mag_helpers.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502
  1. #include "mag_helpers.h"
  2. #define TAG "MagHelpers"
  3. // Haviv Board - pins gpio_ext_pa7 & gpio_ext_pa6 was swapped.
  4. #define GPIO_PIN_A &gpio_ext_pa7
  5. #define GPIO_PIN_B &gpio_ext_pa6
  6. #define GPIO_PIN_ENABLE &gpio_ext_pa4
  7. #define RFID_PIN_OUT &gpio_rfid_carrier_out
  8. #define ZERO_PREFIX 25 // n zeros prefix
  9. #define ZERO_BETWEEN 53 // n zeros between tracks
  10. #define ZERO_SUFFIX 25 // n zeros suffix
  11. // bits per char on a given track
  12. const uint8_t bitlen[] = {7, 5, 5};
  13. // char offset by track
  14. const int sublen[] = {32, 48, 48};
  15. uint8_t last_value = 2;
  16. const GpioPin* mag_gpio_enum_to_pin(MagSettingPin pin) {
  17. switch(pin) {
  18. case MagSettingPinA7:
  19. return &gpio_ext_pa7;
  20. case MagSettingPinA6:
  21. return &gpio_ext_pa6;
  22. case MagSettingPinA4:
  23. return &gpio_ext_pa4;
  24. case MagSettingPinB3:
  25. return &gpio_ext_pb3;
  26. case MagSettingPinB2:
  27. return &gpio_ext_pb2;
  28. case MagSettingPinC3:
  29. return &gpio_ext_pc3;
  30. case MagSettingPinC1:
  31. return &gpio_ext_pc1;
  32. case MagSettingPinC0:
  33. return &gpio_ext_pc0;
  34. default:
  35. return NULL;
  36. }
  37. }
  38. void play_halfbit(bool value, MagSetting* setting) {
  39. switch(setting->tx) {
  40. case MagTxStateRFID:
  41. furi_hal_gpio_write(RFID_PIN_OUT, value);
  42. /*furi_hal_gpio_write(RFID_PIN_OUT, !value);
  43. furi_hal_gpio_write(RFID_PIN_OUT, value);
  44. furi_hal_gpio_write(RFID_PIN_OUT, !value);
  45. furi_hal_gpio_write(RFID_PIN_OUT, value);*/
  46. break;
  47. case MagTxStateGPIO:
  48. furi_hal_gpio_write(GPIO_PIN_A, value);
  49. furi_hal_gpio_write(GPIO_PIN_B, !value);
  50. break;
  51. case MagTxStatePiezo:
  52. furi_hal_gpio_write(&gpio_speaker, value);
  53. /*furi_hal_gpio_write(&gpio_speaker, !value);
  54. furi_hal_gpio_write(&gpio_speaker, value);
  55. furi_hal_gpio_write(&gpio_speaker, !value);
  56. furi_hal_gpio_write(&gpio_speaker, value);*/
  57. break;
  58. case MagTxStateLF_P:
  59. furi_hal_gpio_write(RFID_PIN_OUT, value);
  60. furi_hal_gpio_write(&gpio_speaker, value);
  61. /* // Weaker but cleaner signal
  62. if(value) {
  63. furi_hal_gpio_write(RFID_PIN_OUT, value);
  64. furi_hal_gpio_write(&gpio_speaker, value);
  65. furi_delay_us(10);
  66. furi_hal_gpio_write(RFID_PIN_OUT, !value);
  67. furi_hal_gpio_write(&gpio_speaker, !value);
  68. } else {
  69. furi_delay_us(10);
  70. }*/
  71. /*furi_hal_gpio_write(RFID_PIN_OUT, value);
  72. furi_hal_gpio_write(&gpio_speaker, value);
  73. furi_hal_gpio_write(RFID_PIN_OUT, !value);
  74. furi_hal_gpio_write(&gpio_speaker, !value);
  75. furi_hal_gpio_write(RFID_PIN_OUT, value);
  76. furi_hal_gpio_write(&gpio_speaker, value);*/
  77. break;
  78. case MagTxStateNFC:
  79. // turn on for duration of half-bit? or "blip" the field on / off?
  80. // getting nothing from the mag reader either way
  81. //(value) ? furi_hal_nfc_ll_txrx_on() : furi_hal_nfc_ll_txrx_off();
  82. if(last_value == 2 || value != (bool)last_value) {
  83. //furi_hal_nfc_ll_txrx_on();
  84. furi_delay_us(64);
  85. //furi_hal_nfc_ll_txrx_off();
  86. }
  87. break;
  88. case MagTxCC1101_434:
  89. case MagTxCC1101_868:
  90. if(last_value == 2 || value != (bool)last_value) {
  91. furi_hal_gpio_write(&gpio_cc1101_g0, true);
  92. furi_delay_us(64);
  93. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  94. }
  95. break;
  96. default:
  97. break;
  98. }
  99. last_value = value;
  100. }
  101. void play_track(uint8_t* bits_manchester, uint16_t n_bits, MagSetting* setting, bool reverse) {
  102. for(uint16_t i = 0; i < n_bits; i++) {
  103. uint16_t j = (reverse) ? (n_bits - i - 1) : i;
  104. uint8_t byte = j / 8;
  105. uint8_t bitmask = 1 << (7 - (j % 8));
  106. /* Bits are stored in their arrays like on a card (LSB first). This is not how usually bits are stored in a
  107. * byte, with the MSB first. the var bitmask creates the pattern to iterate through each bit, LSB first, like so
  108. * 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x80... masking bits one by one from the current byte
  109. *
  110. * I've chosen this LSB approach since bits and bytes are hard enough to visualize with the 5/8 and 7/8 encoding
  111. * MSR uses. It's a biiit more complicated to process, but visualizing it with printf or a debugger is
  112. * infinitely easier
  113. *
  114. * Encoding the following pairs of 5 bits as 5/8: A1234 B1234 C1234 D1234
  115. * using this LSB format looks like: A1234B12 34C1234D 12340000
  116. * using the MSB format, looks like: 21B4321A D4321C43 00004321
  117. * this means reading each byte backwards when printing/debugging, and the jumping 16 bits ahead, reading 8 more
  118. * bits backward, jumping 16 more bits ahead.
  119. *
  120. * I find this much more convenient for debugging, with the tiny incovenience of reading the bits in reverse
  121. * order. Thus, the reason for the bitmask above
  122. */
  123. bool bit = !!(bits_manchester[byte] & bitmask);
  124. // TODO: reimplement timing delays. Replace fixed furi_hal_cortex_delay_us to wait instead to a specific value
  125. // for DWT->CYCCNT. Note timer is aliased to 64us as per
  126. // #define FURI_HAL_CORTEX_INSTRUCTIONS_PER_MICROSECOND (SystemCoreClock / 1000000) | furi_hal_cortex.c
  127. play_halfbit(bit, setting);
  128. furi_delay_us(setting->us_clock);
  129. // if (i % 2 == 1) furi_delay_us(setting->us_interpacket);
  130. }
  131. }
  132. void tx_init_rfid() {
  133. // initialize RFID system for TX
  134. furi_hal_ibutton_pin_configure();
  135. // furi_hal_ibutton_start_drive();
  136. furi_hal_ibutton_pin_write(false);
  137. // Initializing at GpioSpeedLow seems sufficient for our needs; no improvements seen by increasing speed setting
  138. // this doesn't seem to make a difference, leaving it in
  139. furi_hal_gpio_init(&gpio_rfid_data_in, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  140. furi_hal_gpio_write(&gpio_rfid_data_in, false);
  141. // false->ground RFID antenna; true->don't ground
  142. // skotopes (RFID dev) say normally you'd want RFID_PULL in high for signal forming, while modulating RFID_OUT
  143. // dunaevai135 had it low in their old code. Leaving low, as it doesn't seem to make a difference on my janky antenna
  144. furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  145. furi_hal_gpio_write(&gpio_nfc_irq_rfid_pull, false);
  146. furi_hal_gpio_init(RFID_PIN_OUT, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  147. furi_delay_ms(300);
  148. }
  149. void tx_deinit_rfid() {
  150. // reset RFID system
  151. furi_hal_gpio_write(RFID_PIN_OUT, 0);
  152. furi_hal_rfid_pins_reset();
  153. }
  154. void tx_init_rf(int hz) {
  155. // presets and frequency will need some experimenting
  156. furi_hal_subghz_reset();
  157. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetOok650Async);
  158. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetGFSK9_99KbAsync);
  159. // furi_hal_subghz_load_preset(FuriHalSubGhzPresetMSK99_97KbAsync);
  160. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev238Async);
  161. // furi_hal_subghz_load_preset(FuriHalSubGhzPreset2FSKDev476Async);
  162. furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  163. furi_hal_subghz_set_frequency_and_path(hz);
  164. furi_hal_subghz_tx();
  165. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  166. }
  167. void tx_init_piezo() {
  168. // TODO: some special mutex acquire procedure? c.f. furi_hal_speaker.c
  169. furi_hal_gpio_init(&gpio_speaker, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  170. }
  171. void tx_deinit_piezo() {
  172. // TODO: some special mutex release procedure?
  173. furi_hal_gpio_init(&gpio_speaker, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  174. }
  175. bool tx_init(MagSetting* setting) {
  176. // Initialize configured TX method
  177. switch(setting->tx) {
  178. case MagTxStateRFID:
  179. tx_init_rfid();
  180. break;
  181. case MagTxStateGPIO:
  182. // gpio_item_configure_all_pins(GpioModeOutputPushPull);
  183. furi_hal_gpio_init(GPIO_PIN_A, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  184. furi_hal_gpio_init(GPIO_PIN_B, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  185. furi_hal_gpio_init(GPIO_PIN_ENABLE, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
  186. furi_hal_gpio_write(GPIO_PIN_ENABLE, 1);
  187. // had some issues with ~300; bumped higher temporarily
  188. furi_delay_ms(500);
  189. break;
  190. case MagTxStatePiezo:
  191. tx_init_piezo();
  192. break;
  193. case MagTxStateLF_P:
  194. tx_init_piezo();
  195. tx_init_rfid();
  196. break;
  197. case MagTxStateNFC:
  198. //furi_hal_nfc_exit_sleep();
  199. break;
  200. case MagTxCC1101_434:
  201. tx_init_rf(434000000);
  202. break;
  203. case MagTxCC1101_868:
  204. tx_init_rf(868000000);
  205. break;
  206. default:
  207. return false;
  208. }
  209. return true;
  210. }
  211. bool tx_deinit(MagSetting* setting) {
  212. // Reset configured TX method
  213. switch(setting->tx) {
  214. case MagTxStateRFID:
  215. tx_deinit_rfid();
  216. break;
  217. case MagTxStateGPIO:
  218. furi_hal_gpio_write(GPIO_PIN_A, 0);
  219. furi_hal_gpio_write(GPIO_PIN_B, 0);
  220. furi_hal_gpio_write(GPIO_PIN_ENABLE, 0);
  221. // set back to analog output mode? - YES
  222. furi_hal_gpio_init(GPIO_PIN_A, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  223. furi_hal_gpio_init(GPIO_PIN_B, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  224. furi_hal_gpio_init(GPIO_PIN_ENABLE, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
  225. //gpio_item_configure_all_pins(GpioModeAnalog);
  226. break;
  227. case MagTxStatePiezo:
  228. tx_deinit_piezo();
  229. break;
  230. case MagTxStateLF_P:
  231. tx_deinit_piezo();
  232. tx_deinit_rfid();
  233. break;
  234. case MagTxStateNFC:
  235. //furi_hal_nfc_ll_txrx_off();
  236. //furi_hal_nfc_start_sleep();
  237. break;
  238. case MagTxCC1101_434:
  239. case MagTxCC1101_868:
  240. furi_hal_gpio_write(&gpio_cc1101_g0, false);
  241. furi_hal_subghz_reset();
  242. furi_hal_subghz_idle();
  243. break;
  244. default:
  245. return false;
  246. }
  247. return true;
  248. }
  249. void mag_spoof(Mag* mag) {
  250. MagSetting* setting = mag->setting;
  251. // TODO: cleanup this section. Possibly move precompute + tx_init to emulate_on_enter?
  252. FuriString* ft1 = mag->mag_dev->dev_data.track[0].str;
  253. FuriString* ft2 = mag->mag_dev->dev_data.track[1].str;
  254. FuriString* ft3 = mag->mag_dev->dev_data.track[2].str;
  255. char *data1, *data2, *data3;
  256. data1 = malloc(furi_string_size(ft1) + 1);
  257. data2 = malloc(furi_string_size(ft2) + 1);
  258. data3 = malloc(furi_string_size(ft3) + 1);
  259. strncpy(data1, furi_string_get_cstr(ft1), furi_string_size(ft1));
  260. strncpy(data2, furi_string_get_cstr(ft2), furi_string_size(ft2));
  261. strncpy(data3, furi_string_get_cstr(ft3), furi_string_size(ft3));
  262. if(furi_log_get_level() >= FuriLogLevelDebug) {
  263. debug_mag_string(data1, bitlen[0], sublen[0]);
  264. debug_mag_string(data2, bitlen[1], sublen[1]);
  265. debug_mag_string(data3, bitlen[2], sublen[2]);
  266. }
  267. uint8_t bits_t1_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  268. uint8_t bits_t1_manchester[128] = {0x00}; // twice the above
  269. uint16_t bits_t1_count = mag_encode(
  270. data1, (uint8_t*)bits_t1_manchester, (uint8_t*)bits_t1_raw, bitlen[0], sublen[0]);
  271. uint8_t bits_t2_raw[64] = {0x00}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  272. uint8_t bits_t2_manchester[128] = {0x00}; // twice the above
  273. uint16_t bits_t2_count = mag_encode(
  274. data2, (uint8_t*)bits_t2_manchester, (uint8_t*)bits_t2_raw, bitlen[1], sublen[1]);
  275. uint8_t bits_t3_raw[64] = {0x00};
  276. uint8_t bits_t3_manchester[128] = {0x00};
  277. uint16_t bits_t3_count = mag_encode(
  278. data3, (uint8_t*)bits_t3_manchester, (uint8_t*)bits_t3_raw, bitlen[2], sublen[2]);
  279. if(furi_log_get_level() >= FuriLogLevelDebug) {
  280. printf(
  281. "Manchester bitcount: T1: %d, T2: %d, T3: %d\r\n",
  282. bits_t1_count,
  283. bits_t2_count,
  284. bits_t3_count);
  285. printf("T1 raw: ");
  286. for(int i = 0; i < bits_t1_count / 16; i++) printf("%02x ", bits_t1_raw[i]);
  287. printf("\r\nT1 manchester: ");
  288. for(int i = 0; i < bits_t1_count / 8; i++) printf("%02x ", bits_t1_manchester[i]);
  289. printf("\r\nT2 raw: ");
  290. for(int i = 0; i < bits_t2_count / 16; i++) printf("%02x ", bits_t2_raw[i]);
  291. printf("\r\nT2 manchester: ");
  292. for(int i = 0; i < bits_t2_count / 8; i++) printf("%02x ", bits_t2_manchester[i]);
  293. printf("\r\nT3 raw: ");
  294. for(int i = 0; i < bits_t3_count / 16; i++) printf("%02x ", bits_t3_raw[i]);
  295. printf("\r\nT3 manchester: ");
  296. for(int i = 0; i < bits_t3_count / 8; i++) printf("%02x ", bits_t3_manchester[i]);
  297. printf("\r\nBitwise emulation done\r\n\r\n");
  298. }
  299. last_value = 2;
  300. bool bit = false;
  301. if(!tx_init(setting)) return;
  302. FURI_CRITICAL_ENTER();
  303. for(uint16_t i = 0; i < (ZERO_PREFIX * 2); i++) {
  304. // is this right?
  305. if(!!(i % 2)) bit ^= 1;
  306. play_halfbit(bit, setting);
  307. furi_delay_us(setting->us_clock);
  308. }
  309. if((setting->track == MagTrackStateOneAndTwo) || (setting->track == MagTrackStateOne))
  310. play_track((uint8_t*)bits_t1_manchester, bits_t1_count, setting, false);
  311. if((setting->track == MagTrackStateOneAndTwo))
  312. for(uint16_t i = 0; i < (ZERO_BETWEEN * 2); i++) {
  313. if(!!(i % 2)) bit ^= 1;
  314. play_halfbit(bit, setting);
  315. furi_delay_us(setting->us_clock);
  316. }
  317. if((setting->track == MagTrackStateOneAndTwo) || (setting->track == MagTrackStateTwo))
  318. play_track(
  319. (uint8_t*)bits_t2_manchester,
  320. bits_t2_count,
  321. setting,
  322. (setting->reverse == MagReverseStateOn));
  323. if((setting->track == MagTrackStateThree))
  324. play_track((uint8_t*)bits_t3_manchester, bits_t3_count, setting, false);
  325. for(uint16_t i = 0; i < (ZERO_SUFFIX * 2); i++) {
  326. if(!!(i % 2)) bit ^= 1;
  327. play_halfbit(bit, setting);
  328. furi_delay_us(setting->us_clock);
  329. }
  330. FURI_CRITICAL_EXIT();
  331. free(data1);
  332. free(data2);
  333. free(data3);
  334. tx_deinit(setting);
  335. }
  336. uint16_t add_bit(bool value, uint8_t* out, uint16_t count) {
  337. uint8_t bit = count % 8;
  338. uint8_t byte = count / 8;
  339. if(value) {
  340. out[byte] |= 0x01;
  341. }
  342. if(bit < 7) out[byte] <<= 1;
  343. return count + 1;
  344. }
  345. uint16_t add_bit_manchester(bool value, uint8_t* out, uint16_t count) {
  346. static bool toggle = 0;
  347. toggle ^= 0x01;
  348. count = add_bit(toggle, out, count);
  349. if(value) toggle ^= 0x01;
  350. count = add_bit(toggle, out, count);
  351. return count;
  352. }
  353. uint16_t mag_encode(
  354. char* data,
  355. uint8_t* out_manchester,
  356. uint8_t* out_raw,
  357. uint8_t track_bits,
  358. uint8_t track_ascii_offset) {
  359. /*
  360. * track_bits - the number of raw (data) bits on the track. on ISO cards, that's 7 for track 1, or 5 for 2/3 - this is samy's bitlen
  361. * - this count includes the parity bit
  362. * track_ascii_offset - how much the ascii values are offset. track 1 makes space (ascii 32) become data 0x00,
  363. * - tracks 2/3 make ascii "0" become data 0x00 - this is samy's sublen
  364. *
  365. */
  366. uint16_t raw_bits_count = 0;
  367. uint16_t output_count = 0;
  368. int tmp, crc, lrc = 0;
  369. /* // why are we adding zeros to the encoded string if we're also doing it while playing?
  370. for(int i = 0; i < ZERO_PREFIX; i++) {
  371. output_count = add_bit_manchester(0, out_manchester, output_count);
  372. raw_bits_count = add_bit(0, out_raw, raw_bits_count);
  373. }*/
  374. for(int i = 0; *(data + i) != 0; i++) {
  375. crc = 1;
  376. tmp = *(data + i) - track_ascii_offset;
  377. for(int j = 0; j < track_bits - 1; j++) {
  378. crc ^= tmp & 1;
  379. lrc ^= (tmp & 1) << j;
  380. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  381. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  382. tmp >>= 1;
  383. }
  384. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  385. output_count = add_bit_manchester(crc, out_manchester, output_count);
  386. }
  387. // LRC byte
  388. tmp = lrc;
  389. crc = 1;
  390. for(int j = 0; j < track_bits - 1; j++) {
  391. crc ^= tmp & 0x01;
  392. raw_bits_count = add_bit(tmp & 0x01, out_raw, raw_bits_count);
  393. output_count = add_bit_manchester(tmp & 0x01, out_manchester, output_count);
  394. tmp >>= 1;
  395. }
  396. raw_bits_count = add_bit(crc, out_raw, raw_bits_count);
  397. output_count = add_bit_manchester(crc, out_manchester, output_count);
  398. return output_count;
  399. }
  400. void debug_mag_string(char* data, uint8_t track_bits, uint8_t track_ascii_offset) {
  401. uint8_t bits_raw[64] = {0}; // 68 chars max track 1 + 1 char crc * 7 approx =~ 483 bits
  402. uint8_t bits_manchester[128] = {0}; // twice the above
  403. int numbits = 0;
  404. printf("Encoding [%s] with %d bits\r\n", data, track_bits);
  405. numbits = mag_encode(
  406. data, (uint8_t*)bits_manchester, (uint8_t*)bits_raw, track_bits, track_ascii_offset);
  407. printf("Got %d bits\r\n", numbits);
  408. printf("Raw byte stream: ");
  409. for(int i = 0; i < numbits / 8 / 2; i++) {
  410. printf("%02x", bits_raw[i]);
  411. if(i % 4 == 3) printf(" ");
  412. }
  413. printf("\r\n");
  414. printf("Bits ");
  415. int space_counter = 0;
  416. for(int i = 0; i < numbits / 2; i++) {
  417. /*if(i < ZERO_PREFIX) {
  418. printf("X");
  419. continue;
  420. } else if(i == ZERO_PREFIX) {
  421. printf(" ");
  422. space_counter = 0;
  423. }*/
  424. printf("%01x", (bits_raw[i / 8] & (1 << (7 - (i % 8)))) != 0);
  425. if((space_counter) % track_bits == track_bits - 1) printf(" ");
  426. space_counter++;
  427. }
  428. printf("\r\n");
  429. printf("Manchester encoded, byte stream: ");
  430. for(int i = 0; i < numbits / 8; i++) {
  431. printf("%02x", bits_manchester[i]);
  432. if(i % 4 == 3) printf(" ");
  433. }
  434. printf("\r\n\r\n");
  435. }