- /* 2.2. If i == NumDigits(m)-1 and mask != 0 then mu & = mask */
- if ((i == m->used - 1) && (mask != 0)) {
- mu &= mask;
- }
- /* 2.3 a += mu * DigitMask(m, 0) */
- l = ad[0];
- h = 0;
- SP_ASM_MUL_ADD_NO(l, h, mu, *(md++));
- ad[0] = l;
- l = h;
- /* 2.4. If i == NumDigits(m)-1 and mask != 0 then mu & = mask */
- for (j = 1; j + 1 < m->used - 1; j += 2) {
- h = 0;
- /* 2.4.1. a += mu * DigitMask(m, j) */
- SP_ASM_ADDC(l, h, ad[j + 0]);
- SP_ASM_MUL_ADD_NO(l, h, mu, *(md++));
- ad[j + 0] = l;
- l = 0;
- /* 2.4.1. a += mu * DigitMask(m, j) */
- SP_ASM_ADDC(h, l, ad[j + 1]);
- SP_ASM_MUL_ADD_NO(h, l, mu, *(md++));
- ad[j + 1] = h;
- }
- for (; j < m->used - 1; j++) {
- h = 0;
- /* 2.4.1. a += mu * DigitMask(m, j) */
- SP_ASM_ADDC(l, h, ad[j]);
- SP_ASM_MUL_ADD_NO(l, h, mu, *(md++));
- ad[j] = l;
- l = h;
- }
- h = o2;
- o2 = 0;
- SP_ASM_ADDC_REG(l, h, o);
- /* 2.5 a += mu * DigitMask(m, NumDigits(m)-1) */
- SP_ASM_ADDC(l, h, ad[j]);
- SP_ASM_MUL_ADD(l, h, o2, mu, *md);
- ad[j] = l;
- o = h;
- }
- /* Handle overflow. */
- l = o;
- h = o2;
- SP_ASM_ADDC(l, h, a->dp[m->used * 2 - 1]);
- a->dp[m->used * 2 - 1] = l;
- a->dp[m->used * 2] = h;
- a->used = m->used * 2 + 1;
- }
- /* Remove leading zeros. */
- sp_clamp(a);
- (void)sp_rshb(a, bits, a);
- /* a = a mod m */
- if (_sp_cmp_abs(a, m) != MP_LT) {
- _sp_sub_off(a, m, a, 0);
- }
- #if 0
- sp_print(a, "rr");
- #endif
- return MP_OKAY;
- #endif /* !SQR_MUL_ASM */
- }
- #if !defined(WOLFSSL_RSA_VERIFY_ONLY) || \
- (defined(WOLFSSL_SP_MATH_ALL) && defined(HAVE_ECC))
- /* Reduce a number in Montgomery form.
- *
- * @param [in,out] a SP integer to Montgomery reduce.
- * @param [in] m SP integer that is the modulus.
- * @param [in] mp SP integer digit that is the bottom digit of inv(-m).
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or m is NULL or m is zero.
- */
- int sp_mont_red(sp_int* a, const sp_int* m, sp_int_digit mp)
- {
- int err;
- /* Validate parameters. */
- if ((a == NULL) || (m == NULL) || sp_iszero(m)) {
- err = MP_VAL;
- }
- /* Ensure a has enough space for calculation. */
- else if (a->size < m->used * 2 + 1) {
- err = MP_VAL;
- }
- else {
- /* Perform Montogomery Reduction. */
- err = _sp_mont_red(a, m, mp);
- }
- return err;
- }
- #endif
- /* Calculate the bottom digit of the inverse of negative m.
- * (rho * m) mod 2^n = -1, where n is the number of bits in a digit.
- *
- * Used when performing Montgomery Reduction.
- * m must be odd.
- * Jeffrey Hurchalla’s method.
- * https://arxiv.org/pdf/2204.04342.pdf
- *
- * @param [in] m SP integer that is the modulus.
- * @param [out] mp SP integer digit that is the bottom digit of inv(-m).
- */
- static void _sp_mont_setup(const sp_int* m, sp_int_digit* rho)
- {
- sp_int_digit d = m->dp[0];
- sp_int_digit x = (3 * d) ^ 2;
- sp_int_digit y = 1 - d * x;
- #if SP_WORD_SIZE >= 16
- x *= 1 + y; y *= y;
- #endif
- #if SP_WORD_SIZE >= 32
- x *= 1 + y; y *= y;
- #endif
- #if SP_WORD_SIZE >= 64
- x *= 1 + y; y *= y;
- #endif
- x *= 1 + y;
- /* rho = -1/m mod d, subtract x (unsigned) from 0, assign negative */
- *rho = (sp_int_digit)((sp_int_sdigit)0 - (sp_int_sdigit)x);
- }
- /* Calculate the bottom digit of the inverse of negative m.
- * (rho * m) mod 2^n = -1, where n is the number of bits in a digit.
- *
- * Used when performing Montgomery Reduction.
- *
- * @param [in] m SP integer that is the modulus.
- * @param [out] mp SP integer digit that is the bottom digit of inv(-m).
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when m or rho is NULL.
- */
- int sp_mont_setup(const sp_int* m, sp_int_digit* rho)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((m == NULL) || (rho == NULL)) {
- err = MP_VAL;
- }
- /* Calculation only works with odd modulus. */
- if ((err == MP_OKAY) && !sp_isodd(m)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Calculate negative of inverse mod 2^n. */
- _sp_mont_setup(m, rho);
- }
- return err;
- }
- /* Calculate the normalization value of m.
- * norm = 2^k - m, where k is the number of bits in m
- *
- * @param [out] norm SP integer that normalises numbers into Montgomery
- * form.
- * @param [in] m SP integer that is the modulus.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when norm or m is NULL, or number of bits in m is maximual.
- */
- int sp_mont_norm(sp_int* norm, const sp_int* m)
- {
- int err = MP_OKAY;
- unsigned int bits = 0;
- /* Validate parameters. */
- if ((norm == NULL) || (m == NULL)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Find top bit and ensure norm has enough space. */
- bits = (unsigned int)sp_count_bits(m);
- if (bits >= norm->size * SP_WORD_SIZE) {
- err = MP_VAL;
- }
- }
- if (err == MP_OKAY) {
- /* Round up for case when m is less than a word - no advantage in using
- * a smaller mask and would take more operations.
- */
- if (bits < SP_WORD_SIZE) {
- bits = SP_WORD_SIZE;
- }
- /* Smallest number greater than m of form 2^n. */
- _sp_zero(norm);
- err = sp_set_bit(norm, (int)bits);
- }
- if (err == MP_OKAY) {
- /* norm = 2^n % m */
- err = sp_sub(norm, m, norm);
- }
- if ((err == MP_OKAY) && (bits == SP_WORD_SIZE)) {
- /* Sub made norm one word and now finish calculation. */
- norm->dp[0] %= m->dp[0];
- }
- if (err == MP_OKAY) {
- /* Remove leading zeros. */
- sp_clamp(norm);
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL || WOLFSSL_HAVE_SP_DH ||
- * WOLFCRYPT_HAVE_ECCSI || WOLFCRYPT_HAVE_SAKKE */
- /*********************************
- * To and from binary and strings.
- *********************************/
- /* Calculate the number of 8-bit values required to represent the
- * multi-precision number.
- *
- * When a is NULL, return s 0.
- *
- * @param [in] a SP integer.
- *
- * @return The count of 8-bit values.
- * @return 0 when a is NULL.
- */
- int sp_unsigned_bin_size(const sp_int* a)
- {
- int cnt = 0;
- if (a != NULL) {
- cnt = (sp_count_bits(a) + 7) / 8;
- }
- return cnt;
- }
- /* Convert a number as an array of bytes in big-endian format to a
- * multi-precision number.
- *
- * @param [out] a SP integer.
- * @param [in] in Array of bytes.
- * @param [in] inSz Number of data bytes in array.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when the number is too big to fit in an SP.
- */
- int sp_read_unsigned_bin(sp_int* a, const byte* in, word32 inSz)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || ((in == NULL) && (inSz > 0))) {
- err = MP_VAL;
- }
- /* Check a has enough space for number. */
- if ((err == MP_OKAY) && (inSz > (word32)a->size * SP_WORD_SIZEOF)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Load full digits at a time from in. */
- int i;
- int j = 0;
- a->used = (inSz + SP_WORD_SIZEOF - 1) / SP_WORD_SIZEOF;
- #if defined(BIG_ENDIAN_ORDER) && !defined(WOLFSSL_SP_INT_DIGIT_ALIGN)
- /* Data endian matches respresentation of number.
- * Directly copy if we don't have alignment issues.
- */
- for (i = (int)(inSz-1); i > SP_WORD_SIZEOF-1; i -= SP_WORD_SIZEOF) {
- a->dp[j++] = *(sp_int_digit*)(in + i - (SP_WORD_SIZEOF - 1));
- }
- #else
- /* Construct digit from required number of bytes. */
- for (i = (int)(inSz-1); i >= SP_WORD_SIZEOF - 1; i -= SP_WORD_SIZEOF) {
- a->dp[j] = ((sp_int_digit)in[i - 0] << 0)
- #if SP_WORD_SIZE >= 16
- | ((sp_int_digit)in[i - 1] << 8)
- #endif
- #if SP_WORD_SIZE >= 32
- | ((sp_int_digit)in[i - 2] << 16) |
- ((sp_int_digit)in[i - 3] << 24)
- #endif
- #if SP_WORD_SIZE >= 64
- | ((sp_int_digit)in[i - 4] << 32) |
- ((sp_int_digit)in[i - 5] << 40) |
- ((sp_int_digit)in[i - 6] << 48) |
- ((sp_int_digit)in[i - 7] << 56)
- #endif
- ;
- j++;
- }
- #endif
- #if SP_WORD_SIZE >= 16
- /* Handle leftovers. */
- if (i >= 0) {
- #ifdef BIG_ENDIAN_ORDER
- int s;
- /* Place remaining bytes into last digit. */
- a->dp[a->used - 1] = 0;
- for (s = 0; i >= 0; i--,s += 8) {
- a->dp[j] |= ((sp_int_digit)in[i]) << s;
- }
- #else
- /* Cast digits to an array of bytes so we can insert directly. */
- byte *d = (byte*)a->dp;
- /* Zero out all bytes in last digit. */
- a->dp[a->used - 1] = 0;
- /* Place remaining bytes directly into digit. */
- switch (i) {
- #if SP_WORD_SIZE >= 64
- case 6: d[inSz - 1 - 6] = in[6]; FALL_THROUGH;
- case 5: d[inSz - 1 - 5] = in[5]; FALL_THROUGH;
- case 4: d[inSz - 1 - 4] = in[4]; FALL_THROUGH;
- case 3: d[inSz - 1 - 3] = in[3]; FALL_THROUGH;
- #endif
- #if SP_WORD_SIZE >= 32
- case 2: d[inSz - 1 - 2] = in[2]; FALL_THROUGH;
- case 1: d[inSz - 1 - 1] = in[1]; FALL_THROUGH;
- #endif
- case 0: d[inSz - 1 - 0] = in[0];
- }
- #endif /* LITTLE_ENDIAN_ORDER */
- }
- #endif
- sp_clamp(a);
- }
- return err;
- }
- /* Convert the multi-precision number to an array of bytes in big-endian format.
- *
- * The array must be large enough for encoded number - use mp_unsigned_bin_size
- * to calculate the number of bytes required.
- *
- * @param [in] a SP integer.
- * @param [out] out Array to put encoding into.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or out is NULL.
- */
- int sp_to_unsigned_bin(const sp_int* a, byte* out)
- {
- /* Write assuming output buffer is big enough. */
- return sp_to_unsigned_bin_len(a, out, sp_unsigned_bin_size(a));
- }
- /* Convert the multi-precision number to an array of bytes in big-endian format.
- *
- * The array must be large enough for encoded number - use mp_unsigned_bin_size
- * to calculate the number of bytes required.
- * Front-pads the output array with zeros to make number the size of the array.
- *
- * @param [in] a SP integer.
- * @param [out] out Array to put encoding into.
- * @param [in] outSz Size of the array in bytes.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or out is NULL.
- */
- int sp_to_unsigned_bin_len(const sp_int* a, byte* out, int outSz)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (out == NULL) || (outSz < 0)) {
- err = MP_VAL;
- }
- #if SP_WORD_SIZE > 8
- if (err == MP_OKAY) {
- /* Start at the end of the buffer - least significant byte. */
- int j = outSz - 1;
- if (!sp_iszero(a)) {
- unsigned int i;
- /* Put each digit in. */
- for (i = 0; (j >= 0) && (i < a->used); i++) {
- int b;
- sp_int_digit d = a->dp[i];
- /* Place each byte of a digit into the buffer. */
- for (b = 0; b < SP_WORD_SIZE; b += 8) {
- out[j--] = (byte)d;
- d >>= 8;
- /* Stop if the output buffer is filled. */
- if (j < 0) {
- if ((i < a->used - 1) || (d > 0)) {
- err = MP_VAL;
- }
- break;
- }
- }
- }
- }
- /* Front pad buffer with 0s. */
- for (; j >= 0; j--) {
- out[j] = 0;
- }
- }
- #else
- if ((err == MP_OKAY) && ((unsigned int)outSz < a->used)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- unsigned int i;
- int j;
- XMEMSET(out, 0, (unsigned int)outSz - a->used);
- for (i = 0, j = outSz - 1; i < a->used; i++, j--) {
- out[j] = a->dp[i];
- }
- }
- #endif
- return err;
- }
- #if defined(WOLFSSL_SP_MATH_ALL) && !defined(NO_RSA) && \
- !defined(WOLFSSL_RSA_VERIFY_ONLY)
- /* Store the number in big-endian format in array at an offset.
- * The array must be large enough for encoded number - use mp_unsigned_bin_size
- * to calculate the number of bytes required.
- *
- * @param [in] o Offset into array o start encoding.
- * @param [in] a SP integer.
- * @param [out] out Array to put encoding into.
- *
- * @return Index of next byte after data.
- * @return MP_VAL when a or out is NULL.
- */
- int sp_to_unsigned_bin_at_pos(int o, const sp_int* a, unsigned char* out)
- {
- /* Get length of data that will be written. */
- int len = sp_unsigned_bin_size(a);
- /* Write number to buffer at offset. */
- int ret = sp_to_unsigned_bin_len(a, out + o, len);
- if (ret == MP_OKAY) {
- /* Return offset of next byte after number. */
- ret = o + len;
- }
- return ret;
- }
- #endif /* WOLFSSL_SP_MATH_ALL && !NO_RSA && !WOLFSSL_RSA_VERIFY_ONLY */
- #ifdef WOLFSSL_SP_READ_RADIX_16
- /* Convert hexadecimal number as string in big-endian format to a
- * multi-precision number.
- *
- * Assumes negative sign and leading zeros have been stripped.
- *
- * @param [out] a SP integer.
- * @param [in] in NUL terminated string.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when radix not supported, value is negative, or a character
- * is not valid.
- */
- static int _sp_read_radix_16(sp_int* a, const char* in)
- {
- int err = MP_OKAY;
- int i;
- unsigned int s = 0;
- unsigned int j = 0;
- sp_int_digit d;
- /* Make all nibbles in digit 0. */
- d = 0;
- /* Step through string a character at a time starting at end - least
- * significant byte. */
- for (i = (int)(XSTRLEN(in) - 1); i >= 0; i--) {
- /* Convert character from hex. */
- int ch = (int)HexCharToByte(in[i]);
- /* Check for invalid character. */
- if (ch < 0) {
- err = MP_VAL;
- break;
- }
- /* Check whether we have filled the digit. */
- if (s == SP_WORD_SIZE) {
- /* Store digit and move index to next in a. */
- a->dp[j++] = d;
- /* Fail if we are out of space in a. */
- if (j >= a->size) {
- err = MP_VAL;
- break;
- }
- /* Set shift back to 0 - lowest nibble. */
- s = 0;
- /* Make all nibbles in digit 0. */
- d = 0;
- }
- /* Put next nibble into digit. */
- d |= ((sp_int_digit)ch) << s;
- /* Update shift for next nibble. */
- s += 4;
- }
- if (err == MP_OKAY) {
- /* If space, store last digit. */
- if (j < a->size) {
- a->dp[j] = d;
- }
- /* Update used count. */
- a->used = j + 1;
- /* Remove leading zeros. */
- sp_clamp(a);
- }
- return err;
- }
- #endif /* WOLFSSL_SP_READ_RADIX_16 */
- #ifdef WOLFSSL_SP_READ_RADIX_10
- /* Convert decimal number as string in big-endian format to a multi-precision
- * number.
- *
- * Assumes negative sign and leading zeros have been stripped.
- *
- * @param [out] a SP integer.
- * @param [in] in NUL terminated string.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when radix not supported, value is negative, or a character
- * is not valid.
- */
- static int _sp_read_radix_10(sp_int* a, const char* in)
- {
- int err = MP_OKAY;
- int i;
- char ch;
- /* Start with a being zero. */
- _sp_zero(a);
- /* Process all characters. */
- for (i = 0; in[i] != '\0'; i++) {
- /* Get character. */
- ch = in[i];
- /* Check character is valid. */
- if ((ch >= '0') && (ch <= '9')) {
- /* Assume '0'..'9' are continuous valus as characters. */
- ch -= '0';
- }
- else {
- /* Return error on invalid character. */
- err = MP_VAL;
- break;
- }
- /* Multiply a by 10. */
- err = _sp_mul_d(a, 10, a, 0);
- if (err != MP_OKAY) {
- break;
- }
- /* Add character value. */
- err = _sp_add_d(a, (sp_int_digit)ch, a);
- if (err != MP_OKAY) {
- break;
- }
- }
- return err;
- }
- #endif /* WOLFSSL_SP_READ_RADIX_10 */
- #if defined(WOLFSSL_SP_READ_RADIX_16) || defined(WOLFSSL_SP_READ_RADIX_10)
- /* Convert a number as string in big-endian format to a big number.
- * Only supports base-16 (hexadecimal) and base-10 (decimal).
- *
- * Negative values supported when WOLFSSL_SP_INT_NEGATIVE is defined.
- *
- * @param [out] a SP integer.
- * @param [in] in NUL terminated string.
- * @param [in] radix Number of values in a digit.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or in is NULL, radix not supported, value is negative,
- * or a character is not valid.
- */
- int sp_read_radix(sp_int* a, const char* in, int radix)
- {
- int err = MP_OKAY;
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- unsigned int sign = MP_ZPOS;
- #endif
- if ((a == NULL) || (in == NULL)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- #ifndef WOLFSSL_SP_INT_NEGATIVE
- if (*in == '-') {
- err = MP_VAL;
- }
- else
- #endif
- {
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- if (*in == '-') {
- /* Make number negative if signed string. */
- sign = MP_NEG;
- in++;
- }
- #endif /* WOLFSSL_SP_INT_NEGATIVE */
- /* Skip leading zeros. */
- while (*in == '0') {
- in++;
- }
- if (radix == 16) {
- err = _sp_read_radix_16(a, in);
- }
- #ifdef WOLFSSL_SP_READ_RADIX_10
- else if (radix == 10) {
- err = _sp_read_radix_10(a, in);
- }
- #endif
- else {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Ensure not negative when zero. */
- if (err == MP_OKAY) {
- if (sp_iszero(a)) {
- a->sign = MP_ZPOS;
- }
- else {
- a->sign = sign;
- }
- }
- #endif
- }
- }
- return err;
- }
- #endif /* WOLFSSL_SP_READ_RADIX_16 || WOLFSSL_SP_READ_RADIX_10 */
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- defined(WC_MP_TO_RADIX)
- /* Put the big-endian, hex string encoding of a into str.
- *
- * Assumes str is large enough for result.
- * Use sp_radix_size() to calculate required length.
- *
- * @param [in] a SP integer to convert.
- * @param [out] str String to hold hex string result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or str is NULL.
- */
- int sp_tohex(const sp_int* a, char* str)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (str == NULL)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Quick out if number is zero. */
- if (sp_iszero(a) == MP_YES) {
- #ifndef WC_DISABLE_RADIX_ZERO_PAD
- /* Make string represent complete bytes. */
- *str++ = '0';
- #endif /* WC_DISABLE_RADIX_ZERO_PAD */
- *str++ = '0';
- }
- else {
- int i;
- int j;
- sp_int_digit d;
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- if (a->sign == MP_NEG) {
- /* Add negative sign character. */
- *str = '-';
- str++;
- }
- #endif /* WOLFSSL_SP_INT_NEGATIVE */
- /* Start at last digit - most significant digit. */
- i = (int)(a->used - 1);
- d = a->dp[i];
- #ifndef WC_DISABLE_RADIX_ZERO_PAD
- /* Find highest non-zero byte in most-significant word. */
- for (j = SP_WORD_SIZE - 8; j >= 0 && i >= 0; j -= 8) {
- /* When a byte at this index is not 0 break out to start
- * writing.
- */
- if (((d >> j) & 0xff) != 0) {
- break;
- }
- /* Skip this digit if it was 0. */
- if (j == 0) {
- j = SP_WORD_SIZE - 8;
- d = a->dp[--i];
- }
- }
- /* Start with high nibble of byte. */
- j += 4;
- #else
- /* Find highest non-zero nibble in most-significant word. */
- for (j = SP_WORD_SIZE - 4; j >= 0; j -= 4) {
- /* When a nibble at this index is not 0 break out to start
- * writing.
- */
- if (((d >> j) & 0xf) != 0) {
- break;
- }
- /* Skip this digit if it was 0. */
- if (j == 0) {
- j = SP_WORD_SIZE - 4;
- d = a->dp[--i];
- }
- }
- #endif /* WC_DISABLE_RADIX_ZERO_PAD */
- /* Write out as much as required from most-significant digit. */
- for (; j >= 0; j -= 4) {
- *(str++) = ByteToHex((byte)(d >> j));
- }
- /* Write rest of digits. */
- for (--i; i >= 0; i--) {
- /* Get digit from memory. */
- d = a->dp[i];
- /* Write out all nibbles of digit. */
- for (j = SP_WORD_SIZE - 4; j >= 0; j -= 4) {
- *(str++) = (char)ByteToHex((byte)(d >> j));
- }
- }
- }
- /* Terminate string. */
- *str = '\0';
- }
- return err;
- }
- #endif /* (WOLFSSL_SP_MATH_ALL && !WOLFSSL_RSA_VERIFY_ONLY) || WC_MP_TO_RADIX */
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || \
- defined(WC_MP_TO_RADIX)
- /* Put the big-endian, decimal string encoding of a into str.
- *
- * Assumes str is large enough for result.
- * Use sp_radix_size() to calculate required length.
- *
- * @param [in] a SP integer to convert.
- * @param [out] str String to hold hex string result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or str is NULL.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_todecimal(const sp_int* a, char* str)
- {
- int err = MP_OKAY;
- int i;
- int j;
- sp_int_digit d = 0;
- /* Validate parameters. */
- if ((a == NULL) || (str == NULL)) {
- err = MP_VAL;
- }
- /* Quick out if number is zero. */
- else if (sp_iszero(a) == MP_YES) {
- *str++ = '0';
- *str = '\0';
- }
- else if (a->used >= SP_INT_DIGITS) {
- err = MP_VAL;
- }
- else {
- /* Temporary that is divided by 10. */
- DECL_SP_INT(t, a->used + 1);
- ALLOC_SP_INT_SIZE(t, a->used + 1, err, NULL);
- if (err == MP_OKAY) {
- _sp_copy(a, t);
- }
- if (err == MP_OKAY) {
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- if (a->sign == MP_NEG) {
- /* Add negative sign character. */
- *str = '-';
- str++;
- }
- #endif /* WOLFSSL_SP_INT_NEGATIVE */
- /* Write out little endian. */
- i = 0;
- do {
- /* Divide by 10 and get remainder of division. */
- (void)sp_div_d(t, 10, t, &d);
- /* Write out remainder as a character. */
- str[i++] = (char)('0' + d);
- }
- /* Keep going while we there is a value to write. */
- while (!sp_iszero(t));
- /* Terminate string. */
- str[i] = '\0';
- if (err == MP_OKAY) {
- /* Reverse string to big endian. */
- for (j = 0; j <= (i - 1) / 2; j++) {
- int c = (unsigned char)str[j];
- str[j] = str[i - 1 - j];
- str[i - 1 - j] = (char)c;
- }
- }
- }
- FREE_SP_INT(t, NULL);
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL || WOLFSSL_KEY_GEN || HAVE_COMP_KEY */
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- defined(WC_MP_TO_RADIX)
- /* Put the string version, big-endian, of a in str using the given radix.
- *
- * @param [in] a SP integer to convert.
- * @param [out] str String to hold hex string result.
- * @param [in] radix Base of character.
- * Valid values: MP_RADIX_HEX, MP_RADIX_DEC.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or str is NULL, or radix not supported.
- */
- int sp_toradix(const sp_int* a, char* str, int radix)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (str == NULL)) {
- err = MP_VAL;
- }
- /* Handle base 16 if requested. */
- else if (radix == MP_RADIX_HEX) {
- err = sp_tohex(a, str);
- }
- #if defined(WOLFSSL_SP_MATH_ALL) || defined(WOLFSSL_KEY_GEN) || \
- defined(HAVE_COMP_KEY)
- /* Handle base 10 if requested. */
- else if (radix == MP_RADIX_DEC) {
- err = sp_todecimal(a, str);
- }
- #endif /* WOLFSSL_SP_MATH_ALL || WOLFSSL_KEY_GEN || HAVE_COMP_KEY */
- else {
- /* Base not supported. */
- err = MP_VAL;
- }
- return err;
- }
- #endif /* (WOLFSSL_SP_MATH_ALL && !WOLFSSL_RSA_VERIFY_ONLY) || WC_MP_TO_RADIX */
- #if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
- defined(WC_MP_TO_RADIX)
- /* Calculate the length of the string version, big-endian, of a using the given
- * radix.
- *
- * @param [in] a SP integer to convert.
- * @param [in] radix Base of character.
- * Valid values: MP_RADIX_HEX, MP_RADIX_DEC.
- * @param [out] size The number of characters in encoding.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or size is NULL, or radix not supported.
- */
- int sp_radix_size(const sp_int* a, int radix, int* size)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (size == NULL)) {
- err = MP_VAL;
- }
- /* Handle base 16 if requested. */
- else if (radix == MP_RADIX_HEX) {
- if (a->used == 0) {
- #ifndef WC_DISABLE_RADIX_ZERO_PAD
- /* 00 and '\0' */
- *size = 2 + 1;
- #else
- /* Zero and '\0' */
- *size = 1 + 1;
- #endif /* WC_DISABLE_RADIX_ZERO_PAD */
- }
- else {
- /* Count of nibbles. */
- int cnt = (sp_count_bits(a) + 3) / 4;
- #ifndef WC_DISABLE_RADIX_ZERO_PAD
- /* Must have even number of nibbles to have complete bytes. */
- if (cnt & 1) {
- cnt++;
- }
- #endif /* WC_DISABLE_RADIX_ZERO_PAD */
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Add to count of characters for negative sign. */
- if (a->sign == MP_NEG) {
- cnt++;
- }
- #endif /* WOLFSSL_SP_INT_NEGATIVE */
- /* One more for \0 */
- *size = cnt + 1;
- }
- }
- #if defined(WOLFSSL_SP_MATH_ALL) || defined(WOLFSSL_KEY_GEN) || \
- defined(HAVE_COMP_KEY)
- /* Handle base 10 if requested. */
- else if (radix == MP_RADIX_DEC) {
- int i;
- sp_int_digit d;
- /* quick out if its zero */
- if (sp_iszero(a) == MP_YES) {
- /* Zero and '\0' */
- *size = 1 + 1;
- }
- else {
- DECL_SP_INT(t, a->used);
- /* Temporary to be divided by 10. */
- ALLOC_SP_INT(t, a->used, err, NULL);
- if (err == MP_OKAY) {
- t->size = a->used;
- _sp_copy(a, t);
- }
- if (err == MP_OKAY) {
- /* Count number of times number can be divided by 10. */
- for (i = 0; !sp_iszero(t); i++) {
- (void)sp_div_d(t, 10, t, &d);
- }
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Add to count of characters for negative sign. */
- if (a->sign == MP_NEG) {
- i++;
- }
- #endif /* WOLFSSL_SP_INT_NEGATIVE */
- /* One more for \0 */
- *size = i + 1;
- }
- FREE_SP_INT(t, NULL);
- }
- }
- #endif /* WOLFSSL_SP_MATH_ALL || WOLFSSL_KEY_GEN || HAVE_COMP_KEY */
- else {
- /* Base not supported. */
- err = MP_VAL;
- }
- return err;
- }
- #endif /* (WOLFSSL_SP_MATH_ALL && !WOLFSSL_RSA_VERIFY_ONLY) || WC_MP_TO_RADIX */
- /***************************************
- * Prime number generation and checking.
- ***************************************/
- #if defined(WOLFSSL_KEY_GEN) && (!defined(NO_RSA) || !defined(NO_DH) || \
- !defined(NO_DSA)) && !defined(WC_NO_RNG)
- #ifndef WOLFSSL_SP_MILLER_RABIN_CNT
- /* Always done 8 iterations of Miller-Rabin on check of primality when
- * generating.
- */
- #define WOLFSSL_SP_MILLER_RABIN_CNT 8
- #endif
- /* Generate a random prime for RSA only.
- *
- * @param [out] r SP integer to hold result.
- * @param [in] len Number of bytes in prime. Use -ve to indicate the two
- * lowest bits must be set.
- * @param [in] rng Random number generator.
- * @param [in] heap Heap hint. Unused.
- *
- * @return MP_OKAY on success
- * @return MP_VAL when r or rng is NULL, length is not supported or random
- * number generator fails.
- */
- int sp_rand_prime(sp_int* r, int len, WC_RNG* rng, void* heap)
- {
- static const byte USE_BBS = 3;
- int err = MP_OKAY;
- byte low_bits = 1;
- int isPrime = MP_NO;
- #if defined(WOLFSSL_SP_MATH_ALL) || defined(BIG_ENDIAN_ORDER)
- int bits = 0;
- #endif /* WOLFSSL_SP_MATH_ALL */
- unsigned int digits = 0;
- (void)heap;
- /* Check NULL parameters and 0 is not prime so 0 bytes is invalid. */
- if ((r == NULL) || (rng == NULL) || (len == 0)) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Get type. */
- if (len < 0) {
- low_bits = USE_BBS;
- len = -len;
- }
- /* Get number of digits required to handle required number of bytes. */
- digits = ((unsigned int)len + SP_WORD_SIZEOF - 1) / SP_WORD_SIZEOF;
- /* Ensure result has space. */
- if (r->size < digits) {
- err = MP_VAL;
- }
- }
- if (err == MP_OKAY) {
- #ifndef WOLFSSL_SP_MATH_ALL
- /* For minimal maths, support only what's in SP and needed for DH. */
- #if defined(WOLFSSL_HAVE_SP_DH) && defined(WOLFSSL_KEY_GEN)
- if (len == 32) {
- }
- else
- #endif /* WOLFSSL_HAVE_SP_DH && WOLFSSL_KEY_GEN */
- /* Generate RSA primes that are half the modulus length. */
- #ifdef WOLFSSL_SP_4096
- if (len == 256) {
- /* Support 2048-bit operations compiled in. */
- }
- else
- #endif
- #ifndef WOLFSSL_SP_NO_3072
- if (len == 192) {
- /* Support 1536-bit operations compiled in. */
- }
- else
- #endif
- #ifndef WOLFSSL_SP_NO_2048
- if (len == 128) {
- /* Support 1024-bit operations compiled in. */
- }
- else
- #endif
- {
- /* Bit length not supported in SP. */
- err = MP_VAL;
- }
- #endif /* !WOLFSSL_SP_MATH_ALL */
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Generated number is always positive. */
- r->sign = MP_ZPOS;
- #endif /* WOLFSSL_SP_INT_NEGATIVE */
- /* Set number of digits that will be used. */
- r->used = digits;
- #if defined(WOLFSSL_SP_MATH_ALL) || defined(BIG_ENDIAN_ORDER)
- /* Calculate number of bits in last digit. */
- bits = (len * 8) & SP_WORD_MASK;
- #endif /* WOLFSSL_SP_MATH_ALL || BIG_ENDIAN_ORDER */
- }
- /* Assume the candidate is probably prime and then test until it is proven
- * composite.
- */
- while ((err == MP_OKAY) && (isPrime == MP_NO)) {
- #ifdef SHOW_GEN
- printf(".");
- fflush(stdout);
- #endif /* SHOW_GEN */
- /* Generate bytes into digit array. */
- err = wc_RNG_GenerateBlock(rng, (byte*)r->dp, (word32)len);
- if (err != 0) {
- err = MP_VAL;
- break;
- }
- /* Set top bits to ensure bit length required is generated.
- * Also set second top to help ensure product of two primes is
- * going to be twice the number of bits of each.
- */
- #ifdef LITTLE_ENDIAN_ORDER
- ((byte*)r->dp)[len-1] |= 0x80 | 0x40;
- #else
- ((byte*)(r->dp + r->used - 1))[0] |= 0x80 | 0x40;
- #endif /* LITTLE_ENDIAN_ORDER */
- #ifdef BIG_ENDIAN_ORDER
- /* Bytes were put into wrong place when less than full digit. */
- if (bits != 0) {
- r->dp[r->used - 1] >>= SP_WORD_SIZE - bits;
- }
- #endif /* BIG_ENDIAN_ORDER */
- #ifdef WOLFSSL_SP_MATH_ALL
- /* Mask top digit when less than a digit requested. */
- if (bits > 0) {
- r->dp[r->used - 1] &= ((sp_int_digit)1 << bits) - 1;
- }
- #endif /* WOLFSSL_SP_MATH_ALL */
- /* Set mandatory low bits
- * - bottom bit to make odd.
- * - For BBS, second lowest too to make Blum integer (3 mod 4).
- */
- r->dp[0] |= low_bits;
- /* Running Miller-Rabin up to 3 times gives us a 2^{-80} chance
- * of a 1024-bit candidate being a false positive, when it is our
- * prime candidate. (Note 4.49 of Handbook of Applied Cryptography.)
- */
- err = sp_prime_is_prime_ex(r, WOLFSSL_SP_MILLER_RABIN_CNT, &isPrime,
- rng);
- }
- return err;
- }
- #endif /* WOLFSSL_KEY_GEN && (!NO_DH || !NO_DSA) && !WC_NO_RNG */
- #ifdef WOLFSSL_SP_PRIME_GEN
- /* Miller-Rabin test of "a" to the base of "b" as described in
- * HAC pp. 139 Algorithm 4.24
- *
- * Sets result to 0 if definitely composite or 1 if probably prime.
- * Randomly the chance of error is no more than 1/4 and often
- * very much lower.
- *
- * a is assumed to be odd.
- *
- * @param [in] a SP integer to check.
- * @param [in] b SP integer that is a small prime.
- * @param [out] result MP_YES when number is likey prime.
- * MP_NO otherwise.
- * @param [in] n1 SP integer temporary.
- * @param [in] r SP integer temporary.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int sp_prime_miller_rabin(const sp_int* a, sp_int* b, int* result,
- sp_int* n1, sp_int* r)
- {
- int err = MP_OKAY;
- int s = 0;
- sp_int* y = b;
- /* Assume not prime. */
- *result = MP_NO;
- /* Ensure small prime is 2 or more. */
- if (sp_cmp_d(b, 1) != MP_GT) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* n1 = a - 1 (a is assumed odd.) */
- (void)sp_copy(a, n1);
- n1->dp[0]--;
- /* Set 2**s * r = n1 */
- /* Count the number of least significant bits which are zero. */
- s = sp_cnt_lsb(n1);
- /* Divide n - 1 by 2**s into r. */
- (void)sp_rshb(n1, s, r);
- /* Compute y = b**r mod a */
- err = sp_exptmod(b, r, a, y);
- }
- if (err == MP_OKAY) {
- /* Assume probably prime until shown otherwise. */
- *result = MP_YES;
- /* If y != 1 and y != n1 do */
- if ((sp_cmp_d(y, 1) != MP_EQ) && (_sp_cmp(y, n1) != MP_EQ)) {
- int j = 1;
- /* While j <= s-1 and y != n1 */
- while ((j <= (s - 1)) && (_sp_cmp(y, n1) != MP_EQ)) {
- /* Square for bit shifted down. */
- err = sp_sqrmod(y, a, y);
- if (err != MP_OKAY) {
- break;
- }
- /* If y == 1 then composite. */
- if (sp_cmp_d(y, 1) == MP_EQ) {
- *result = MP_NO;
- break;
- }
- ++j;
- }
- /* If y != n1 then composite. */
- if ((*result == MP_YES) && (_sp_cmp(y, n1) != MP_EQ)) {
- *result = MP_NO;
- }
- }
- }
- return err;
- }
- #if SP_WORD_SIZE == 8
- /* Number of pre-computed primes. First n primes - fitting in a digit. */
- #define SP_PRIME_SIZE 54
- static const sp_int_digit sp_primes[SP_PRIME_SIZE] = {
- 0x02, 0x03, 0x05, 0x07, 0x0B, 0x0D, 0x11, 0x13,
- 0x17, 0x1D, 0x1F, 0x25, 0x29, 0x2B, 0x2F, 0x35,
- 0x3B, 0x3D, 0x43, 0x47, 0x49, 0x4F, 0x53, 0x59,
- 0x61, 0x65, 0x67, 0x6B, 0x6D, 0x71, 0x7F, 0x83,
- 0x89, 0x8B, 0x95, 0x97, 0x9D, 0xA3, 0xA7, 0xAD,
- 0xB3, 0xB5, 0xBF, 0xC1, 0xC5, 0xC7, 0xD3, 0xDF,
- 0xE3, 0xE5, 0xE9, 0xEF, 0xF1, 0xFB
- };
- #else
- /* Number of pre-computed primes. First n primes. */
- #define SP_PRIME_SIZE 256
- /* The first 256 primes. */
- static const sp_uint16 sp_primes[SP_PRIME_SIZE] = {
- 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
- 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
- 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
- 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083,
- 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
- 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
- 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
- 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
- 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
- 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
- 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
- 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
- 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
- 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
- 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
- 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
- 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
- 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
- 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
- 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
- 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
- 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
- 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
- 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
- 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
- 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
- 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
- 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
- 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
- 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
- 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
- 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
- };
- #endif
- /* Compare the first n primes with a.
- *
- * @param [in] a Number to check.
- * @param [out] result Whether number was found to be prime.
- * @return 0 when no small prime matches.
- * @return 1 when small prime matches.
- */
- static WC_INLINE int sp_cmp_primes(const sp_int* a, int* result)
- {
- int i;
- int haveRes = 0;
- *result = MP_NO;
- /* Check one digit a against primes table. */
- for (i = 0; i < SP_PRIME_SIZE; i++) {
- if (sp_cmp_d(a, sp_primes[i]) == MP_EQ) {
- *result = MP_YES;
- haveRes = 1;
- break;
- }
- }
- return haveRes;
- }
- /* Using composites is only faster when using 64-bit values. */
- #if !defined(WOLFSSL_SP_SMALL) && (SP_WORD_SIZE == 64)
- /* Number of composites. */
- #define SP_COMP_CNT 38
- /* Products of small primes that fit into 64-bits. */
- static sp_int_digit sp_comp[SP_COMP_CNT] = {
- 0x088886ffdb344692, 0x34091fa96ffdf47b, 0x3c47d8d728a77ebb,
- 0x077ab7da9d709ea9, 0x310df3e7bd4bc897, 0xe657d7a1fd5161d1,
- 0x02ad3dbe0cca85ff, 0x0787f9a02c3388a7, 0x1113c5cc6d101657,
- 0x2456c94f936bdb15, 0x4236a30b85ffe139, 0x805437b38eada69d,
- 0x00723e97bddcd2af, 0x00a5a792ee239667, 0x00e451352ebca269,
- 0x013a7955f14b7805, 0x01d37cbd653b06ff, 0x0288fe4eca4d7cdf,
- 0x039fddb60d3af63d, 0x04cd73f19080fb03, 0x0639c390b9313f05,
- 0x08a1c420d25d388f, 0x0b4b5322977db499, 0x0e94c170a802ee29,
- 0x11f6a0e8356100df, 0x166c8898f7b3d683, 0x1babda0a0afd724b,
- 0x2471b07c44024abf, 0x2d866dbc2558ad71, 0x3891410d45fb47df,
- 0x425d5866b049e263, 0x51f767298e2cf13b, 0x6d9f9ece5fc74f13,
- 0x7f5ffdb0f56ee64d, 0x943740d46a1bc71f, 0xaf2d7ca25cec848f,
- 0xcec010484e4ad877, 0xef972c3cfafbcd25
- };
- /* Index of next prime after those used to create composite. */
- static int sp_comp_idx[SP_COMP_CNT] = {
- 15, 25, 34, 42, 50, 58, 65, 72, 79, 86, 93, 100, 106, 112, 118,
- 124, 130, 136, 142, 148, 154, 160, 166, 172, 178, 184, 190, 196, 202, 208,
- 214, 220, 226, 232, 238, 244, 250, 256
- };
- #endif
- /* Determines whether any of the first n small primes divide a evenly.
- *
- * @param [in] a Number to check.
- * @param [in, out] haveRes Boolean indicating a no prime result found.
- * @param [in, out] result Whether a is known to be prime.
- * @return MP_OKAY on success.
- * @return Negative on failure.
- */
- static WC_INLINE int sp_div_primes(const sp_int* a, int* haveRes, int* result)
- {
- int i;
- #if !defined(WOLFSSL_SP_SMALL) && (SP_WORD_SIZE == 64)
- int j;
- #endif
- sp_int_digit d;
- int err = MP_OKAY;
- #if defined(WOLFSSL_SP_SMALL) || (SP_WORD_SIZE < 64)
- /* Do trial division of a with all known small primes. */
- for (i = 0; i < SP_PRIME_SIZE; i++) {
- /* Small prime divides a when remainder is 0. */
- err = sp_mod_d(a, (sp_int_digit)sp_primes[i], &d);
- if ((err != MP_OKAY) || (d == 0)) {
- *result = MP_NO;
- *haveRes = 1;
- break;
- }
- }
- #else
- /* Start with first prime in composite. */
- i = 0;
- for (j = 0; (!(*haveRes)) && (j < SP_COMP_CNT); j++) {
- /* Reduce a down to a single word. */
- err = sp_mod_d(a, sp_comp[j], &d);
- if ((err != MP_OKAY) || (d == 0)) {
- *result = MP_NO;
- *haveRes = 1;
- break;
- }
- /* Do trial division of d with small primes that make up composite. */
- for (; i < sp_comp_idx[j]; i++) {
- /* Small prime divides a when remainder is 0. */
- if (d % sp_primes[i] == 0) {
- *result = MP_NO;
- *haveRes = 1;
- break;
- }
- }
- }
- #endif
- return err;
- }
- /* Check whether a is prime by checking t iterations of Miller-Rabin.
- *
- * @param [in] a SP integer to check.
- * @param [in] trials Number of trials of Miller-Rabin test to perform.
- * @param [out] result MP_YES when number is prime.
- * MP_NO otherwise.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_prime_trials(const sp_int* a, int trials, int* result)
- {
- int err = MP_OKAY;
- int i;
- sp_int* n1;
- sp_int* r;
- DECL_SP_INT_ARRAY(t, a->used + 1, 2);
- DECL_SP_INT(b, a->used * 2 + 1);
- ALLOC_SP_INT_ARRAY(t, a->used + 1, 2, err, NULL);
- /* Allocate number that will hold modular exponentiation result. */
- ALLOC_SP_INT(b, a->used * 2 + 1, err, NULL);
- if (err == MP_OKAY) {
- n1 = t[0];
- r = t[1];
- _sp_init_size(n1, a->used + 1);
- _sp_init_size(r, a->used + 1);
- _sp_init_size(b, a->used * 2 + 1);
- /* Do requested number of trials of Miller-Rabin test. */
- for (i = 0; i < trials; i++) {
- /* Miller-Rabin test with known small prime. */
- _sp_set(b, sp_primes[i]);
- err = sp_prime_miller_rabin(a, b, result, n1, r);
- if ((err != MP_OKAY) || (*result == MP_NO)) {
- break;
- }
- }
- /* Clear temporary values. */
- sp_clear(n1);
- sp_clear(r);
- sp_clear(b);
- }
- /* Free allocated temporary. */
- FREE_SP_INT(b, NULL);
- FREE_SP_INT_ARRAY(t, NULL);
- return err;
- }
- /* Check whether a is prime.
- * Checks against a number of small primes and does t iterations of
- * Miller-Rabin.
- *
- * @param [in] a SP integer to check.
- * @param [in] trials Number of trials of Miller-Rabin test to perform.
- * @param [out] result MP_YES when number is prime.
- * MP_NO otherwise.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a or result is NULL, or trials is out of range.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_prime_is_prime(const sp_int* a, int trials, int* result)
- {
- int err = MP_OKAY;
- int haveRes = 0;
- /* Validate parameters. */
- if ((a == NULL) || (result == NULL)) {
- if (result != NULL) {
- *result = MP_NO;
- }
- err = MP_VAL;
- }
- else if (a->used * 2 >= SP_INT_DIGITS) {
- err = MP_VAL;
- }
- /* Check validity of Miller-Rabin iterations count.
- * Must do at least one and need a unique pre-computed prime for each
- * iteration.
- */
- if ((err == MP_OKAY) && ((trials <= 0) || (trials > SP_PRIME_SIZE))) {
- *result = MP_NO;
- err = MP_VAL;
- }
- /* Short-cut, 1 is not prime. */
- if ((err == MP_OKAY) && sp_isone(a)) {
- *result = MP_NO;
- haveRes = 1;
- }
- SAVE_VECTOR_REGISTERS(err = _svr_ret;);
- /* Check against known small primes when a has 1 digit. */
- if ((err == MP_OKAY) && (!haveRes) && (a->used == 1) &&
- (a->dp[0] <= sp_primes[SP_PRIME_SIZE - 1])) {
- haveRes = sp_cmp_primes(a, result);
- }
- /* Check all small primes for even divisibility. */
- if ((err == MP_OKAY) && (!haveRes)) {
- err = sp_div_primes(a, &haveRes, result);
- }
- /* Check a number of iterations of Miller-Rabin with small primes. */
- if ((err == MP_OKAY) && (!haveRes)) {
- err = _sp_prime_trials(a, trials, result);
- }
- RESTORE_VECTOR_REGISTERS();
- return err;
- }
- #ifndef WC_NO_RNG
- /* Check whether a is prime by doing t iterations of Miller-Rabin.
- *
- * t random numbers should give a (1/4)^t chance of a false prime.
- *
- * @param [in] a SP integer to check.
- * @param [in] trials Number of iterations of Miller-Rabin test to perform.
- * @param [out] result MP_YES when number is prime.
- * MP_NO otherwise.
- * @param [in] rng Random number generator for Miller-Rabin testing.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a, result or rng is NULL.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_prime_random_trials(const sp_int* a, int trials, int* result,
- WC_RNG* rng)
- {
- int err = MP_OKAY;
- int bits = sp_count_bits(a);
- word32 baseSz = ((word32)bits + 7) / 8;
- DECL_SP_INT_ARRAY(ds, a->used + 1, 2);
- DECL_SP_INT_ARRAY(d, a->used * 2 + 1, 2);
- ALLOC_SP_INT_ARRAY(ds, a->used + 1, 2, err, NULL);
- ALLOC_SP_INT_ARRAY(d, a->used * 2 + 1, 2, err, NULL);
- if (err == MP_OKAY) {
- sp_int* c = ds[0];
- sp_int* n1 = ds[1];
- sp_int* b = d[0];
- sp_int* r = d[1];
- _sp_init_size(c , a->used + 1);
- _sp_init_size(n1, a->used + 1);
- _sp_init_size(b , a->used * 2 + 1);
- _sp_init_size(r , a->used * 2 + 1);
- _sp_sub_d(a, 2, c);
- bits &= SP_WORD_MASK;
- /* Keep trying random numbers until all trials complete. */
- while (trials > 0) {
- /* Generate random trial number. */
- err = wc_RNG_GenerateBlock(rng, (byte*)b->dp, baseSz);
- if (err != MP_OKAY) {
- break;
- }
- b->used = a->used;
- #ifdef BIG_ENDIAN_ORDER
- /* Fix top digit if fewer bytes than a full digit generated. */
- if (((baseSz * 8) & SP_WORD_MASK) != 0) {
- b->dp[b->used-1] >>=
- SP_WORD_SIZE - ((baseSz * 8) & SP_WORD_MASK);
- }
- #endif /* BIG_ENDIAN_ORDER */
- /* Ensure the top word has no more bits than necessary. */
- if (bits > 0) {
- b->dp[b->used - 1] &= ((sp_int_digit)1 << bits) - 1;
- sp_clamp(b);
- }
- /* Can't use random value it is: 0, 1, a-2, a-1, >= a */
- if ((sp_cmp_d(b, 2) != MP_GT) || (_sp_cmp(b, c) != MP_LT)) {
- continue;
- }
- /* Perform Miller-Rabin test with random value. */
- err = sp_prime_miller_rabin(a, b, result, n1, r);
- if ((err != MP_OKAY) || (*result == MP_NO)) {
- break;
- }
- /* Trial complete. */
- trials--;
- }
- /* Zeroize temporary values used when generating private prime. */
- sp_forcezero(n1);
- sp_forcezero(r);
- sp_forcezero(b);
- sp_forcezero(c);
- }
- FREE_SP_INT_ARRAY(d, NULL);
- FREE_SP_INT_ARRAY(ds, NULL);
- return err;
- }
- #endif /*!WC_NO_RNG */
- /* Check whether a is prime.
- * Checks against a number of small primes and does t iterations of
- * Miller-Rabin.
- *
- * @param [in] a SP integer to check.
- * @param [in] trials Number of iterations of Miller-Rabin test to perform.
- * @param [out] result MP_YES when number is prime.
- * MP_NO otherwise.
- * @param [in] rng Random number generator for Miller-Rabin testing.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a, result or rng is NULL.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_prime_is_prime_ex(const sp_int* a, int trials, int* result, WC_RNG* rng)
- {
- int err = MP_OKAY;
- int ret = MP_YES;
- int haveRes = 0;
- if ((a == NULL) || (result == NULL) || (rng == NULL)) {
- err = MP_VAL;
- }
- #ifndef WC_NO_RNG
- if ((err == MP_OKAY) && (a->used * 2 >= SP_INT_DIGITS)) {
- err = MP_VAL;
- }
- #endif
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- if ((err == MP_OKAY) && (a->sign == MP_NEG)) {
- err = MP_VAL;
- }
- #endif
- /* Ensure trials is valid. Maximum based on number of small primes
- * available. */
- if ((err == MP_OKAY) && ((trials <= 0) || (trials > SP_PRIME_SIZE))) {
- err = MP_VAL;
- }
- if ((err == MP_OKAY) && sp_isone(a)) {
- ret = MP_NO;
- haveRes = 1;
- }
- SAVE_VECTOR_REGISTERS(err = _svr_ret;);
- /* Check against known small primes when a has 1 digit. */
- if ((err == MP_OKAY) && (!haveRes) && (a->used == 1) &&
- (a->dp[0] <= (sp_int_digit)sp_primes[SP_PRIME_SIZE - 1])) {
- haveRes = sp_cmp_primes(a, &ret);
- }
- /* Check all small primes for even divisibility. */
- if ((err == MP_OKAY) && (!haveRes)) {
- err = sp_div_primes(a, &haveRes, &ret);
- }
- #ifndef WC_NO_RNG
- /* Check a number of iterations of Miller-Rabin with random large values. */
- if ((err == MP_OKAY) && (!haveRes)) {
- err = _sp_prime_random_trials(a, trials, &ret, rng);
- }
- #else
- (void)trials;
- #endif /* !WC_NO_RNG */
- if (result != NULL) {
- *result = ret;
- }
- RESTORE_VECTOR_REGISTERS();
- return err;
- }
- #endif /* WOLFSSL_SP_PRIME_GEN */
- #if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN)
- /* Calculates the Greatest Common Denominator (GCD) of a and b into r.
- *
- * Find the largest number that divides both a and b without remainder.
- * r <= a, r <= b, a % r == 0, b % r == 0
- *
- * a and b are positive integers.
- *
- * Euclidian Algorithm:
- * 1. If a > b then a = b, b = a
- * 2. u = a
- * 3. v = b % a
- * 4. While v != 0
- * 4.1. t = u % v
- * 4.2. u <= v, v <= t, t <= u
- * 5. r = u
- *
- * @param [in] a SP integer of first operand.
- * @param [in] b SP integer of second operand.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static WC_INLINE int _sp_gcd(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- sp_int* u = NULL;
- sp_int* v = NULL;
- sp_int* t = NULL;
- /* Used for swapping sp_ints. */
- sp_int* s;
- /* Determine maximum digit length numbers will reach. */
- unsigned int used = (a->used >= b->used) ? a->used + 1 : b->used + 1;
- DECL_SP_INT_ARRAY(d, used, 3);
- SAVE_VECTOR_REGISTERS(err = _svr_ret;);
- ALLOC_SP_INT_ARRAY(d, used, 3, err, NULL);
- if (err == MP_OKAY) {
- u = d[0];
- v = d[1];
- t = d[2];
- _sp_init_size(u, used);
- _sp_init_size(v, used);
- _sp_init_size(t, used);
- /* 1. If a > b then a = b, b = a.
- * Make a <= b.
- */
- if (_sp_cmp(a, b) == MP_GT) {
- const sp_int* tmp;
- tmp = a;
- a = b;
- b = tmp;
- }
- /* 2. u = a, v = b mod a */
- _sp_copy(a, u);
- /* 3. v = b mod a */
- if (a->used == 1) {
- err = sp_mod_d(b, a->dp[0], &v->dp[0]);
- v->used = (v->dp[0] != 0);
- }
- else {
- err = sp_mod(b, a, v);
- }
- }
- /* 4. While v != 0 */
- /* Keep reducing larger by smaller until smaller is 0 or u and v both one
- * digit.
- */
- while ((err == MP_OKAY) && (!sp_iszero(v)) && (u->used > 1)) {
- /* u' = v, v' = u mod v */
- /* 4.1 t = u mod v */
- if (v->used == 1) {
- err = sp_mod_d(u, v->dp[0], &t->dp[0]);
- t->used = (t->dp[0] != 0);
- }
- else {
- err = sp_mod(u, v, t);
- }
- /* 4.2. u <= v, v <= t, t <= u */
- s = u; u = v; v = t; t = s;
- }
- /* Only one digit remaining in u and v. */
- while ((err == MP_OKAY) && (!sp_iszero(v))) {
- /* u' = v, v' = u mod v */
- /* 4.1 t = u mod v */
- t->dp[0] = u->dp[0] % v->dp[0];
- t->used = (t->dp[0] != 0);
- /* 4.2. u <= v, v <= t, t <= u */
- s = u; u = v; v = t; t = s;
- }
- if (err == MP_OKAY) {
- /* 5. r = u */
- _sp_copy(u, r);
- }
- FREE_SP_INT_ARRAY(d, NULL);
- RESTORE_VECTOR_REGISTERS();
- return err;
- }
- /* Calculates the Greatest Common Denominator (GCD) of a and b into r.
- *
- * Find the largest number that divides both a and b without remainder.
- * r <= a, r <= b, a % r == 0, b % r == 0
- *
- * a and b are positive integers.
- *
- * @param [in] a SP integer of first operand.
- * @param [in] b SP integer of second operand.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a, b or r is NULL or too large.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_gcd(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (b == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- /* Check that we have space in numbers to do work. */
- else if ((a->used >= SP_INT_DIGITS) || (b->used >= SP_INT_DIGITS)) {
- err = MP_VAL;
- }
- /* Check that r is large enough to hold maximum sized result. */
- else if (((a->used <= b->used) && (r->size < a->used)) ||
- ((b->used < a->used) && (r->size < b->used))) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Algorithm doesn't work with negative numbers. */
- else if ((a->sign == MP_NEG) || (b->sign == MP_NEG)) {
- err = MP_VAL;
- }
- #endif
- else if (sp_iszero(a)) {
- /* GCD of 0 and 0 is undefined - all integers divide 0. */
- if (sp_iszero(b)) {
- err = MP_VAL;
- }
- else {
- /* GCD of 0 and b is b - b divides 0. */
- err = sp_copy(b, r);
- }
- }
- else if (sp_iszero(b)) {
- /* GCD of 0 and a is a - a divides 0. */
- err = sp_copy(a, r);
- }
- else {
- /* Calculate GCD. */
- err = _sp_gcd(a, b, r);
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL && !NO_RSA && WOLFSSL_KEY_GEN */
- #if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) && \
- (!defined(WC_RSA_BLINDING) || defined(HAVE_FIPS) || defined(HAVE_SELFTEST))
- /* Calculates the Lowest Common Multiple (LCM) of a and b and stores in r.
- * Smallest number divisible by both numbers.
- *
- * a and b are positive integers.
- *
- * lcm(a, b) = (a / gcd(a, b)) * b
- * Divide the common divisor from a and multiply by b.
- *
- * Algorithm:
- * 1. t0 = gcd(a, b)
- * 2. If a > b then
- * 2.1. t1 = a / t0
- * 2.2. r = b * t1
- * 3. Else
- * 3.1. t1 = b / t0
- * 3.2. r = a * t1
- *
- * @param [in] a SP integer of first operand.
- * @param [in] b SP integer of second operand.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- static int _sp_lcm(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- /* Determine maximum digit length numbers will reach. */
- unsigned int used = ((a->used >= b->used) ? a->used + 1: b->used + 1);
- DECL_SP_INT_ARRAY(t, used, 2);
- ALLOC_SP_INT_ARRAY(t, used, 2, err, NULL);
- if (err == MP_OKAY) {
- _sp_init_size(t[0], used);
- _sp_init_size(t[1], used);
- SAVE_VECTOR_REGISTERS(err = _svr_ret;);
- if (err == MP_OKAY) {
- /* 1. t0 = gcd(a, b) */
- err = sp_gcd(a, b, t[0]);
- }
- if (err == MP_OKAY) {
- /* Divide the greater by the common divisor and multiply by other
- * to operate on the smallest length numbers.
- */
- /* 2. If a > b then */
- if (_sp_cmp_abs(a, b) == MP_GT) {
- /* 2.1. t1 = a / t0 */
- err = sp_div(a, t[0], t[1], NULL);
- if (err == MP_OKAY) {
- /* 2.2. r = b * t1 */
- err = sp_mul(b, t[1], r);
- }
- }
- /* 3. Else */
- else {
- /* 3.1. t1 = b / t0 */
- err = sp_div(b, t[0], t[1], NULL);
- if (err == MP_OKAY) {
- /* 3.2. r = a * t1 */
- err = sp_mul(a, t[1], r);
- }
- }
- }
- RESTORE_VECTOR_REGISTERS();
- }
- FREE_SP_INT_ARRAY(t, NULL);
- return err;
- }
- /* Calculates the Lowest Common Multiple (LCM) of a and b and stores in r.
- * Smallest number divisible by both numbers.
- *
- * a and b are positive integers.
- *
- * @param [in] a SP integer of first operand.
- * @param [in] b SP integer of second operand.
- * @param [out] r SP integer to hold result.
- *
- * @return MP_OKAY on success.
- * @return MP_VAL when a, b or r is NULL; or a or b is zero.
- * @return MP_MEM when dynamic memory allocation fails.
- */
- int sp_lcm(const sp_int* a, const sp_int* b, sp_int* r)
- {
- int err = MP_OKAY;
- /* Validate parameters. */
- if ((a == NULL) || (b == NULL) || (r == NULL)) {
- err = MP_VAL;
- }
- #ifdef WOLFSSL_SP_INT_NEGATIVE
- /* Ensure a and b are positive. */
- else if ((a->sign == MP_NEG) || (b->sign >= MP_NEG)) {
- err = MP_VAL;
- }
- #endif
- /* Ensure r has space for maximumal result. */
- else if (r->size < a->used + b->used) {
- err = MP_VAL;
- }
- /* LCM of 0 and any number is undefined as 0 is not in the set of values
- * being used.
- */
- if ((err == MP_OKAY) && (mp_iszero(a) || mp_iszero(b))) {
- err = MP_VAL;
- }
- if (err == MP_OKAY) {
- /* Do operation. */
- err = _sp_lcm(a, b, r);
- }
- return err;
- }
- #endif /* WOLFSSL_SP_MATH_ALL && !NO_RSA && WOLFSSL_KEY_GEN */
- /* Returns the run time settings.
- *
- * @return Settings value.
- */
- word32 CheckRunTimeSettings(void)
- {
- return CTC_SETTINGS;
- }
- /* Returns the fast math settings.
- *
- * @return Setting - number of bits in a digit.
- */
- word32 CheckRunTimeFastMath(void)
- {
- return SP_WORD_SIZE;
- }
- #ifdef WOLFSSL_CHECK_MEM_ZERO
- /* Add an MP to check.
- *
- * @param [in] name Name of address to check.
- * @param [in] sp sp_int that needs to be checked.
- */
- void sp_memzero_add(const char* name, sp_int* sp)
- {
- wc_MemZero_Add(name, sp->dp, sp->size * sizeof(sp_digit));
- }
- /* Check the memory in the data pointer for memory that must be zero.
- *
- * @param [in] sp sp_int that needs to be checked.
- */
- void sp_memzero_check(sp_int* sp)
- {
- wc_MemZero_Check(sp->dp, sp->size * sizeof(sp_digit));
- }
- #endif /* WOLFSSL_CHECK_MEM_ZERO */
- #if (!defined(WOLFSSL_SMALL_STACK) && !defined(SP_ALLOC)) || \
- defined(WOLFSSL_SP_NO_MALLOC)
- #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
- !defined(WOLFSSL_SP_NO_DYN_STACK)
- #pragma GCC diagnostic pop
- #endif
- #endif
- #endif /* WOLFSSL_SP_MATH || WOLFSSL_SP_MATH_ALL */
|