signal.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574
  1. /* Copyright (C) 2022-2023 Salvatore Sanfilippo -- All Rights Reserved
  2. * See the LICENSE file for information about the license. */
  3. #include "app.h"
  4. bool decode_signal(RawSamplesBuffer *s, uint64_t len, ProtoViewMsgInfo *info);
  5. void initialize_msg_info(ProtoViewMsgInfo *i, ProtoViewApp *app);
  6. /* =============================================================================
  7. * Raw signal detection
  8. * ===========================================================================*/
  9. /* Return the time difference between a and b, always >= 0 since
  10. * the absolute value is returned. */
  11. uint32_t duration_delta(uint32_t a, uint32_t b) {
  12. return a > b ? a - b : b - a;
  13. }
  14. /* Reset the current signal, so that a new one can be detected. */
  15. void reset_current_signal(ProtoViewApp *app) {
  16. app->signal_bestlen = 0;
  17. app->signal_offset = 0;
  18. app->signal_decoded = false;
  19. raw_samples_reset(DetectedSamples);
  20. raw_samples_reset(RawSamples);
  21. }
  22. /* This function starts scanning samples at offset idx looking for the
  23. * longest run of pulses, either high or low, that are not much different
  24. * from each other, for a maximum of three duration classes.
  25. * So for instance 50 successive pulses that are roughly long 340us or 670us
  26. * will be sensed as a coherent signal (example: 312, 361, 700, 334, 667, ...)
  27. *
  28. * The classes are counted separtely for high and low signals (RF on / off)
  29. * because many devices tend to have different pulse lenghts depending on
  30. * the level of the pulse.
  31. *
  32. * For instance Oregon2 sensors, in the case of protocol 2.1 will send
  33. * pulses of ~400us (RF on) VS ~580us (RF off). */
  34. #define SEARCH_CLASSES 3
  35. uint32_t search_coherent_signal(RawSamplesBuffer *s, uint32_t idx) {
  36. struct {
  37. uint32_t dur[2]; /* dur[0] = low, dur[1] = high */
  38. uint32_t count[2]; /* Associated observed frequency. */
  39. } classes[SEARCH_CLASSES];
  40. memset(classes,0,sizeof(classes));
  41. uint32_t minlen = 30, maxlen = 4000; /* Depends on data rate, here we
  42. allow for high and low. */
  43. uint32_t len = 0; /* Observed len of coherent samples. */
  44. s->short_pulse_dur = 0;
  45. for (uint32_t j = idx; j < idx+500; j++) {
  46. bool level;
  47. uint32_t dur;
  48. raw_samples_get(s, j, &level, &dur);
  49. if (dur < minlen || dur > maxlen) break; /* return. */
  50. /* Let's see if it matches a class we already have or if we
  51. * can populate a new (yet empty) class. */
  52. uint32_t k;
  53. for (k = 0; k < SEARCH_CLASSES; k++) {
  54. if (classes[k].count[level] == 0) {
  55. classes[k].dur[level] = dur;
  56. classes[k].count[level] = 1;
  57. break; /* Sample accepted. */
  58. } else {
  59. uint32_t classavg = classes[k].dur[level];
  60. uint32_t count = classes[k].count[level];
  61. uint32_t delta = duration_delta(dur,classavg);
  62. /* Is the difference in duration between this signal and
  63. * the class we are inspecting less than a given percentage?
  64. * If so, accept this signal. */
  65. if (delta < classavg/5) { /* 100%/5 = 20%. */
  66. /* It is useful to compute the average of the class
  67. * we are observing. We know how many samples we got so
  68. * far, so we can recompute the average easily.
  69. * By always having a better estimate of the pulse len
  70. * we can avoid missing next samples in case the first
  71. * observed samples are too off. */
  72. classavg = ((classavg * count) + dur) / (count+1);
  73. classes[k].dur[level] = classavg;
  74. classes[k].count[level]++;
  75. break; /* Sample accepted. */
  76. }
  77. }
  78. }
  79. if (k == SEARCH_CLASSES) break; /* No match, return. */
  80. /* If we are here, we accepted this sample. Try with the next
  81. * one. */
  82. len++;
  83. }
  84. /* Update the buffer setting the shortest pulse we found
  85. * among the three classes. This will be used when scaling
  86. * for visualization. */
  87. uint32_t short_dur[2] = {0,0};
  88. for (int j = 0; j < SEARCH_CLASSES; j++) {
  89. for (int level = 0; level < 2; level++) {
  90. if (classes[j].dur[level] == 0) continue;
  91. if (classes[j].count[level] < 3) continue;
  92. if (short_dur[level] == 0 ||
  93. short_dur[level] > classes[j].dur[level])
  94. {
  95. short_dur[level] = classes[j].dur[level];
  96. }
  97. }
  98. }
  99. /* Use the average between high and low short pulses duration.
  100. * Often they are a bit different, and using the average is more robust
  101. * when we do decoding sampling at short_pulse_dur intervals. */
  102. if (short_dur[0] == 0) short_dur[0] = short_dur[1];
  103. if (short_dur[1] == 0) short_dur[1] = short_dur[0];
  104. s->short_pulse_dur = (short_dur[0]+short_dur[1])/2;
  105. return len;
  106. }
  107. /* Search the buffer with the stored signal (last N samples received)
  108. * in order to find a coherent signal. If a signal that does not appear to
  109. * be just noise is found, it is set in DetectedSamples global signal
  110. * buffer, that is what is rendered on the screen. */
  111. void scan_for_signal(ProtoViewApp *app) {
  112. /* We need to work on a copy: the RawSamples buffer is populated
  113. * by the background thread receiving data. */
  114. RawSamplesBuffer *copy = raw_samples_alloc();
  115. raw_samples_copy(copy,RawSamples);
  116. /* Try to seek on data that looks to have a regular high low high low
  117. * pattern. */
  118. uint32_t minlen = 18; /* Min run of coherent samples. With less
  119. than a few samples it's very easy to
  120. mistake noise for signal. */
  121. ProtoViewMsgInfo *info = malloc(sizeof(ProtoViewMsgInfo));
  122. uint32_t i = 0;
  123. while (i < copy->total-1) {
  124. uint32_t thislen = search_coherent_signal(copy,i);
  125. /* For messages that are long enough, attempt decoding. */
  126. if (thislen > minlen) {
  127. initialize_msg_info(info,app);
  128. uint32_t saved_idx = copy->idx; /* Save index, see later. */
  129. /* decode_signal() expects the detected signal to start
  130. * from index .*/
  131. raw_samples_center(copy,i);
  132. bool decoded = decode_signal(copy,thislen,info);
  133. copy->idx = saved_idx; /* Restore the index as we are scanning
  134. the signal in the loop. */
  135. /* Accept this signal as the new signal if either it's longer
  136. * than the previous undecoded one, or the previous one was
  137. * unknown and this is decoded. */
  138. if ((thislen > app->signal_bestlen && app->signal_decoded == false)
  139. || (app->signal_decoded == false && decoded))
  140. {
  141. app->signal_info = *info;
  142. app->signal_bestlen = thislen;
  143. app->signal_decoded = decoded;
  144. raw_samples_copy(DetectedSamples,copy);
  145. raw_samples_center(DetectedSamples,i);
  146. FURI_LOG_E(TAG, "===> Displayed sample updated (%d samples %lu us)",
  147. (int)thislen, DetectedSamples->short_pulse_dur);
  148. /* Adjust raw view scale if the signal has an high
  149. * data rate. */
  150. if (DetectedSamples->short_pulse_dur < 75)
  151. app->us_scale = 10;
  152. else if (DetectedSamples->short_pulse_dur < 145)
  153. app->us_scale = 30;
  154. }
  155. }
  156. i += thislen ? thislen : 1;
  157. }
  158. raw_samples_free(copy);
  159. free(info);
  160. }
  161. /* =============================================================================
  162. * Decoding
  163. *
  164. * The following code will translates the raw singals as received by
  165. * the CC1101 into logical signals: a bitmap of 0s and 1s sampled at
  166. * the detected data clock interval.
  167. *
  168. * Then the converted signal is passed to the protocols decoders, that look
  169. * for protocol-specific information. We stop at the first decoder that is
  170. * able to decode the data, so protocols here should be registered in
  171. * order of complexity and specificity, with the generic ones at the end.
  172. * ===========================================================================*/
  173. /* Set the 'bitpos' bit to value 'val', in the specified bitmap
  174. * 'b' of len 'blen'.
  175. * Out of range bits will silently be discarded. */
  176. void bitmap_set(uint8_t *b, uint32_t blen, uint32_t bitpos, bool val) {
  177. uint32_t byte = bitpos/8;
  178. uint32_t bit = 7-(bitpos&7);
  179. if (byte >= blen) return;
  180. if (val)
  181. b[byte] |= 1<<bit;
  182. else
  183. b[byte] &= ~(1<<bit);
  184. }
  185. /* Get the bit 'bitpos' of the bitmap 'b' of 'blen' bytes.
  186. * Out of range bits return false (not bit set). */
  187. bool bitmap_get(uint8_t *b, uint32_t blen, uint32_t bitpos) {
  188. uint32_t byte = bitpos/8;
  189. uint32_t bit = 7-(bitpos&7);
  190. if (byte >= blen) return 0;
  191. return (b[byte] & (1<<bit)) != 0;
  192. }
  193. /* Copy 'count' bits from the bitmap 's' of 'slen' total bytes, to the
  194. * bitmap 'd' of 'dlen' total bytes. The bits are copied starting from
  195. * offset 'soff' of the source bitmap to the offset 'doff' of the
  196. * destination bitmap. */
  197. void bitmap_copy(uint8_t *d, uint32_t dlen, uint32_t doff,
  198. uint8_t *s, uint32_t slen, uint32_t soff,
  199. uint32_t count)
  200. {
  201. /* If we are byte-aligned in both source and destination, use a fast
  202. * path for the number of bytes we can consume this way. */
  203. if ((doff & 7) == 0 && (soff & 7) == 0) {
  204. uint32_t didx = doff/8;
  205. uint32_t sidx = soff/8;
  206. while(count > 8 && didx < dlen && sidx < slen) {
  207. d[didx++] = s[sidx++];
  208. count -= 8;
  209. }
  210. doff = didx * 8;
  211. soff = sidx * 8;
  212. /* Note that if we entered this path, the count at the end
  213. * of the loop will be < 8. */
  214. }
  215. /* Copy the bits needed to reach an offset where we can copy
  216. * two half bytes of src to a full byte of destination. */
  217. while(count > 8 && (doff&7) != 0) {
  218. bool bit = bitmap_get(s,slen,soff++);
  219. bitmap_set(d,dlen,doff++,bit);
  220. count--;
  221. }
  222. /* If we are here and count > 8, we have an offset that is byte aligned
  223. * to the destination bitmap, but not aligned to the source bitmap.
  224. * We can copy fast enough by shifting each two bytes of the original
  225. * bitmap.
  226. *
  227. * This is how it works:
  228. *
  229. * dst:
  230. * +--------+--------+--------+
  231. * | 0 | 1 | 2 |
  232. * | | | | <- data to fill
  233. * +--------+--------+--------+
  234. * ^
  235. * |
  236. * doff = 8
  237. *
  238. * src:
  239. * +--------+--------+--------+
  240. * | 0 | 1 | 2 |
  241. * |hellowor|ld!HELLO|WORLDS!!| <- data to copy
  242. * +--------+--------+--------+
  243. * ^
  244. * |
  245. * soff = 11
  246. *
  247. * skew = 11%8 = 3
  248. * each destination byte in dst will receive:
  249. *
  250. * dst[doff/8] = (src[soff/8] << skew) | (src[soff/8+1] >> (8-skew))
  251. *
  252. * dstbyte = doff/8 = 8/8 = 1
  253. * srcbyte = soff/8 = 11/8 = 1
  254. *
  255. * so dst[1] will get:
  256. * src[1] << 3, that is "ld!HELLO" << 3 = "HELLO..."
  257. * xored with
  258. * src[2] << 5, that is "WORLDS!!" >> 5 = ".....WOR"
  259. * That is "HELLOWOR"
  260. */
  261. if (count > 8) {
  262. uint8_t skew = soff % 8; /* Don't worry, compiler will optimize. */
  263. uint32_t didx = doff/8;
  264. uint32_t sidx = soff/8;
  265. while(count > 8 && didx < dlen && sidx < slen) {
  266. d[didx] = ((s[sidx] << skew) |
  267. (s[sidx+1] >> (8-skew)));
  268. sidx++;
  269. didx++;
  270. count -= 8;
  271. }
  272. soff = sidx*8;
  273. doff = didx*8;
  274. }
  275. /* Here count is guaranteed to be < 8.
  276. * Copy the final bits bit by bit. */
  277. while(count) {
  278. bool bit = bitmap_get(s,slen,soff++);
  279. bitmap_set(d,dlen,doff++,bit);
  280. count--;
  281. }
  282. }
  283. /* We decode bits assuming the first bit we receive is the MSB
  284. * (see bitmap_set/get functions). Certain devices send data
  285. * encoded in the reverse way. */
  286. void bitmap_reverse_bytes(uint8_t *p, uint32_t len) {
  287. for (uint32_t j = 0; j < len; j++) {
  288. uint32_t b = p[j];
  289. /* Step 1: swap the two nibbles: 12345678 -> 56781234 */
  290. b = (b&0xf0)>>4 | (b&0x0f)<<4;
  291. /* Step 2: swap adjacent pairs : 56781234 -> 78563412 */
  292. b = (b&0xcc)>>2 | (b&0x33)<<2;
  293. /* Step 3: swap adjacent bits : 78563412 -> 87654321 */
  294. b = (b&0xaa)>>1 | (b&0x55)<<1;
  295. p[j] = b;
  296. }
  297. }
  298. /* Return true if the specified sequence of bits, provided as a string in the
  299. * form "11010110..." is found in the 'b' bitmap of 'blen' bits at 'bitpos'
  300. * position. */
  301. bool bitmap_match_bits(uint8_t *b, uint32_t blen, uint32_t bitpos, const char *bits) {
  302. for (size_t j = 0; bits[j]; j++) {
  303. bool expected = (bits[j] == '1') ? true : false;
  304. if (bitmap_get(b,blen,bitpos+j) != expected) return false;
  305. }
  306. return true;
  307. }
  308. /* Search for the specified bit sequence (see bitmap_match_bits() for details)
  309. * in the bitmap 'b' of 'blen' bytes, looking forward at most 'maxbits' ahead.
  310. * Returns the offset (in bits) of the match, or BITMAP_SEEK_NOT_FOUND if not
  311. * found.
  312. *
  313. * Note: there are better algorithms, such as Boyer-Moore. Here we hope that
  314. * for the kind of patterns we search we'll have a lot of early stops so
  315. * we use a vanilla approach. */
  316. uint32_t bitmap_seek_bits(uint8_t *b, uint32_t blen, uint32_t startpos, uint32_t maxbits, const char *bits) {
  317. uint32_t endpos = startpos+blen*8;
  318. uint32_t end2 = startpos+maxbits;
  319. if (end2 < endpos) endpos = end2;
  320. for (uint32_t j = startpos; j < endpos; j++)
  321. if (bitmap_match_bits(b,blen,j,bits)) return j;
  322. return BITMAP_SEEK_NOT_FOUND;
  323. }
  324. /* Set the pattern 'pat' into the bitmap 'b' of max length 'blen' bytes.
  325. * The pattern is given as a string of 0s and 1s characters, like "01101001".
  326. * This function is useful in order to set the test vectors in the protocol
  327. * decoders, to see if the decoding works regardless of the fact we are able
  328. * to actually receive a given signal. */
  329. void bitmap_set_pattern(uint8_t *b, uint32_t blen, const char *pat) {
  330. uint32_t i = 0;
  331. while(pat[i]) {
  332. bitmap_set(b,blen,i,pat[i] == '1');
  333. i++;
  334. }
  335. }
  336. /* Take the raw signal and turn it into a sequence of bits inside the
  337. * buffer 'b'. Note that such 0s and 1s are NOT the actual data in the
  338. * signal, but is just a low level representation of the line code. Basically
  339. * if the short pulse we find in the signal is 320us, we convert high and
  340. * low levels in the raw sample in this way:
  341. *
  342. * If for instance we see a high level lasting ~600 us, we will add
  343. * two 1s bit. If then the signal goes down for 330us, we will add one zero,
  344. * and so forth. So for each period of high and low we find the closest
  345. * multiple and set the relevant number of bits.
  346. *
  347. * In case of a short pulse of 320us detected, 320*2 is the closest to a
  348. * high pulse of 600us, so 2 bits will be set.
  349. *
  350. * In other terms what this function does is sampling the signal at
  351. * fixed 'rate' intervals.
  352. *
  353. * This representation makes it simple to decode the signal at a higher
  354. * level later, translating it from Marshal coding or other line codes
  355. * to the actual bits/bytes.
  356. *
  357. * The 'idx' argument marks the detected signal start index into the
  358. * raw samples buffer. The 'count' tells the function how many raw
  359. * samples to convert into bits. The function returns the number of
  360. * bits set into the buffer 'b'. The 'rate' argument, in microseconds, is
  361. * the detected short-pulse duration. We expect the line code to be
  362. * meaningful when interpreted at multiples of 'rate'. */
  363. uint32_t convert_signal_to_bits(uint8_t *b, uint32_t blen, RawSamplesBuffer *s, uint32_t idx, uint32_t count, uint32_t rate) {
  364. if (rate == 0) return 0; /* We can't perform the conversion. */
  365. uint32_t bitpos = 0;
  366. for (uint32_t j = 0; j < count; j++) {
  367. uint32_t dur;
  368. bool level;
  369. raw_samples_get(s, j+idx, &level, &dur);
  370. uint32_t numbits = dur / rate; /* full bits that surely fit. */
  371. uint32_t rest = dur % rate; /* How much we are left with. */
  372. if (rest > rate/2) numbits++; /* There is another one. */
  373. /* Limit how much a single sample can spawn. There are likely no
  374. * protocols doing such long pulses when the rate is low. */
  375. if (numbits > 1024) numbits = 1024;
  376. if (0) /* Super verbose, so not under the DEBUG_MSG define. */
  377. FURI_LOG_E(TAG, "%lu converted into %lu (%d) bits",
  378. dur,numbits,(int)level);
  379. /* If the signal is too short, let's claim it an interference
  380. * and ignore it completely. */
  381. if (numbits == 0) continue;
  382. while(numbits--) bitmap_set(b,blen,bitpos++,level);
  383. }
  384. return bitpos;
  385. }
  386. /* This function converts the line code used to the final data representation.
  387. * The representation is put inside 'buf', for up to 'buflen' bytes of total
  388. * data. For instance in order to convert manchester you can use "10" and "01"
  389. * as zero and one patterns. However this function does not handle differential
  390. * encodings. See below for convert_from_diff_manchester().
  391. *
  392. * The function returns the number of bits converted. It will stop as soon
  393. * as it finds a pattern that does not match zero or one patterns, or when
  394. * the end of the bitmap pointed by 'bits' is reached (the length is
  395. * specified in bytes by the caller, via the 'len' parameters).
  396. *
  397. * The decoding starts at the specified offset (in bits) 'off'. */
  398. uint32_t convert_from_line_code(uint8_t *buf, uint64_t buflen, uint8_t *bits, uint32_t len, uint32_t off, const char *zero_pattern, const char *one_pattern)
  399. {
  400. uint32_t decoded = 0; /* Number of bits extracted. */
  401. len *= 8; /* Convert bytes to bits. */
  402. while(off < len) {
  403. bool bitval;
  404. if (bitmap_match_bits(bits,len,off,zero_pattern)) {
  405. bitval = false;
  406. off += strlen(zero_pattern);
  407. } else if (bitmap_match_bits(bits,len,off,one_pattern)) {
  408. bitval = true;
  409. off += strlen(one_pattern);
  410. } else {
  411. break;
  412. }
  413. bitmap_set(buf,buflen,decoded++,bitval);
  414. if (decoded/8 == buflen) break; /* No space left on target buffer. */
  415. }
  416. return decoded;
  417. }
  418. /* Convert the differential Manchester code to bits. This is similar to
  419. * convert_from_line_code() but specific for Manchester. The user must
  420. * supply the value of the previous symbol before this stream, since
  421. * in differential codings the next bits depend on the previous one.
  422. *
  423. * Parameters and return values are like convert_from_line_code(). */
  424. uint32_t convert_from_diff_manchester(uint8_t *buf, uint64_t buflen, uint8_t *bits, uint32_t len, uint32_t off, bool previous)
  425. {
  426. uint32_t decoded = 0;
  427. len *= 8; /* Conver to bits. */
  428. for (uint32_t j = off; j < len; j += 2) {
  429. bool b0 = bitmap_get(bits,len,j);
  430. bool b1 = bitmap_get(bits,len,j+1);
  431. if (b0 == previous) break; /* Each new bit must switch value. */
  432. bitmap_set(buf,buflen,decoded++,b0 == b1);
  433. previous = b1;
  434. if (decoded/8 == buflen) break; /* No space left on target buffer. */
  435. }
  436. return decoded;
  437. }
  438. /* Supported protocols go here, with the relevant implementation inside
  439. * protocols/<name>.c */
  440. extern ProtoViewDecoder Oregon2Decoder;
  441. extern ProtoViewDecoder B4B1Decoder;
  442. extern ProtoViewDecoder RenaultTPMSDecoder;
  443. extern ProtoViewDecoder ToyotaTPMSDecoder;
  444. extern ProtoViewDecoder SchraderTPMSDecoder;
  445. extern ProtoViewDecoder SchraderEG53MA4TPMSDecoder;
  446. extern ProtoViewDecoder CitroenTPMSDecoder;
  447. extern ProtoViewDecoder FordTPMSDecoder;
  448. extern ProtoViewDecoder KeeloqDecoder;
  449. ProtoViewDecoder *Decoders[] = {
  450. &Oregon2Decoder, /* Oregon sensors v2.1 protocol. */
  451. &B4B1Decoder, /* PT, SC, ... 24 bits remotes. */
  452. &RenaultTPMSDecoder, /* Renault TPMS. */
  453. &ToyotaTPMSDecoder, /* Toyota TPMS. */
  454. &SchraderTPMSDecoder, /* Schrader TPMS. */
  455. &SchraderEG53MA4TPMSDecoder, /* Schrader EG53MA4 TPMS. */
  456. &CitroenTPMSDecoder, /* Citroen TPMS. */
  457. &FordTPMSDecoder, /* Ford TPMS. */
  458. &KeeloqDecoder, /* Keeloq remote. */
  459. NULL
  460. };
  461. /* Reset the message info structure before passing it to the decoding
  462. * functions. */
  463. void initialize_msg_info(ProtoViewMsgInfo *i, ProtoViewApp *app) {
  464. UNUSED(app);
  465. memset(i,0,sizeof(ProtoViewMsgInfo));
  466. i->short_pulse_dur = DetectedSamples->short_pulse_dur;
  467. }
  468. /* This function is called when a new signal is detected. It converts it
  469. * to a bitstream, and the calls the protocol specific functions for
  470. * decoding. If the signal was decoded correctly by some protocol, true
  471. * is returned. Otherwise false is returned. */
  472. bool decode_signal(RawSamplesBuffer *s, uint64_t len, ProtoViewMsgInfo *info) {
  473. uint32_t bitmap_bits_size = 4096*8;
  474. uint32_t bitmap_size = bitmap_bits_size/8;
  475. /* We call the decoders with an offset a few samples before the actual
  476. * signal detected and for a len of a few bits after its end. */
  477. uint32_t before_samples = 20;
  478. uint32_t after_samples = 100;
  479. uint8_t *bitmap = malloc(bitmap_size);
  480. uint32_t bits = convert_signal_to_bits(bitmap,bitmap_size,s,-before_samples,len+before_samples+after_samples,s->short_pulse_dur);
  481. if (DEBUG_MSG) { /* Useful for debugging purposes. Don't remove. */
  482. char *str = malloc(1024);
  483. uint32_t j;
  484. for (j = 0; j < bits && j < 1023; j++) {
  485. str[j] = bitmap_get(bitmap,bitmap_size,j) ? '1' : '0';
  486. }
  487. str[j] = 0;
  488. FURI_LOG_E(TAG, "%lu bits sampled: %s", bits, str);
  489. free(str);
  490. }
  491. /* Try all the decoders available. */
  492. int j = 0;
  493. bool decoded = false;
  494. while(Decoders[j]) {
  495. uint32_t start_time = furi_get_tick();
  496. decoded = Decoders[j]->decode(bitmap,bitmap_size,bits,info);
  497. uint32_t delta = furi_get_tick() - start_time;
  498. FURI_LOG_E(TAG, "Decoder %s took %lu ms",
  499. Decoders[j]->name, (unsigned long)delta);
  500. if (decoded) break;
  501. j++;
  502. }
  503. if (!decoded) {
  504. FURI_LOG_E(TAG, "No decoding possible");
  505. } else {
  506. FURI_LOG_E(TAG, "Decoded %s, raw=%s info=[%s,%s,%s,%s]",
  507. info->name, info->raw, info->info1, info->info2,
  508. info->info3, info->info4);
  509. /* The message was correctly decoded: fill the info structure
  510. * with the decoded signal. The decoder may not implement offset/len
  511. * filling of the structure. In such case we have no info and
  512. * pulses_len will be set to zero. */
  513. if (info->pulses_len) {
  514. info->bits_bytes = (info->pulses_len+7)/8; // Round to full byte.
  515. info->bits = malloc(info->bits_bytes);
  516. bitmap_copy(info->bits,info->bits_bytes,0,
  517. bitmap,bitmap_size,info->start_off,
  518. info->pulses_len);
  519. }
  520. }
  521. free(bitmap);
  522. return decoded;
  523. }