mifare_classic.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108
  1. #include "mifare_classic.h"
  2. #include "nfca.h"
  3. #include "nfc_util.h"
  4. #include <furi_hal_rtc.h>
  5. // Algorithm from https://github.com/RfidResearchGroup/proxmark3.git
  6. #define TAG "MfClassic"
  7. #define MF_CLASSIC_AUTH_KEY_A_CMD (0x60U)
  8. #define MF_CLASSIC_AUTH_KEY_B_CMD (0x61U)
  9. #define MF_CLASSIC_READ_BLOCK_CMD (0x30)
  10. #define MF_CLASSIC_WRITE_BLOCK_CMD (0xA0)
  11. const char* mf_classic_get_type_str(MfClassicType type) {
  12. if(type == MfClassicType1k) {
  13. return "MIFARE Classic 1K";
  14. } else if(type == MfClassicType4k) {
  15. return "MIFARE Classic 4K";
  16. } else {
  17. return "Unknown";
  18. }
  19. }
  20. static uint8_t mf_classic_get_first_block_num_of_sector(uint8_t sector) {
  21. furi_assert(sector < 40);
  22. if(sector < 32) {
  23. return sector * 4;
  24. } else {
  25. return 32 * 4 + (sector - 32) * 16;
  26. }
  27. }
  28. uint8_t mf_classic_get_sector_trailer_block_num_by_sector(uint8_t sector) {
  29. furi_assert(sector < 40);
  30. if(sector < 32) {
  31. return sector * 4 + 3;
  32. } else {
  33. return 32 * 4 + (sector - 32) * 16 + 15;
  34. }
  35. }
  36. uint8_t mf_classic_get_sector_by_block(uint8_t block) {
  37. if(block < 128) {
  38. return (block | 0x03) / 4;
  39. } else {
  40. return 32 + ((block | 0xf) - 32 * 4) / 16;
  41. }
  42. }
  43. static uint8_t mf_classic_get_blocks_num_in_sector(uint8_t sector) {
  44. furi_assert(sector < 40);
  45. return sector < 32 ? 4 : 16;
  46. }
  47. uint8_t mf_classic_get_sector_trailer_num_by_block(uint8_t block) {
  48. if(block < 128) {
  49. return block | 0x03;
  50. } else {
  51. return block | 0x0f;
  52. }
  53. }
  54. bool mf_classic_is_sector_trailer(uint8_t block) {
  55. return block == mf_classic_get_sector_trailer_num_by_block(block);
  56. }
  57. MfClassicSectorTrailer*
  58. mf_classic_get_sector_trailer_by_sector(MfClassicData* data, uint8_t sector) {
  59. furi_assert(data);
  60. uint8_t sec_tr_block_num = mf_classic_get_sector_trailer_block_num_by_sector(sector);
  61. return (MfClassicSectorTrailer*)data->block[sec_tr_block_num].value;
  62. }
  63. uint8_t mf_classic_get_total_sectors_num(MfClassicType type) {
  64. if(type == MfClassicType1k) {
  65. return MF_CLASSIC_1K_TOTAL_SECTORS_NUM;
  66. } else if(type == MfClassicType4k) {
  67. return MF_CLASSIC_4K_TOTAL_SECTORS_NUM;
  68. } else {
  69. return 0;
  70. }
  71. }
  72. uint16_t mf_classic_get_total_block_num(MfClassicType type) {
  73. if(type == MfClassicType1k) {
  74. return 64;
  75. } else if(type == MfClassicType4k) {
  76. return 256;
  77. } else {
  78. return 0;
  79. }
  80. }
  81. bool mf_classic_is_block_read(MfClassicData* data, uint8_t block_num) {
  82. furi_assert(data);
  83. return (FURI_BIT(data->block_read_mask[block_num / 32], block_num % 32) == 1);
  84. }
  85. void mf_classic_set_block_read(MfClassicData* data, uint8_t block_num, MfClassicBlock* block_data) {
  86. furi_assert(data);
  87. if(mf_classic_is_sector_trailer(block_num)) {
  88. memcpy(&data->block[block_num].value[6], &block_data->value[6], 4);
  89. } else {
  90. memcpy(data->block[block_num].value, block_data->value, MF_CLASSIC_BLOCK_SIZE);
  91. }
  92. FURI_BIT_SET(data->block_read_mask[block_num / 32], block_num % 32);
  93. }
  94. bool mf_classic_is_sector_data_read(MfClassicData* data, uint8_t sector_num) {
  95. furi_assert(data);
  96. uint8_t first_block = mf_classic_get_first_block_num_of_sector(sector_num);
  97. uint8_t total_blocks = mf_classic_get_blocks_num_in_sector(sector_num);
  98. bool data_read = true;
  99. for(size_t i = first_block; i < first_block + total_blocks; i++) {
  100. data_read &= mf_classic_is_block_read(data, i);
  101. }
  102. return data_read;
  103. }
  104. void mf_classic_set_sector_data_not_read(MfClassicData* data) {
  105. furi_assert(data);
  106. memset(data->block_read_mask, 0, sizeof(data->block_read_mask));
  107. }
  108. bool mf_classic_is_key_found(MfClassicData* data, uint8_t sector_num, MfClassicKey key_type) {
  109. furi_assert(data);
  110. bool key_found = false;
  111. if(key_type == MfClassicKeyA) {
  112. key_found = (FURI_BIT(data->key_a_mask, sector_num) == 1);
  113. } else if(key_type == MfClassicKeyB) {
  114. key_found = (FURI_BIT(data->key_b_mask, sector_num) == 1);
  115. }
  116. return key_found;
  117. }
  118. void mf_classic_set_key_found(
  119. MfClassicData* data,
  120. uint8_t sector_num,
  121. MfClassicKey key_type,
  122. uint64_t key) {
  123. furi_assert(data);
  124. uint8_t key_arr[6] = {};
  125. MfClassicSectorTrailer* sec_trailer =
  126. mf_classic_get_sector_trailer_by_sector(data, sector_num);
  127. nfc_util_num2bytes(key, 6, key_arr);
  128. if(key_type == MfClassicKeyA) {
  129. memcpy(sec_trailer->key_a, key_arr, sizeof(sec_trailer->key_a));
  130. FURI_BIT_SET(data->key_a_mask, sector_num);
  131. } else if(key_type == MfClassicKeyB) {
  132. memcpy(sec_trailer->key_b, key_arr, sizeof(sec_trailer->key_b));
  133. FURI_BIT_SET(data->key_b_mask, sector_num);
  134. }
  135. }
  136. void mf_classic_set_key_not_found(MfClassicData* data, uint8_t sector_num, MfClassicKey key_type) {
  137. furi_assert(data);
  138. if(key_type == MfClassicKeyA) {
  139. FURI_BIT_CLEAR(data->key_a_mask, sector_num);
  140. } else if(key_type == MfClassicKeyB) {
  141. FURI_BIT_CLEAR(data->key_b_mask, sector_num);
  142. }
  143. }
  144. bool mf_classic_is_sector_read(MfClassicData* data, uint8_t sector_num) {
  145. furi_assert(data);
  146. bool sector_read = false;
  147. do {
  148. if(!mf_classic_is_key_found(data, sector_num, MfClassicKeyA)) break;
  149. if(!mf_classic_is_key_found(data, sector_num, MfClassicKeyB)) break;
  150. uint8_t start_block = mf_classic_get_first_block_num_of_sector(sector_num);
  151. uint8_t total_blocks = mf_classic_get_blocks_num_in_sector(sector_num);
  152. uint8_t block_read = true;
  153. for(size_t i = start_block; i < start_block + total_blocks; i++) {
  154. block_read = mf_classic_is_block_read(data, i);
  155. if(!block_read) break;
  156. }
  157. sector_read = block_read;
  158. } while(false);
  159. return sector_read;
  160. }
  161. void mf_classic_get_read_sectors_and_keys(
  162. MfClassicData* data,
  163. uint8_t* sectors_read,
  164. uint8_t* keys_found) {
  165. furi_assert(data);
  166. furi_assert(sectors_read);
  167. furi_assert(keys_found);
  168. *sectors_read = 0;
  169. *keys_found = 0;
  170. uint8_t sectors_total = mf_classic_get_total_sectors_num(data->type);
  171. for(size_t i = 0; i < sectors_total; i++) {
  172. if(mf_classic_is_key_found(data, i, MfClassicKeyA)) {
  173. *keys_found += 1;
  174. }
  175. if(mf_classic_is_key_found(data, i, MfClassicKeyB)) {
  176. *keys_found += 1;
  177. }
  178. uint8_t first_block = mf_classic_get_first_block_num_of_sector(i);
  179. uint8_t total_blocks_in_sec = mf_classic_get_blocks_num_in_sector(i);
  180. bool blocks_read = true;
  181. for(size_t i = first_block; i < first_block + total_blocks_in_sec; i++) {
  182. blocks_read = mf_classic_is_block_read(data, i);
  183. if(!blocks_read) break;
  184. }
  185. if(blocks_read) {
  186. *sectors_read += 1;
  187. }
  188. }
  189. }
  190. bool mf_classic_is_card_read(MfClassicData* data) {
  191. furi_assert(data);
  192. uint8_t sectors_total = mf_classic_get_total_sectors_num(data->type);
  193. uint8_t sectors_read = 0;
  194. uint8_t keys_found = 0;
  195. mf_classic_get_read_sectors_and_keys(data, &sectors_read, &keys_found);
  196. bool card_read = (sectors_read == sectors_total) && (keys_found == sectors_total * 2);
  197. return card_read;
  198. }
  199. bool mf_classic_is_allowed_access_sector_trailer(
  200. MfClassicData* data,
  201. uint8_t block_num,
  202. MfClassicKey key,
  203. MfClassicAction action) {
  204. uint8_t* sector_trailer = data->block[block_num].value;
  205. uint8_t AC = ((sector_trailer[7] >> 5) & 0x04) | ((sector_trailer[8] >> 2) & 0x02) |
  206. ((sector_trailer[8] >> 7) & 0x01);
  207. switch(action) {
  208. case MfClassicActionKeyARead: {
  209. return false;
  210. }
  211. case MfClassicActionKeyAWrite:
  212. case MfClassicActionKeyBWrite: {
  213. return (
  214. (key == MfClassicKeyA && (AC == 0x00 || AC == 0x01)) ||
  215. (key == MfClassicKeyB && (AC == 0x04 || AC == 0x03)));
  216. }
  217. case MfClassicActionKeyBRead: {
  218. return (key == MfClassicKeyA && (AC == 0x00 || AC == 0x02 || AC == 0x01));
  219. }
  220. case MfClassicActionACRead: {
  221. return (
  222. (key == MfClassicKeyA) ||
  223. (key == MfClassicKeyB && !(AC == 0x00 || AC == 0x02 || AC == 0x01)));
  224. }
  225. case MfClassicActionACWrite: {
  226. return (
  227. (key == MfClassicKeyA && (AC == 0x01)) ||
  228. (key == MfClassicKeyB && (AC == 0x03 || AC == 0x05)));
  229. }
  230. default:
  231. return false;
  232. }
  233. return true;
  234. }
  235. bool mf_classic_is_allowed_access_data_block(
  236. MfClassicData* data,
  237. uint8_t block_num,
  238. MfClassicKey key,
  239. MfClassicAction action) {
  240. uint8_t* sector_trailer =
  241. data->block[mf_classic_get_sector_trailer_num_by_block(block_num)].value;
  242. uint8_t sector_block;
  243. if(block_num <= 128) {
  244. sector_block = block_num & 0x03;
  245. } else {
  246. sector_block = (block_num & 0x0f) / 5;
  247. }
  248. uint8_t AC;
  249. switch(sector_block) {
  250. case 0x00: {
  251. AC = ((sector_trailer[7] >> 2) & 0x04) | ((sector_trailer[8] << 1) & 0x02) |
  252. ((sector_trailer[8] >> 4) & 0x01);
  253. break;
  254. }
  255. case 0x01: {
  256. AC = ((sector_trailer[7] >> 3) & 0x04) | ((sector_trailer[8] >> 0) & 0x02) |
  257. ((sector_trailer[8] >> 5) & 0x01);
  258. break;
  259. }
  260. case 0x02: {
  261. AC = ((sector_trailer[7] >> 4) & 0x04) | ((sector_trailer[8] >> 1) & 0x02) |
  262. ((sector_trailer[8] >> 6) & 0x01);
  263. break;
  264. }
  265. default:
  266. return false;
  267. }
  268. switch(action) {
  269. case MfClassicActionDataRead: {
  270. return (
  271. (key == MfClassicKeyA && !(AC == 0x03 || AC == 0x05 || AC == 0x07)) ||
  272. (key == MfClassicKeyB && !(AC == 0x07)));
  273. }
  274. case MfClassicActionDataWrite: {
  275. return (
  276. (key == MfClassicKeyA && (AC == 0x00)) ||
  277. (key == MfClassicKeyB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03)));
  278. }
  279. case MfClassicActionDataInc: {
  280. return (
  281. (key == MfClassicKeyA && (AC == 0x00)) ||
  282. (key == MfClassicKeyB && (AC == 0x00 || AC == 0x06)));
  283. }
  284. case MfClassicActionDataDec: {
  285. return (
  286. (key == MfClassicKeyA && (AC == 0x00 || AC == 0x06 || AC == 0x01)) ||
  287. (key == MfClassicKeyB && (AC == 0x00 || AC == 0x06 || AC == 0x01)));
  288. }
  289. default:
  290. return false;
  291. }
  292. return false;
  293. }
  294. static bool mf_classic_is_allowed_access(
  295. MfClassicEmulator* emulator,
  296. uint8_t block_num,
  297. MfClassicKey key,
  298. MfClassicAction action) {
  299. if(mf_classic_is_sector_trailer(block_num)) {
  300. return mf_classic_is_allowed_access_sector_trailer(
  301. &emulator->data, block_num, key, action);
  302. } else {
  303. return mf_classic_is_allowed_access_data_block(&emulator->data, block_num, key, action);
  304. }
  305. }
  306. bool mf_classic_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
  307. UNUSED(ATQA1);
  308. if((ATQA0 == 0x44 || ATQA0 == 0x04) && (SAK == 0x08 || SAK == 0x88 || SAK == 0x09)) {
  309. return true;
  310. } else if((ATQA0 == 0x01) && (ATQA1 == 0x0F) && (SAK == 0x01)) {
  311. //skylanders support
  312. return true;
  313. } else if((ATQA0 == 0x42 || ATQA0 == 0x02) && (SAK == 0x18)) {
  314. return true;
  315. } else {
  316. return false;
  317. }
  318. }
  319. MfClassicType mf_classic_get_classic_type(int8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
  320. UNUSED(ATQA1);
  321. if((ATQA0 == 0x44 || ATQA0 == 0x04) && (SAK == 0x08 || SAK == 0x88 || SAK == 0x09)) {
  322. return MfClassicType1k;
  323. } else if((ATQA0 == 0x01) && (ATQA1 == 0x0F) && (SAK == 0x01)) {
  324. //skylanders support
  325. return MfClassicType1k;
  326. } else if((ATQA0 == 0x42 || ATQA0 == 0x02) && (SAK == 0x18)) {
  327. return MfClassicType4k;
  328. }
  329. return MfClassicType1k;
  330. }
  331. void mf_classic_reader_add_sector(
  332. MfClassicReader* reader,
  333. uint8_t sector,
  334. uint64_t key_a,
  335. uint64_t key_b) {
  336. furi_assert(reader);
  337. furi_assert(sector < MF_CLASSIC_SECTORS_MAX);
  338. furi_assert((key_a != MF_CLASSIC_NO_KEY) || (key_b != MF_CLASSIC_NO_KEY));
  339. if(reader->sectors_to_read < MF_CLASSIC_SECTORS_MAX) {
  340. reader->sector_reader[reader->sectors_to_read].key_a = key_a;
  341. reader->sector_reader[reader->sectors_to_read].key_b = key_b;
  342. reader->sector_reader[reader->sectors_to_read].sector_num = sector;
  343. reader->sectors_to_read++;
  344. }
  345. }
  346. void mf_classic_auth_init_context(MfClassicAuthContext* auth_ctx, uint8_t sector) {
  347. furi_assert(auth_ctx);
  348. auth_ctx->sector = sector;
  349. auth_ctx->key_a = MF_CLASSIC_NO_KEY;
  350. auth_ctx->key_b = MF_CLASSIC_NO_KEY;
  351. }
  352. static bool mf_classic_auth(
  353. FuriHalNfcTxRxContext* tx_rx,
  354. uint32_t block,
  355. uint64_t key,
  356. MfClassicKey key_type,
  357. Crypto1* crypto,
  358. bool skip_activate,
  359. uint32_t cuid) {
  360. bool auth_success = false;
  361. memset(tx_rx->tx_data, 0, sizeof(tx_rx->tx_data));
  362. memset(tx_rx->tx_parity, 0, sizeof(tx_rx->tx_parity));
  363. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeDefault;
  364. do {
  365. if(!skip_activate && !furi_hal_nfc_activate_nfca(200, &cuid)) break;
  366. if(key_type == MfClassicKeyA) {
  367. tx_rx->tx_data[0] = MF_CLASSIC_AUTH_KEY_A_CMD;
  368. } else {
  369. tx_rx->tx_data[0] = MF_CLASSIC_AUTH_KEY_B_CMD;
  370. }
  371. tx_rx->tx_data[1] = block;
  372. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRxNoCrc;
  373. tx_rx->tx_bits = 2 * 8;
  374. if(!furi_hal_nfc_tx_rx(tx_rx, 6)) break;
  375. uint32_t nt = (uint32_t)nfc_util_bytes2num(tx_rx->rx_data, 4);
  376. crypto1_init(crypto, key);
  377. crypto1_word(crypto, nt ^ cuid, 0);
  378. uint8_t nr[4] = {};
  379. nfc_util_num2bytes(prng_successor(DWT->CYCCNT, 32), 4, nr);
  380. for(uint8_t i = 0; i < 4; i++) {
  381. tx_rx->tx_data[i] = crypto1_byte(crypto, nr[i], 0) ^ nr[i];
  382. tx_rx->tx_parity[0] |=
  383. (((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(nr[i])) & 0x01) << (7 - i));
  384. }
  385. nt = prng_successor(nt, 32);
  386. for(uint8_t i = 4; i < 8; i++) {
  387. nt = prng_successor(nt, 8);
  388. tx_rx->tx_data[i] = crypto1_byte(crypto, 0x00, 0) ^ (nt & 0xff);
  389. tx_rx->tx_parity[0] |=
  390. (((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(nt & 0xff)) & 0x01)
  391. << (7 - i));
  392. }
  393. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
  394. tx_rx->tx_bits = 8 * 8;
  395. if(!furi_hal_nfc_tx_rx(tx_rx, 6)) break;
  396. if(tx_rx->rx_bits == 32) {
  397. crypto1_word(crypto, 0, 0);
  398. auth_success = true;
  399. }
  400. } while(false);
  401. return auth_success;
  402. }
  403. bool mf_classic_authenticate(
  404. FuriHalNfcTxRxContext* tx_rx,
  405. uint8_t block_num,
  406. uint64_t key,
  407. MfClassicKey key_type) {
  408. furi_assert(tx_rx);
  409. Crypto1 crypto = {};
  410. bool key_found = mf_classic_auth(tx_rx, block_num, key, key_type, &crypto, false, 0);
  411. furi_hal_nfc_sleep();
  412. return key_found;
  413. }
  414. bool mf_classic_authenticate_skip_activate(
  415. FuriHalNfcTxRxContext* tx_rx,
  416. uint8_t block_num,
  417. uint64_t key,
  418. MfClassicKey key_type,
  419. bool skip_activate,
  420. uint32_t cuid) {
  421. furi_assert(tx_rx);
  422. Crypto1 crypto = {};
  423. bool key_found =
  424. mf_classic_auth(tx_rx, block_num, key, key_type, &crypto, skip_activate, cuid);
  425. furi_hal_nfc_sleep();
  426. return key_found;
  427. }
  428. bool mf_classic_auth_attempt(
  429. FuriHalNfcTxRxContext* tx_rx,
  430. MfClassicAuthContext* auth_ctx,
  431. uint64_t key) {
  432. furi_assert(tx_rx);
  433. furi_assert(auth_ctx);
  434. bool found_key = false;
  435. bool need_halt = (auth_ctx->key_a == MF_CLASSIC_NO_KEY) &&
  436. (auth_ctx->key_b == MF_CLASSIC_NO_KEY);
  437. Crypto1 crypto;
  438. if(auth_ctx->key_a == MF_CLASSIC_NO_KEY) {
  439. // Try AUTH with key A
  440. if(mf_classic_auth(
  441. tx_rx,
  442. mf_classic_get_first_block_num_of_sector(auth_ctx->sector),
  443. key,
  444. MfClassicKeyA,
  445. &crypto,
  446. false,
  447. 0)) {
  448. auth_ctx->key_a = key;
  449. found_key = true;
  450. }
  451. }
  452. if(need_halt) {
  453. furi_hal_nfc_sleep();
  454. }
  455. if(auth_ctx->key_b == MF_CLASSIC_NO_KEY) {
  456. // Try AUTH with key B
  457. if(mf_classic_auth(
  458. tx_rx,
  459. mf_classic_get_first_block_num_of_sector(auth_ctx->sector),
  460. key,
  461. MfClassicKeyB,
  462. &crypto,
  463. false,
  464. 0)) {
  465. auth_ctx->key_b = key;
  466. found_key = true;
  467. }
  468. }
  469. return found_key;
  470. }
  471. bool mf_classic_read_block(
  472. FuriHalNfcTxRxContext* tx_rx,
  473. Crypto1* crypto,
  474. uint8_t block_num,
  475. MfClassicBlock* block) {
  476. furi_assert(tx_rx);
  477. furi_assert(crypto);
  478. furi_assert(block);
  479. bool read_block_success = false;
  480. uint8_t plain_cmd[4] = {MF_CLASSIC_READ_BLOCK_CMD, block_num, 0x00, 0x00};
  481. nfca_append_crc16(plain_cmd, 2);
  482. crypto1_encrypt(crypto, NULL, plain_cmd, 4 * 8, tx_rx->tx_data, tx_rx->tx_parity);
  483. tx_rx->tx_bits = 4 * 9;
  484. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
  485. if(furi_hal_nfc_tx_rx(tx_rx, 50)) {
  486. if(tx_rx->rx_bits == 8 * (MF_CLASSIC_BLOCK_SIZE + 2)) {
  487. uint8_t block_received[MF_CLASSIC_BLOCK_SIZE + 2];
  488. crypto1_decrypt(crypto, tx_rx->rx_data, tx_rx->rx_bits, block_received);
  489. uint16_t crc_calc = nfca_get_crc16(block_received, MF_CLASSIC_BLOCK_SIZE);
  490. uint16_t crc_received = (block_received[MF_CLASSIC_BLOCK_SIZE + 1] << 8) |
  491. block_received[MF_CLASSIC_BLOCK_SIZE];
  492. if(crc_received != crc_calc) {
  493. FURI_LOG_E(
  494. TAG,
  495. "Incorrect CRC while reading block %d. Expected %04X, Received %04X",
  496. block_num,
  497. crc_received,
  498. crc_calc);
  499. } else {
  500. memcpy(block->value, block_received, MF_CLASSIC_BLOCK_SIZE);
  501. read_block_success = true;
  502. }
  503. }
  504. }
  505. return read_block_success;
  506. }
  507. void mf_classic_read_sector(FuriHalNfcTxRxContext* tx_rx, MfClassicData* data, uint8_t sec_num) {
  508. furi_assert(tx_rx);
  509. furi_assert(data);
  510. furi_hal_nfc_sleep();
  511. bool key_a_found = mf_classic_is_key_found(data, sec_num, MfClassicKeyA);
  512. bool key_b_found = mf_classic_is_key_found(data, sec_num, MfClassicKeyB);
  513. uint8_t start_block = mf_classic_get_first_block_num_of_sector(sec_num);
  514. uint8_t total_blocks = mf_classic_get_blocks_num_in_sector(sec_num);
  515. MfClassicBlock block_tmp = {};
  516. uint64_t key = 0;
  517. MfClassicSectorTrailer* sec_tr = mf_classic_get_sector_trailer_by_sector(data, sec_num);
  518. Crypto1 crypto = {};
  519. uint8_t blocks_read = 0;
  520. do {
  521. if(!key_a_found) break;
  522. FURI_LOG_D(TAG, "Try to read blocks with key A");
  523. key = nfc_util_bytes2num(sec_tr->key_a, sizeof(sec_tr->key_a));
  524. if(!mf_classic_auth(tx_rx, start_block, key, MfClassicKeyA, &crypto, false, 0)) break;
  525. for(size_t i = start_block; i < start_block + total_blocks; i++) {
  526. if(!mf_classic_is_block_read(data, i)) {
  527. if(mf_classic_read_block(tx_rx, &crypto, i, &block_tmp)) {
  528. mf_classic_set_block_read(data, i, &block_tmp);
  529. blocks_read++;
  530. }
  531. } else {
  532. blocks_read++;
  533. }
  534. }
  535. FURI_LOG_D(TAG, "Read %d blocks out of %d", blocks_read, total_blocks);
  536. } while(false);
  537. do {
  538. if(blocks_read == total_blocks) break;
  539. if(!key_b_found) break;
  540. FURI_LOG_D(TAG, "Try to read blocks with key B");
  541. key = nfc_util_bytes2num(sec_tr->key_b, sizeof(sec_tr->key_b));
  542. furi_hal_nfc_sleep();
  543. if(!mf_classic_auth(tx_rx, start_block, key, MfClassicKeyB, &crypto, false, 0)) break;
  544. for(size_t i = start_block; i < start_block + total_blocks; i++) {
  545. if(!mf_classic_is_block_read(data, i)) {
  546. if(mf_classic_read_block(tx_rx, &crypto, i, &block_tmp)) {
  547. mf_classic_set_block_read(data, i, &block_tmp);
  548. blocks_read++;
  549. }
  550. } else {
  551. blocks_read++;
  552. }
  553. }
  554. FURI_LOG_D(TAG, "Read %d blocks out of %d", blocks_read, total_blocks);
  555. } while(false);
  556. }
  557. static bool mf_classic_read_sector_with_reader(
  558. FuriHalNfcTxRxContext* tx_rx,
  559. Crypto1* crypto,
  560. MfClassicSectorReader* sector_reader,
  561. MfClassicSector* sector) {
  562. furi_assert(tx_rx);
  563. furi_assert(sector_reader);
  564. furi_assert(sector);
  565. uint64_t key;
  566. MfClassicKey key_type;
  567. uint8_t first_block;
  568. bool sector_read = false;
  569. furi_hal_nfc_sleep();
  570. do {
  571. // Activate card
  572. first_block = mf_classic_get_first_block_num_of_sector(sector_reader->sector_num);
  573. if(sector_reader->key_a != MF_CLASSIC_NO_KEY) {
  574. key = sector_reader->key_a;
  575. key_type = MfClassicKeyA;
  576. } else if(sector_reader->key_b != MF_CLASSIC_NO_KEY) {
  577. key = sector_reader->key_b;
  578. key_type = MfClassicKeyB;
  579. } else {
  580. break;
  581. }
  582. // Auth to first block in sector
  583. if(!mf_classic_auth(tx_rx, first_block, key, key_type, crypto, false, 0)) {
  584. // Set key to MF_CLASSIC_NO_KEY to prevent further attempts
  585. if(key_type == MfClassicKeyA) {
  586. sector_reader->key_a = MF_CLASSIC_NO_KEY;
  587. } else {
  588. sector_reader->key_b = MF_CLASSIC_NO_KEY;
  589. }
  590. break;
  591. }
  592. sector->total_blocks = mf_classic_get_blocks_num_in_sector(sector_reader->sector_num);
  593. // Read blocks
  594. for(uint8_t i = 0; i < sector->total_blocks; i++) {
  595. mf_classic_read_block(tx_rx, crypto, first_block + i, &sector->block[i]);
  596. }
  597. // Save sector keys in last block
  598. if(sector_reader->key_a != MF_CLASSIC_NO_KEY) {
  599. nfc_util_num2bytes(
  600. sector_reader->key_a, 6, &sector->block[sector->total_blocks - 1].value[0]);
  601. }
  602. if(sector_reader->key_b != MF_CLASSIC_NO_KEY) {
  603. nfc_util_num2bytes(
  604. sector_reader->key_b, 6, &sector->block[sector->total_blocks - 1].value[10]);
  605. }
  606. sector_read = true;
  607. } while(false);
  608. return sector_read;
  609. }
  610. uint8_t mf_classic_read_card(
  611. FuriHalNfcTxRxContext* tx_rx,
  612. MfClassicReader* reader,
  613. MfClassicData* data) {
  614. furi_assert(tx_rx);
  615. furi_assert(reader);
  616. furi_assert(data);
  617. uint8_t sectors_read = 0;
  618. data->type = reader->type;
  619. data->key_a_mask = 0;
  620. data->key_b_mask = 0;
  621. MfClassicSector temp_sector = {};
  622. for(uint8_t i = 0; i < reader->sectors_to_read; i++) {
  623. if(mf_classic_read_sector_with_reader(
  624. tx_rx, &reader->crypto, &reader->sector_reader[i], &temp_sector)) {
  625. uint8_t first_block =
  626. mf_classic_get_first_block_num_of_sector(reader->sector_reader[i].sector_num);
  627. for(uint8_t j = 0; j < temp_sector.total_blocks; j++) {
  628. mf_classic_set_block_read(data, first_block + j, &temp_sector.block[j]);
  629. }
  630. if(reader->sector_reader[i].key_a != MF_CLASSIC_NO_KEY) {
  631. mf_classic_set_key_found(
  632. data,
  633. reader->sector_reader[i].sector_num,
  634. MfClassicKeyA,
  635. reader->sector_reader[i].key_a);
  636. }
  637. if(reader->sector_reader[i].key_b != MF_CLASSIC_NO_KEY) {
  638. mf_classic_set_key_found(
  639. data,
  640. reader->sector_reader[i].sector_num,
  641. MfClassicKeyB,
  642. reader->sector_reader[i].key_b);
  643. }
  644. sectors_read++;
  645. }
  646. }
  647. return sectors_read;
  648. }
  649. uint8_t mf_classic_update_card(FuriHalNfcTxRxContext* tx_rx, MfClassicData* data) {
  650. furi_assert(tx_rx);
  651. furi_assert(data);
  652. uint8_t total_sectors = mf_classic_get_total_sectors_num(data->type);
  653. for(size_t i = 0; i < total_sectors; i++) {
  654. mf_classic_read_sector(tx_rx, data, i);
  655. }
  656. uint8_t sectors_read = 0;
  657. uint8_t keys_found = 0;
  658. mf_classic_get_read_sectors_and_keys(data, &sectors_read, &keys_found);
  659. FURI_LOG_D(TAG, "Read %d sectors and %d keys", sectors_read, keys_found);
  660. return sectors_read;
  661. }
  662. bool mf_classic_emulator(MfClassicEmulator* emulator, FuriHalNfcTxRxContext* tx_rx) {
  663. furi_assert(emulator);
  664. furi_assert(tx_rx);
  665. bool command_processed = false;
  666. bool is_encrypted = false;
  667. uint8_t plain_data[MF_CLASSIC_MAX_DATA_SIZE];
  668. MfClassicKey access_key = MfClassicKeyA;
  669. // Read command
  670. while(!command_processed) { //-V654
  671. if(!is_encrypted) {
  672. crypto1_reset(&emulator->crypto);
  673. memcpy(plain_data, tx_rx->rx_data, tx_rx->rx_bits / 8);
  674. } else {
  675. if(!furi_hal_nfc_tx_rx(tx_rx, 300)) {
  676. FURI_LOG_D(
  677. TAG,
  678. "Error in tx rx. Tx :%d bits, Rx: %d bits",
  679. tx_rx->tx_bits,
  680. tx_rx->rx_bits);
  681. break;
  682. }
  683. crypto1_decrypt(&emulator->crypto, tx_rx->rx_data, tx_rx->rx_bits, plain_data);
  684. }
  685. if(plain_data[0] == 0x50 && plain_data[1] == 0x00) {
  686. FURI_LOG_T(TAG, "Halt received");
  687. furi_hal_nfc_listen_sleep();
  688. command_processed = true;
  689. break;
  690. } else if(plain_data[0] == 0x60 || plain_data[0] == 0x61) {
  691. uint8_t block = plain_data[1];
  692. uint64_t key = 0;
  693. uint8_t sector_trailer_block = mf_classic_get_sector_trailer_num_by_block(block);
  694. MfClassicSectorTrailer* sector_trailer =
  695. (MfClassicSectorTrailer*)emulator->data.block[sector_trailer_block].value;
  696. if(plain_data[0] == 0x60) {
  697. key = nfc_util_bytes2num(sector_trailer->key_a, 6);
  698. access_key = MfClassicKeyA;
  699. } else {
  700. key = nfc_util_bytes2num(sector_trailer->key_b, 6);
  701. access_key = MfClassicKeyB;
  702. }
  703. uint32_t nonce = prng_successor(DWT->CYCCNT, 32) ^ 0xAA;
  704. uint8_t nt[4];
  705. uint8_t nt_keystream[4];
  706. nfc_util_num2bytes(nonce, 4, nt);
  707. nfc_util_num2bytes(nonce ^ emulator->cuid, 4, nt_keystream);
  708. crypto1_init(&emulator->crypto, key);
  709. if(!is_encrypted) {
  710. crypto1_word(&emulator->crypto, emulator->cuid ^ nonce, 0);
  711. memcpy(tx_rx->tx_data, nt, sizeof(nt));
  712. tx_rx->tx_parity[0] = 0;
  713. for(size_t i = 0; i < sizeof(nt); i++) {
  714. tx_rx->tx_parity[0] |= nfc_util_odd_parity8(nt[i]) << (7 - i);
  715. }
  716. tx_rx->tx_bits = sizeof(nt) * 8;
  717. tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
  718. } else {
  719. crypto1_encrypt(
  720. &emulator->crypto,
  721. nt_keystream,
  722. nt,
  723. sizeof(nt) * 8,
  724. tx_rx->tx_data,
  725. tx_rx->tx_parity);
  726. tx_rx->tx_bits = sizeof(nt) * 8;
  727. tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
  728. }
  729. if(!furi_hal_nfc_tx_rx(tx_rx, 500)) {
  730. FURI_LOG_E(TAG, "Error in NT exchange");
  731. command_processed = true;
  732. break;
  733. }
  734. if(tx_rx->rx_bits != 64) {
  735. FURI_LOG_W(TAG, "Incorrect nr + ar");
  736. command_processed = true;
  737. break;
  738. }
  739. uint32_t nr = nfc_util_bytes2num(tx_rx->rx_data, 4);
  740. uint32_t ar = nfc_util_bytes2num(&tx_rx->rx_data[4], 4);
  741. FURI_LOG_D(
  742. TAG,
  743. "%08lx key%c block %d nt/nr/ar: %08lx %08lx %08lx",
  744. emulator->cuid,
  745. access_key == MfClassicKeyA ? 'A' : 'B',
  746. sector_trailer_block,
  747. nonce,
  748. nr,
  749. ar);
  750. crypto1_word(&emulator->crypto, nr, 1);
  751. uint32_t cardRr = ar ^ crypto1_word(&emulator->crypto, 0, 0);
  752. if(cardRr != prng_successor(nonce, 64)) {
  753. FURI_LOG_T(TAG, "Wrong AUTH! %08lX != %08lX", cardRr, prng_successor(nonce, 64));
  754. // Don't send NACK, as the tag doesn't send it
  755. command_processed = true;
  756. break;
  757. }
  758. uint32_t ans = prng_successor(nonce, 96);
  759. uint8_t responce[4] = {};
  760. nfc_util_num2bytes(ans, 4, responce);
  761. crypto1_encrypt(
  762. &emulator->crypto,
  763. NULL,
  764. responce,
  765. sizeof(responce) * 8,
  766. tx_rx->tx_data,
  767. tx_rx->tx_parity);
  768. tx_rx->tx_bits = sizeof(responce) * 8;
  769. tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
  770. is_encrypted = true;
  771. } else if(is_encrypted && plain_data[0] == 0x30) {
  772. uint8_t block = plain_data[1];
  773. uint8_t block_data[18] = {};
  774. memcpy(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE);
  775. if(mf_classic_is_sector_trailer(block)) {
  776. if(!mf_classic_is_allowed_access(
  777. emulator, block, access_key, MfClassicActionKeyARead)) {
  778. memset(block_data, 0, 6); //-V1086
  779. }
  780. if(!mf_classic_is_allowed_access(
  781. emulator, block, access_key, MfClassicActionKeyBRead)) {
  782. memset(&block_data[10], 0, 6);
  783. }
  784. if(!mf_classic_is_allowed_access(
  785. emulator, block, access_key, MfClassicActionACRead)) {
  786. memset(&block_data[6], 0, 4);
  787. }
  788. } else if(!mf_classic_is_allowed_access(
  789. emulator, block, access_key, MfClassicActionDataRead)) {
  790. // Send NACK
  791. uint8_t nack = 0x04;
  792. crypto1_encrypt(
  793. &emulator->crypto, NULL, &nack, 4, tx_rx->tx_data, tx_rx->tx_parity);
  794. tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
  795. tx_rx->tx_bits = 4;
  796. furi_hal_nfc_tx_rx(tx_rx, 300);
  797. break;
  798. }
  799. nfca_append_crc16(block_data, 16);
  800. crypto1_encrypt(
  801. &emulator->crypto,
  802. NULL,
  803. block_data,
  804. sizeof(block_data) * 8,
  805. tx_rx->tx_data,
  806. tx_rx->tx_parity);
  807. tx_rx->tx_bits = 18 * 8;
  808. tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
  809. } else if(is_encrypted && plain_data[0] == 0xA0) {
  810. uint8_t block = plain_data[1];
  811. if(block > mf_classic_get_total_block_num(emulator->data.type)) {
  812. break;
  813. }
  814. // Send ACK
  815. uint8_t ack = 0x0A;
  816. crypto1_encrypt(&emulator->crypto, NULL, &ack, 4, tx_rx->tx_data, tx_rx->tx_parity);
  817. tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
  818. tx_rx->tx_bits = 4;
  819. if(!furi_hal_nfc_tx_rx(tx_rx, 300)) break;
  820. if(tx_rx->rx_bits != 18 * 8) break;
  821. crypto1_decrypt(&emulator->crypto, tx_rx->rx_data, tx_rx->rx_bits, plain_data);
  822. uint8_t block_data[16] = {};
  823. memcpy(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE);
  824. if(mf_classic_is_sector_trailer(block)) {
  825. if(mf_classic_is_allowed_access(
  826. emulator, block, access_key, MfClassicActionKeyAWrite)) {
  827. memcpy(block_data, plain_data, 6); //-V1086
  828. }
  829. if(mf_classic_is_allowed_access(
  830. emulator, block, access_key, MfClassicActionKeyBWrite)) {
  831. memcpy(&block_data[10], &plain_data[10], 6);
  832. }
  833. if(mf_classic_is_allowed_access(
  834. emulator, block, access_key, MfClassicActionACWrite)) {
  835. memcpy(&block_data[6], &plain_data[6], 4);
  836. }
  837. } else {
  838. if(mf_classic_is_allowed_access(
  839. emulator, block, access_key, MfClassicActionDataWrite)) {
  840. memcpy(block_data, plain_data, MF_CLASSIC_BLOCK_SIZE);
  841. }
  842. }
  843. if(memcmp(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE) != 0) {
  844. memcpy(emulator->data.block[block].value, block_data, MF_CLASSIC_BLOCK_SIZE);
  845. emulator->data_changed = true;
  846. }
  847. // Send ACK
  848. ack = 0x0A;
  849. crypto1_encrypt(&emulator->crypto, NULL, &ack, 4, tx_rx->tx_data, tx_rx->tx_parity);
  850. tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
  851. tx_rx->tx_bits = 4;
  852. } else {
  853. // Unknown command
  854. break;
  855. }
  856. }
  857. if(!command_processed) {
  858. // Send NACK
  859. uint8_t nack = 0x04;
  860. if(is_encrypted) {
  861. crypto1_encrypt(&emulator->crypto, NULL, &nack, 4, tx_rx->tx_data, tx_rx->tx_parity);
  862. } else {
  863. tx_rx->tx_data[0] = nack;
  864. }
  865. tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
  866. tx_rx->tx_bits = 4;
  867. furi_hal_nfc_tx_rx(tx_rx, 300);
  868. }
  869. return true;
  870. }
  871. bool mf_classic_write_block(
  872. FuriHalNfcTxRxContext* tx_rx,
  873. MfClassicBlock* src_block,
  874. uint8_t block_num,
  875. MfClassicKey key_type,
  876. uint64_t key) {
  877. furi_assert(tx_rx);
  878. furi_assert(src_block);
  879. Crypto1 crypto = {};
  880. uint8_t plain_data[18] = {};
  881. uint8_t resp = 0;
  882. bool write_success = false;
  883. do {
  884. furi_hal_nfc_sleep();
  885. if(!mf_classic_auth(tx_rx, block_num, key, key_type, &crypto, false, 0)) {
  886. FURI_LOG_D(TAG, "Auth fail");
  887. break;
  888. }
  889. // Send write command
  890. plain_data[0] = MF_CLASSIC_WRITE_BLOCK_CMD;
  891. plain_data[1] = block_num;
  892. nfca_append_crc16(plain_data, 2);
  893. crypto1_encrypt(&crypto, NULL, plain_data, 4 * 8, tx_rx->tx_data, tx_rx->tx_parity);
  894. tx_rx->tx_bits = 4 * 8;
  895. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
  896. if(furi_hal_nfc_tx_rx(tx_rx, 50)) {
  897. if(tx_rx->rx_bits == 4) {
  898. crypto1_decrypt(&crypto, tx_rx->rx_data, 4, &resp);
  899. if(resp != 0x0A) {
  900. FURI_LOG_D(TAG, "NACK received on write cmd: %02X", resp);
  901. break;
  902. }
  903. } else {
  904. FURI_LOG_D(TAG, "Not ACK received");
  905. break;
  906. }
  907. } else {
  908. FURI_LOG_D(TAG, "Failed to send write cmd");
  909. break;
  910. }
  911. // Send data
  912. memcpy(plain_data, src_block->value, MF_CLASSIC_BLOCK_SIZE);
  913. nfca_append_crc16(plain_data, MF_CLASSIC_BLOCK_SIZE);
  914. crypto1_encrypt(
  915. &crypto,
  916. NULL,
  917. plain_data,
  918. (MF_CLASSIC_BLOCK_SIZE + 2) * 8,
  919. tx_rx->tx_data,
  920. tx_rx->tx_parity);
  921. tx_rx->tx_bits = (MF_CLASSIC_BLOCK_SIZE + 2) * 8;
  922. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
  923. if(furi_hal_nfc_tx_rx(tx_rx, 50)) {
  924. if(tx_rx->rx_bits == 4) {
  925. crypto1_decrypt(&crypto, tx_rx->rx_data, 4, &resp);
  926. if(resp != 0x0A) {
  927. FURI_LOG_D(TAG, "NACK received on sending data");
  928. break;
  929. }
  930. } else {
  931. FURI_LOG_D(TAG, "Not ACK received");
  932. break;
  933. }
  934. } else {
  935. FURI_LOG_D(TAG, "Failed to send data");
  936. break;
  937. }
  938. write_success = true;
  939. // Send Halt
  940. plain_data[0] = 0x50;
  941. plain_data[1] = 0x00;
  942. nfca_append_crc16(plain_data, 2);
  943. crypto1_encrypt(&crypto, NULL, plain_data, 2 * 8, tx_rx->tx_data, tx_rx->tx_parity);
  944. tx_rx->tx_bits = 2 * 8;
  945. tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
  946. // No response is expected
  947. furi_hal_nfc_tx_rx(tx_rx, 50);
  948. } while(false);
  949. return write_success;
  950. }
  951. bool mf_classic_write_sector(
  952. FuriHalNfcTxRxContext* tx_rx,
  953. MfClassicData* dest_data,
  954. MfClassicData* src_data,
  955. uint8_t sec_num) {
  956. furi_assert(tx_rx);
  957. furi_assert(dest_data);
  958. furi_assert(src_data);
  959. uint8_t first_block = mf_classic_get_first_block_num_of_sector(sec_num);
  960. uint8_t total_blocks = mf_classic_get_blocks_num_in_sector(sec_num);
  961. MfClassicSectorTrailer* sec_tr = mf_classic_get_sector_trailer_by_sector(dest_data, sec_num);
  962. bool key_a_found = mf_classic_is_key_found(dest_data, sec_num, MfClassicKeyA);
  963. bool key_b_found = mf_classic_is_key_found(dest_data, sec_num, MfClassicKeyB);
  964. bool write_success = true;
  965. for(size_t i = first_block; i < first_block + total_blocks; i++) {
  966. // Compare blocks
  967. if(memcmp(dest_data->block[i].value, src_data->block[i].value, MF_CLASSIC_BLOCK_SIZE) !=
  968. 0) {
  969. bool key_a_write_allowed = mf_classic_is_allowed_access_data_block(
  970. dest_data, i, MfClassicKeyA, MfClassicActionDataWrite);
  971. bool key_b_write_allowed = mf_classic_is_allowed_access_data_block(
  972. dest_data, i, MfClassicKeyB, MfClassicActionDataWrite);
  973. if(key_a_found && key_a_write_allowed) {
  974. FURI_LOG_I(TAG, "Writing block %d with key A", i);
  975. uint64_t key = nfc_util_bytes2num(sec_tr->key_a, 6);
  976. if(!mf_classic_write_block(tx_rx, &src_data->block[i], i, MfClassicKeyA, key)) {
  977. FURI_LOG_E(TAG, "Failed to write block %d", i);
  978. write_success = false;
  979. break;
  980. }
  981. } else if(key_b_found && key_b_write_allowed) {
  982. FURI_LOG_I(TAG, "Writing block %d with key A", i);
  983. uint64_t key = nfc_util_bytes2num(sec_tr->key_b, 6);
  984. if(!mf_classic_write_block(tx_rx, &src_data->block[i], i, MfClassicKeyB, key)) {
  985. FURI_LOG_E(TAG, "Failed to write block %d", i);
  986. write_success = false;
  987. break;
  988. }
  989. } else {
  990. FURI_LOG_E(TAG, "Failed to find key with write access");
  991. write_success = false;
  992. break;
  993. }
  994. } else {
  995. FURI_LOG_D(TAG, "Blocks %d are equal", i);
  996. }
  997. }
  998. return write_success;
  999. }